Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография как производственный метод

    Гель-хроматография является новым методам разделения, очистки и анализа органических соединений. Поскольку разделение смесей основано на различии в молекулярных весах ее компонентов, с помощью гель-хроматографии можно также определять и молекулярный вес соединений. Благодаря тому что этот метод весьма прост и не требует сложного оборудования, он в короткий срок нашел применение во многих химических и клинических лабораториях. К настоящему времени метод значительно усовершенствован и дополнен многочисленными модификациями, которые позволяют использовать его для работы как на микроуровне, так и в препаративных масштабах. В пограничной области между химией, биологией и медициной гель-хроматография приобрела большое значение как важный технический (и производственный) метод. Методика, которую первоначально можно было рассматривать лишь как атрибут специализированной биохимической лаборатории, развилась в стандартный хроматографический метод. В настоящее время гель-хроматография применяется всюду, где ставятся задачи разделения или анализа соединений с различными молекулярными весами. [c.9]


    Препаративная хроматография благодаря высокой разделяющей способности колонок и использованию селективных неподвижных фаз позволяет разделять практически любые смеси, в том числе азеотропы и изомеры. Для выделения веществ с целью последующей идентификации другими методами можно пользоваться препаративными приставками к обычным хроматографам с колонками диаметром до 20 мм и производительностью несколько десятков граммов вещества в сутки. Для выделения соединений с целью исследования их свойств или использования в лабораторных синтезах применяют специальные препаративные хроматографы с колонками диаметром 100—200 мм и производительностью 1 кг в сутки и более. Для получения реагентов промышленного синтеза используется производственная хроматография— колонны диаметром 1—3 м, имеющие производительность до 1000 т/год. [c.92]

    В практике анализа воздуха на содержание вредных примесей широко применяются методы абсорбционной спектрометрии, флуоресцентные методы, газовая хроматография, атомно-абсорбционная спектроскопия, нейтронно-активационный анализ, ядерный магнитный резонанс, масс-спектроскопия [14]. В промышленных масштабах производятся автоматические газоанализаторы, обеспечивающие непрерывный контроль уровня загрязнения атмосферы [4, 14, 15]. В СССР получили широкое применение газоанализаторы ГПК-1 и Атмосфера , предназначенные для непрерывного контроля содержания 502 в атмосфере и в воздухе производственных помещений. Разработаны специальные методы измерения скорости осаждения пыли, сажи и других аэрозолей [4, И]. Инструментальные методы оперативного контроля загрязненности атмосферы позволяют принимать действенные меры регулирования и ограничения промышленных выбросов в воздух. [c.25]

    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]


    Хроматография. Это метод разделения многокомпонентных смесей с помощью сорбентов. Хроматография имеет важное практическое значение, так как широко применяется в аналитической и производственной практике для разделения сложных смесей, в том числе и смесей лекарственных веществ и комбинированных лекарственных препаратов. [c.11]

    Хроматография — это метод, позволяющий провести разделение сложной смеси соединений со сходными химическими и (или) физическими свойствами. Чрезвычайно быстрое развитие хроматографии (по сравнению с другими аналитическими методами, основанными на разделении) объясняется рядом причин и, в частности, высокой скоростью процесса разделения, поскольку быстрота проведения анализа является важным фактором при управлении производственными процессами. Быстрота разделения, которая присуща вообще всем хроматографическим методам, является отличительной чертой газовой хроматографии, разработанной в начале 50-х годов [42]. С тех пор достигнут существенный прогресс в улучшении разделения и увеличении скорости анализа, например появились капиллярные колонки, программное управление температурой, устройства деления потока и т. д. [c.109]

    Заслуживает внимания применение газо-хроматографи-ческого метода для производственного контроля неочищенного этилена, полученного дегидратацией этилового спирта . Условия анализа следующие колонка длиной 2 м, динонилфталат (31%), температура 26 X, газ-носн-тель—водород, скорость потока 40 мл мин. [c.121]

    Самсонов Г. В. Хроматография как производственный метод. Медицинская промышленность СССР, 1954, 3. [c.554]

    Новый метод калибровки для газовой хроматографии производственных процессов. [c.230]

    Адсорбционный хроматографический метод, возникший как средство (способ) анализа и в дальнейшем развившийся в один из наиболее тонких методов контроля технологических процессов, сам стал важной стадией многих технологических процессов (в производстве редких элементов, пищевых продуктов, антибиотиков, витаминов и др.), от которой зависит высокое качество продукции. Попутно отметим, что хроматография как метод контроля и как производственный процесс [c.7]

