Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения, классификация в связи с определением

    Как известно, окислением называют реакции, связанные с потерей атомом (или молекулой) электронов. Достаточно легко установить происходящие при этом изменения в состоянии окисления реагирующих партнеров для чисто ионных реакций. Однако для превращений ковалентных органических соединений понятия окисление или восстановление далеко не всегда кажутся столь же очевидными. Действительно, если речь идет об окислении первичного спирта в карбоновую кислоту (или обратном процессе), об окислении алкенов в эпоксиды или их превращении в алканы, то ясно, что это все — типичные окислительно-восстановительные реакции. Но уже классификация в тех же терминах таких реакций присоединения по двойной связи, как гидратация или бромирование, и обратных им реакций элиминирования не кажется столь же определенной. Тем не менее и по отношению к подобного рода реакциям можно уверенно использовать понятия окисления и восстановления, если опираться на определенные формальные критерии и принять за начало отсчета степень окисления углерода в алканах (уровень окисления 0). [c.132]


    КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В СВЯЗИ С ОБЪЕМНЫМ ОПРЕДЕЛЕНИЕМ ВОДЫ, ПРИСУТСТВУЮЩЕЙ [c.106]

    Атомная матрица, записанная длм некоторого множества соединений по их брутто-формулам, представляет собой удобный способ записи состава соединений при решении многих задач (составление уравнений материального баланса при записи обшей системы уравнений химического равновесия и т. п.). Существует, однако большое число задач, в которых использование брутто-формул оказывается явно недостаточным. Эти задачи прежде всего связаны с рассмотрением множества соединений, построенных из сравнительно небольшого числа элементов и характеризующихся своими структурными особенностями. Тгк, при изучении рядов органических соединений множество соединений может включать только те, которые содержат Н, С и Ы, и тем не менее разнообразие соединений оказывается очень большим. Говорить о них, используя только брутто-формулы, практически невозможно. Приходится обращаться к более детализированному языку, в частности выделять отдельные ряды соединений, построенных согласно каким-либо общим принципам, выделять различные структурные изомеры и т. д. Задание соединений каждого ряда можно осуществить путем построения матриц, в которых явно отражается тот факт, что атомы определенных элементов входят в каждую молекулу, а также и то, как эти атомы соединены между собой, как они расположены в цепи химического действия. Построение такого типа матриц (топологических матриц) оказывается весьма удобным при анализе того, какие соединения могут встретиться в данном ряду соединений. Тем не менее, характеризуя каждое соединение своей отдельной матрицей, мы зачастую получаем избыток информации, с одной стороны, и довольно громоздкий аппарат, с другой стороны, который нужен не для всех задач. Обычно приходится выбирать компромиссный вариант отказываться от брутто-формул, но не пользоваться столь подробной детализацией, которую предоставляют топологические матрицы. Этот вариант связан с выделением в молекулах каждого ряда структурных фрагментов, или звеньев, задание числа которых определяет каждую молекулу. Структурные фрагменты каждого вида в молекулах данного ряда предполагаются одними и теми же. В зависимости от того, насколько детально проведена классификация фрагментов, насколько широко каждый фрагмент захватывает ту область молекулы, в которой он находится, мы получаем более или менее подробное описание молекулы. С этой точки зрения брутто-формулы представляют наиболее упрощенный вариант классификации структурных элементов в качестве таковых выбираются лишь атомы в молекуле вне зависимости от их местоположения в цепи [c.237]


    В 30—40-е годы были, однако, найдены факты, кото] ые поколебали теорию сложных радикалов. Оказалось, что большинство сложных радикалов нельзя получить в свободном состоянии. Но самым главным было то, что теория сложных радикалов не удовлетворяла требованиям рациональной классификации органических соединений, отражающих свойства определенных классов в связи о составом. [c.125]

    Различия дисперсии органических соединений с разным числом и расположением кратных связей столь значительны, что для целей классификации по степени непредельности можно вообще не пользоваться аддитивной схемой расчета, а непосредственно сравнивать дисперсию исследуемых соединений с установленными для каждого класса характерными величинами. При этом вместо молекулярной дисперсии (7.13) целесообразно использовать удельную дисперсию Ьрс или, лучше, относительную дисперсию, M/T D, определение которой не требует знания плотности и может быть произведено с несколькими каплями вещества  [c.203]

    Первые четыре главы касаются структуры важнейших классов органических соединений, их номенклатуры, нахождения в природе и использования. Здесь же приводится несколько химических реакций для иллюстрации переходов функциональных групп друг в друга, а также для выявления принципов, применяемых при определении структуры путем деградации. В гл. 5 рассматривается химическая связь в выражениях резонансного метода и метода молекулярных орбит. В гл. 6 обсуждаются вопросы стереохимии на основе валентных углов и расстояний, свободного и заторможенного вращения вокруг связей, а также на основе симметрии молекул и конфигурации циклических соединений. В гл. 7 показана зависимость между физическими свойствами органических соединений и их структурой. В гл. 8 вводится вопрос о соотношении между структурой соединения и его химической реакционной способностью. Реакции кислот и оснований, знакомые студентам из курса общей химии, использованы для иллюстрации резонансного, индуктивного и стереохимического эффектов. В гл. 9 разъясняется наша схема классификации органических реакций и вводятся механизмы реакций. В гл. 8 и 9 заложен переход от статических описаний органической химии к динамическим. [c.11]

    В связи с ограниченностью сведений о строении антибиотиков химическая классификация далеко не совершенна, но она позволяет в ряде случаев относить антибиотики к определенным и известным классам органических соединений. [c.687]

    Факты говорят о том, что особенно быстро развиваются исследования в области химической (молекулярной) психофармакологии в последние пять — семь лет. Наряду с увеличением объема информации характерной чертой исследований последних лет является стремление к определенному обобщению фактов, разработке теоретических моделей. Экспериментальные работы с каждым годом охватывают все больший круг органических соединений, обладающих психотропной активностью, в связи с чем классификация указанных препаратов по типу действия постоянно изменяется и совершенствуется. Ниже представлена одна из признанных в настоящее время классификаций психотропных средств  [c.8]

    Необходимо отметить, что метод определения энергии диссоциации соединений по энергиям диссоциации отдельных связей в случае неорганических веществ не приводит к таким точным результатам, как для гомологических рядов органических соединений. Это объясняется значительно большей специфичностью связей в неорганических веществах, не позволяющей создать общую и в то же время детальную классификацию связей и приписать отдельным связям значения энергии диссоциации, остающиеся постоянными для достаточно большой группы веществ. [c.159]

    Для органических веществ это определение является слишком общим — полного разделения зарядов в органических соединениях, как правило, пет, и по существу любую реакцию замещения, приводящую к изменению полярности связей в органическом веществе, можно рассматривать как процесс окисления — восстановления (см., например, задачу 3). Поэтому концепция окисления — восстановления как перераспределения электронов (обогащения или обеднения атома углерода или всей молекулы электронами) не имеет большого значения для студентов, изучающих органическую химию, и неудобна для классификации реакций. Удобнее представлять окисление как обогащение вещества кислородом илп обеднение водородом напротив, процесс обогащения водородом или обеднения кислородом рассматривают как восстановление. [c.137]

    Понятие гомологии является одним из важнейших в органической химии, и гомологические ряды составляют основу современной классификации органических соединений. Однако в это понятие нередко вкладывается недостаточно определенный смысл, а единственная монография, специально посвященная детальному рассмотрению этой проблемы, опубликована более 35 лет назад [2]. Вопросы принадлежности соединений к разным гомологическим рядам весьма важны и связаны, например, с проблемами изомерии в органической химии [3], в частности с созданием эффективных алгоритмов определения числа возможных изомеров по брутто-формуле вещества с помощью ЭВМ. Совершенно особое значение приобретает точное определение этого понятия при интерпретации результатов исследования органических соединений с помощью современных физических и физико-химических методов, так как позволяет значительно упростить решение задачи за счет разделения стадий групповой (отнесение к гомологическому ряду) и индивидуальной идентификации (определение строения соединения известного класса с учетом числа его возможных изомеров). [c.9]