    Препаративная газовая хроматография позволяет получать в чистом виде многие достаточно летучие вещества непосредственно из природных смесей или производственных продуктов. С ее помощью удается разделять азеотропные смеси и близкокипящие изомеры, приготовлять реактивы и фармацевтические препараты высокой степени чистоты, выделять эталонные соединения. В настоящее время препаративная хроматография превратилась в самостоятельный метод разделения смесей веществ. Появился ряд новых ее вариантов, расширяющих разделительные возможности метода и позволяющих существенно увеличить эффективность и производительность препаративных колонок. Уже сейчас препаративно-хроматографическое разделение смсси веществ осуществляется в двух вариантах прерывном и непрерывном. [c.204]

    Все без исключения промышленные хроматографы основаны иа способе проявительной газовой хроматографии, при которой анализируемая проба вводится в слой сорбента в дискретные 1м0,менты времени, транспортируется вдоль слоя потоком чистого и инертного в данной системе газа. Разделенные компоненты пробы вы.мываются из слоя сорбента и детектируются тем или инылг газоаналпзаторо.м. Другие варианты газохроматографического метода — фронтальный анализ, вакаитная хроматография, теплодинамический метод и т. д.— ие получили распространения в производственной хроматографии из-за определенных трудностей их реализации в промышленных вариантах приборов. В связи с этим любой промышленный хроматограф включает в себя следующие функциональные узлы (рнс. 144) устройства регулирования и стабилизации потока газа-иосителя, устройство ввода в поток газа-носнтеля пробы анализируемой смеси, хро.матографическую колонку с соответствующими электронными блоками поддержания ее температурного режима, детектор, фиксирующий результаты разделения компонентов смеси и, наконец, командный прибор для автоматического управления работой хроматографа. Различия. между отдельными типами приборов могут состоять в их назначении, принципе действия, в схемных и конструктивных решениях, а следовательно, и в параметрах как отдельных функциональных узлов, так и приборов в целом. [c.317]

    Хроматографический метод — один из наиболее эффективных физико-химических методов разделения и анализа сложных смесей. Он применим к жидким, газообразным и парообразным системам. Газовая хроматография, одна из разновидностей этого метода, практически применима к любым сколько-нибудь летучим соединениям. В настоящее время трудно назвать лабораторию, где бы хроматография не применялась для научных исследований и контроля производства в различных отраслях народного хозяйства. Большую роль она играет в автоматизации производственных процессов, особенно в газовой, нефтехимической н химической промышленности. [c.7]


    Применение хроматографических методов. Простота, эффективность и универсальность хроматографического метода обусловили широкое применение хроматографии для решения различных вопросов органической и неорганической химии, в биологии, медицине, физике и многих других направлениях, в лабораторных и в производственных условиях. [c.5]

    В последние годы в практику контрольно-аналитических лабораторий институтов, производственных фармацевтических объединений вводится метод жидкость-жидкостной хроматографии (ЖХ). Правильный подбор двух несмешивающихся жидких фаз —подвижной и неподвижной — может обеспечить высокое разделение при обычной температуре как летучих, так и нелетучих веществ. Метод ЖХ уже применяется для разделения жирных кислот, аминокислот, хелатов, спиртов, аминов, углеводородов, стероидов, гормонов, алкалоидов, антибиотиков и др. [c.59]

    В настоящее время уже нет необходимости говорить о возможностях и роли газовой хроматографии в современной науке и технике. Она прочно заняла ведущее место среди наиболее эффективных методов органического анализа и применяется во всех исследовательских, производственных, санитарно-химических и биохимических лабораториях, причем техника эксперимента продолжает совершенствоваться быстрыми темпами. [c.3]

    В книге широко представлен аналитический контроль всех стадий промышленного производства основных мономеров для синтетических каучуков (дивинила, изопрена, изобутилена и 2-метил-5-винилпиридина). Аналитический контроль основан на использовании методов газо-жидкостной хроматографии, полярографии, спектроскопии, потенциометрии и колориметрии. В книге приводятся методы анализа сточных вод и воздуха производственных помещений. [c.343]

    Фронтальный анализ можно проводить на обычных хроматографах без исиользования дозирующего устройства. Если определяемые компоненты в анализируемой смеси в достаточной степени разбавлены инертным газом, то смесь может непосредственно подаваться на колонку. В этом случае в отличие от проявительного анализа отсутствуют ошибки, связанные с дозированием. Однако в большинстве случаев такое условие не выполняется и требуется специальное приспособление для разбавления анализируемой смеси газом-носителем. Если имеется непрерывный поток анализируемой смеси, что часто бывает при контроле производственных процессов, то такое разбавление не вызывает затруднений. Оно достигается соответствующей регулировкой скоростей потоков анализируемой смеси и газа-носителя, поступающих в смеситель. Значительно более сложные устройства требуются при наличии жидких проб. В этом случае применение фронтального метода едва ли сулит какие-либо преимущества. [c.430]