    Классификация органических соединений, разработанная многими поколениями химиков, систематизировала великое множество органических веществ и теперь позволяет распознавать их и относить к определенным классам и группам (рис. 1.1), с учетом особенностей структуры углеводородного скелета, циклов, характера ковалентных связей и функциональных групп, а также наличия гетероатомов в углеводородных цепях или циклах. Ориентированию в органических веществах способствует и классификация типов их изомеров (рис.8.4). [c.542]

    Как правило, сорбционное концентрирование микроэлементов и различных органических соединений подразумевает повышение чувствительности последующего инструментального определения. В простейшем случае после концентрирования получают концентрат в том или ином агрегатном состоянии и применяют к нему подходящий аналитический метод. Поскольку стадия концентрирования и собственно инструментальное определение мало связаны между собой, то, согласно классификации [318), несколько выполненных операций составляют комбинированный аналитический метод. [c.463]

    Основную подготовительную работу для создания учения о валентности провели А. Авогадро и Ш. Жерар. Она была связана с установлением точных формул органических и неорганических соединений. Это позволило начать с известной уверенностью классификацию молекул по определенным типам. [c.172]

    В работе [1610] был предложен специальный метод обнаружения внутримолекулярных Н-связей в ароматических соединениях, который, однако, остался непроверенным. То же самое откосится и к предложению использовать для определения отношения НгО/ВгО разницу между верхней и нижней критическими температурами растворения, которая зависит от образования Н-связей [46]. Кроме того, к числу неопробованных относится способ качественной классификации органических соединений по их функциональным группам [1922]. Этотметод основан на ускорении или замедлении реакции образования комплекса неизвестного состава в системе хлорное железо — пропилгаллат — хлоранилин и ее поведении при изменении температуры. В той же работе [1922] обсуждаются вероятные функции Н-связи. Толученная таким образом классификация довольно хорошо согласуется с подразделением соединений согласно табл. 10. В присутствии соединений класса А образование комплекса обычно ускоряется, а в присутствии соединений класса В—замедляется. Соединения класса N не оказывают влияния на скорость образования комплекса. [c.280]

    Предложенная классификация позволяет разделить сточные воды на сравнительно ограниченное число типов, для каждого из которых может быть выбрана наиболее рациональная технологическая схема огневого обезвреживания. В качестве примера рассмотрим определение типа сточной воды для щелочного стока производства капролактама со следующим составом примесей натриевые соли низших дикарбоновых кислот (в основном адипинат натрия) — 20—21,9% циклогексанон — 0,1—0,7% циклогексанол — 1,8—2,5% едкий натр — до 1% циклогексан — до 0,5%> Рассматриваемая сточная вода содержит углеводород (циклогексан), окисленные углеводороды (циклогексанон, циклогексанол), органические соединения натрия и минеральное вещество (едкий натр), т. е. относится к классу II. В ней содержатся как легколетучие (циклогексан), так и высококипящие органические вещества (натриевые соли органических кислот), т. е. по наличию легколетучих веществ эта сточная вода должна быть отнесена к группе Б. Экспериментальное исследование огневого обезвреживания показало, что температура отходящих газов, равная 980— 1000° С, является рабочей. При этом натриевые соли органических кислот превращаются в карбонат натрия, а едкий натр подвергается карбонизации, т. е. конечным минеральным продуктом процесса обезвреживания является карбонат натрия, имеющий температуру плавления 850° С, близкую к рабочей температуре процесса. В связи с этим сточная вода входит в подгруппу 1. Известно, что при температуре 980—1000°С карбонат натрия частично возгоняется, поэтому рассматриваемую сточную воду следует отнести к подгруппе в. Таким образом, в соответствии с предложенной классификацией щелочной сток производства капролактама представляет сточные воды типа ПБ1в. Предложенная классификация сточных вод распространяется и на жидкие горючие отходы, в составе которых могут быть минеральные вещества и органические соединения некоторых металлов. [c.123]

    Органические соединения удобно спрупнировать так, чтобы соединения с похожими химическими свойствами рассматривать вместе. Простые связи углерод — углерод и углерод—водород неполярны и оказывают лишь относительно небольшой эффект на химическую реакционную способность. Поэтому при классификации органических соединений они игнорируются. Однако введение в молекулу других атомов или лрупп атомов сильно влияет на химические свойства молекулы. Характеристические химические свойства можно приписать наличию определенной лруппы атомов, такая группа называется функциональной. Некоторые из наиболее часто встречающихся функциональных групп приведены в табл. 1.1. Химия отдельных групп обсуждается в гл. 4—8, а в гл. 9 и далее рассмотрены соединения, содержащие несколько функциональных групп, что характерно для многих природных продуктов. [c.24]