    В капиллярной хроматографии, вследствие малых значений коэффициентов Генри, существенно ограничены возможности обогащения. Поэтому метод не может применяться для производственного контроля, особенно для автоматического регулирования контролируемого процесса. [c.239]

    Как уже было сказано, капиллярная хроматография не позволяет осуществлять контроль производственных смесей и тем более — совмещать контроль с автоматизацией управления процессом. Стремление улучшить условия разделения многокомпонентных смесей приводит к тому, что на колонку стараются наносить как можно меньшее количество пробы анализируемых веществ. Это стремление во многих случаях оправдывается, хотя и приводит к уменьшению концентрации в максимуме полосы по сравнению с исходной по крайней мере в десятки, а иногда и в сотни раз, что существенно затрудняет применение хроматографического метода анализа для решения одновременной задачи автоматизации управления процессом. [c.242]

    В последние годы широкое распространение получили методы газовой и газо-жидкостной хроматографии, позволяющие автоматически контролировать содержание различных серусодержащих компонентов в многочисленных производственных объектах. [c.6]

    В данной книге рассматривается современное состояние капиллярной газовой хроматографии. Интерес к этому методу, отличающемуся высокой разрешающей способностью, постоянно возрастает, и изучение его теоретических основ и отработка конкретных методик ведутся во многих исследовательских, опытных и производственных подразделениях. [c.8]

    Особенно перспективным оказалось применение метода газовой хроматографии, позволяющего разделять смеси сложного состава с близкими физическими и химическими свойствами. Разработаны газохроматографические методы определения ряда токсичных веществ в воздухе производственных помещений и открытой атмосфере .  [c.7]

    Интенсивное развитие метода ионообменной хроматографии, являющей ся, наряду с распределительной, вариантом хроматографического метода М. С. Цвета, началось в связи с необходимостью разделения смесей осколочных продуктов, в основном состоящих из редкоземельных элементов и их химических аналогов — трансурановых элементов, получаемых при облучении тяжелых ядер нейтронами или многозарядными ионами. ОднакО вскоре была показана целесообразность распространения метода ионообменной хроматографии на препаративное разделение природных смесей р. з. э. Это направление оказалось столь перспективным, что в настоящее время ионообменная хроматография является незаменимым методом получения индивидуальных р. з.э. высокой чистоты в лабораторных и производственных масштабах. [c.284]

    Препаративная хроматография развивается в основном как тонкий лабораторный метод выделения индивидуальных соединений из смесей, например из продуктов синтеза, и как метод последующей глубокой очистки. Однако в последние годы наблюдается тенденция развития препаративной хроматографии как метода получения веществ высокой чистоты в промышленном масштабе. Ее целесообразно применять в тех многочисленных случаях, когда выделение и очистка более распространенными способами — кристаллизацией, ректификацией и др. — не эффективны. Значение препаративной хроматографии с каждым годом растет в связи с бурным развитием химии чистых и особо чистых материалов. Препаративная хроматография позволяет получить в товарных количествах высокочистые газы из природных газовых смесей или производственных продуктов, разделять азеотропные смеси, не поддающиеся разделению ректификацией, получить реактивы высокой чистоты в качестве эталонов. [c.213]

    Колвевская Ю.А., Иванюк Е.Г. - Гигиена труда и проф.заболеваний.1975,Ш2, 54-56 РЖХим,1976,11И771. Определение изомеров нитрохлорбензола в воздухе производственных помещений при помощи газовой хроматографии. (Чувствительность метода I мг/м ). [c.206]

    Таким образом, оба направления — периодичес1 ая и непрерывная препаративная газовая хроматография успешно развиваются. Препаративная хроматография прочно стала самостоятельным направлением разделения смесей. Появился целый ряд новых вариантов, суш,ественно расширяющих разделительные возможности метода, позволяющих повысить эффективность и производительность препаративных колонн. Диаметр используемых колонн возрос до 200—300 мм, а на повестке дня использование колонн диаметром 1 ж и более. В этом случае препаративная хроматография станет производственным методом разделения смесей с производит( льностью, исчисляемой тоннами. Существующие в настоящее время препаративные установки следует рассматривать как необходимый этап этого развития. [c.260]

    Компоненты смеси Сю — Сю являются соседними членами одного гомологического ряда. Разделение такой смеси возможно с помощью хроматографии или методом ректификации в вакууме. Мы остановились на втором апособе, поскольку вакуум-ректификация в наших условиях (лабораторньих и особенно производственных) более доступна. [c.103]

    Потребовалось несколько столетий для того, чтобы дистил-чщия превратилась в промышленный метод разделения. Пседасатиг-ная хроматография находится лишь на самой начальной ступени развитая, и не сомнения, что в ближайшеы будущем ей предстой стать подлинно производственным методом разделения смесей. [c.8]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    В фармацевтической промышленности важгюе значение имеет применение ионообменных смол, угля и других сорбентов для выделения, очистки и анализа алкалоидов, витаминов, антибиотиков и ряда других лекарственных веществ. Как было показано в предыдущей главе, выделение и разделение витаминов и алкалоидов хроматографическими методами весьма эффективно и рентабельно. А. В. Труфанов в 1936 г. применил адсорбцию на угле для извлечения и очистки витамина Вх. В 1944 г. А. В. Тру-фанов и В. А. Кирсанова разработали производственный метод выделения витаминов В1, Вз и эргостерина из пекарских дрожжей, используя для хроматографии пермутит. [c.202]

    P4I5. Количественное определение эфиров и высших спиртов в пиве методом газовой хроматографии. (Разработан метод, отличающийся простотой, высокой чувствительностью и низкими производственными расходами. Описана методика анализа с предварительной дистилляцией пива. НФ триэтаноламин-диглицерин.) [c.164]

    Заслуживает внимания применение газо-хроматографи-еского метода для производственного контроля неочищен- 0Г0 этилена, полученного дегидратацией этилового пирта . Условия анализа следующие колонка длиной м, динонилфталат (31%), температура 26 X, газ-носи- ель—водород, скорость потока 40 мл/мин. [c.121]

    На рисунке приведен график для количественного определения цис-1,2-дихлорэтилена в винил-иденхлориде методом газовой хроматографии. В качестве пика сравнения использован пик толуола. При анализе трех производственных образцов были получены следующие данные  [c.225]

    Развитие классической аналитической химии шло в направлении разработки новых органических реагентов для селективного обнаружения и количественного определения элементов, совершенствования методик анализа и внедрения математических методов обработки результатов анализа. Начиная с середины прошлого века, сначала для целей идентификации, а затем и для количественных определений в аналитической химии стали использовать инструментальные методы анализа, обладающие преимуществами в чувствительности, скорости и точности выполнения анализа, необходимые в научных исследованиях и производственном контроле. Развитие инструментальных методов привело к появлению новых направлений (например, аналитическая биохимия, хроматография, радиоаналитическая химия и т. п.). В эпоху научно-технической революции появление принципиально новой методологии — моделирования, алгоритмизации, системного подхода — привело к перестройке и в аналитической химии, которую теперь квалифицируют как науку, занимающуюся получением информации о химическом составе вещественных систем. Полная химическая информация о качественном и количественном составе, получаемая в максимально короткие сроки на минимальном количестве исследуемого объекта, требуется практически во всех отраслях науки, техники и промышленности. Это стало возможным в результате развития в XX в. компьютерной техники и автоматизации производства. [c.6]

    Метод газовой хроматографии хорошо поддается автоматизации. В этом его неоспоримое преимущество перед другими современными приемами физико-химического анализа для химической промышленности. В настоящее время цеха крупн]з1Х химических заводов-комбинатов оборудованы десятками газовых хроматографов, связанных со специализированными ЭВМ для оперативного контроля и управления производственными процессами. [c.10]

    Этот метод используется также при производственном контроле. Например, хроматографически можно легко обнаружить искусственную подкраску вин красителями. М. М. Дубинин применил методы хроматографии для адсорбции смеси паров различных веществ с целью разделения. [c.365]

    Во избежание дублирования и с целью некоторого сокращения объема книги отдельные главы были исключены из перевода. Так, учитывая, что недавно вышла книга А. В. Киселева и Я. И. Яшина Газоадсорбционная хроматография (изд-во Наука , М., 1967), мы опустили главу, посвященную этому вопросу. Не была включена в перевод также глава по препаративной газовой хроматографии, поскольку ей посвящена вышедшая в 1967 г. работа К. В. Алексеевой, В- Г. Березкина, С. А. Волкова, Е. Г. Растянникова Получение чистых веществ методом препаративной газовой хроматографии (ЦНИИТЭНефтехим, М., 1967). Исключена глава, посвященная теории распределения вещества в хроматографической колонке, поскольку она выходит за рамки интересов широкого круга читателей. Глава, посвященная контролю и регулированию производственных процессов, дана с некоторыми сокращениями. [c.5]

    Метод обладает большими преимуществами в том случае, когда нужно определять ноложительные или отрицательные отклонения концентрации комнонентов газовой смеси от стандартного состава . Если через колонку непрерывно пропускается смесь требуемого состава и периодически дозируется определенный объем газообразной пробы, то вакансии возникают только для компонентов пробы, концентрация которых ниже стандартной, в то время как компоненты, концентрации которых превышают стандартную, дают обычные положительные пики. При этом получаются хорошо обозримые и легко поддающиеся расчету хроматограммы, которые значительно упрощают задачу контроля производственных процессов методом газовой хроматографии. [c.438]

    Промышленные анализаторы не только полезны для технологического контроля в реальном масштабе времени, но также используются в научньпс организациях для уменьшения времени разработки и оптимизации новых процессов. Возможно, эта область получит широкое развитие в будущем, поскольку промышленные анализаторы позволяют значительно увеличить продуктивность научных исследований. В производственных областях промышленный анализ будет играть все возрастающую роль, поскольку в перспективе предполагается замена всех off-Ипе-анализов на более прогрессивные варианты. Однако современная технология промышленных анализаторов пока не позволяет окончательно решить задачи подобного типа. Методы высокоскоростного разделения, такие как капиллярный электрофорез, могут вытеснить жидкостную хроматографию. [c.670]

    По цели хроматографирования выделяют аналитическую хроматографию (качественньш и количественный анализ) препаративную хроматографию (для получения веществ в чистом виде, для концентрирования и выделения веществ) промыщленную (производственную) хроматографию для автоматического управления процессом (при этом целевой продукт поступает в датчик) [Основы ана-литическлй химии. Кн. 1. Общие вопросы. Методы разделения. 2-е изд., перераб. и доп. / Под ред. акад. Ю.А. Золотова М. Высщая щкола, 2000. 351 с.] [c.177]

    В силу различной растворимости соответствующих диастереомер-ных солей (0,Ь и Ь,Ь) они разделяются путем кристаллизации нли дробного осаждения и прн последующем разложении кислотами образуют оптически чистые L- и О-амннокнслоты. Эти методы, ранее широко применявшиеся в лаборатории, постепенно утрачивают свое значение. В производственных условиях для разделения рацемических аминокислот все шире используются хроматография на оптически активных адсорбентах и иммобилизованные ферменты. [c.85]

    Метод комплексообразования с карбамидом по сравнению с методом жидкостной адсорбционной хроматографии позволяет выделить в препаративном масштабе непосредственно из исследуемого нефтепродукта комплексообразуюш,ие соединения (главным образом, н-парафины). В связи с этим указанные методы удачно дополняют друг друга при углублённом изучении состава нефтепродуктов. Метод комплексообразования с карбамидом, осуш ествленный на хроматографической колонке, может быть рекомендовал и для производственного контроля  [c.25]


Смотреть страницы где упоминается термин Хроматография как производственный метод: [c.221]    [c.374]    [c.147]   
Смотреть главы в:

Химия и технология химикофармацефтических препаратов -> Хроматография как производственный метод




ПОИСК





Смотрите так же термины и статьи:

Определение ацетилацетона, ацетона и этанола из одной пробы в воздухе производственных помещений методом газовой хроматографии

Определение в воздухе производственных помещений изомеров нитротолуола методом газовой хроматографии

Определение винилацетата в воздухе методом бумажной хроматографии . Определение стирола в воздухе производственных помещений методом бумажной хроматографии

Определение диметилформамида и диметилацетамида в воздухе производственных помещений методом газовой хроматографии

Определение дихлорэтана, четыреххлористого углерода, трихлорэтана и хлористого метилена при их изолированном и совместном присутствии в воздухе производственных помещений методом газовой хроматографии

Определение изомерных ксилидинов в воздухе производственных помещений методом газовой хроматографии

Определение метилового эфира метоксиуксусной кислоты, метоксиацетилацетона, ацетона, метанола и толуола в воздухе производственных помещений из одной пробы методом ГЖХ . Определение хлорантрахинонов в воздухе методом газожидкостной хроматографии

Определение одноосновных карбоновых кислот С2 — С6 и фурфурола в воздухе производственных помещений методом газовой хроматографии

Определение содержания диметилтерефталата и сопутствующих продуктов в воздухе производственных помещений методом газожидкостной хроматографии

Определение уксусной кислоты в воздухе производственных помещений методом газовой хроматографии

Определение хлоропрена в атмосферном воздухе и воздухе производственных помещений методом газовой хроматографии

Хроматография методы



© 2024 chem21.info Реклама на сайте