    Ингольд и его сотрудники, как известно, много работали над выяснением механизма реакций органических соединений. При этом они создали определенную классификацию реакций замещения, которая в дальнейшем была перенесена и на реакции комплексных ионов. По Юзу и Ингольду, следует различать реакции нуклеофильного и электрофильного замещения. Нуклеофилйные реагенты предоставляют свои электронные пары центральному атому, а электрофильные приобретают электронные пары от нуклеофильных (лигандов или аддендов). В химии комплексных соёдинений наиболее обычным является положение, когда электрофильный реагент (центральный атом) перетягивает к себе в большей или меньшей степени электронные пары нуклеофильных групп (лигандов). Согласно мнению упомянутых авторов, есть два основных типа реакций нуклеофильного (или электрофильного) замещения. Один из этих типов сводится к тому, что в исходном комплексном ионе Ме—X происходит медленно протекающий процесс разрыва связи Ме—Х, за которым следует быстро протекающий процесс соединения ненасыщенного радикала Ме с новым заместителем (лигандом) L. Процесс может быть выражен схемой  [c.457]

    В ч. 1И собран большой материал по инфракрасным спектрам (и немало по спектрам комбинационного рассеяния) координационных соединений с различными неорганическими и органическими лигандами. Классификация комплексов проведена по типам лигандов. Рассмотрены возможности определения структуры комплексов каждого класса методом инфракрасной спектроскопии, найденные виды структур, отнесение колебательных частот, формы колебаний некоторых комплексов и другие вопросы. Особое внимание обращено на колебания металл-лиганд, пдентификацня которых проведена при помощи расчета нормальных колебаний. Указаны многие интересные данные о силовых постоянных растяжения связей металл-лиганд и др. Дан ряд иллюстраций инфракрасных спектров поглощения координационных соединений. Одно из приложений представляет собой корреляционные диаграммы характеристических или групповых частот неорганических и комплексных соединений. [c.7]

    Недавно было предложено подразделить реакции замещения в органических соединениях на три типа [12] 8 1, в которых ступенью, определяющей скорость, является только разрыв связи, как, например, М — X 8 2, в которых ступенью, определяющей скорость, является в равной степени разрыв связи в М — X и образование связи в У — М 8 2(Иш), в которых ступень, определяющая скорость, включает толх.ко образование связи У — М. Целесообразно дальнейшее подразделение мономолекулярных реакций иа реакции 8к1(Ит) и 8м1- А этой книге механизм 8к1(Иш) определяется как механизм, для которого можно получить определенное доказательство существования интермедиата или комплекса с уменьшенным координационным числом. Механизм 8n1 определяется как такой, для которого нельзя получить экспериментальное нодтвернедение, но который удовлетворяет требованиям диссоциативного механизма и ие полностью удовлетворяет требованиям ассоциативного механизма. Считают, что реакции, где У участвует в образовании активированного комплекса, по взаимодействует лишь слабо, согласно этому определению, такн е относятся к механизму 8Предложенная классификация механизмов приведена в табл. 111. [c.117]

    Для успещного изучения органической химии необходимо прежде всего познание общих закономерностей в построении органических соединений и в проявляемых ими физических и химических свойствах. Более частными, но не менее важными вопросами являются во-первых, уверенное ориентирование во всем многообразиии классов и групп органических веществ(т.е. знание классификации органических соединений)-, далее умение распознавать и называть эти соединения (т.е. владение номеклатурными правилами)-, в-третьих, знание структурных особенностей (характер углеводородного скелета, природа связей, функциональных групп и т.д.), а также связанных с этим определенных химических свойств затем - владение типичными синтетическими приемами и условиями перехода от одних соединений к другим наконец, знание основных принципов протекания органических реакций, характера промежуточных частиц и механизмов валсней-щих типов органических реакций. [c.542]

    Фальк и сотрудники вводят в органическую химию также определение понятия окисления как потери отрицательного пли приобретения атомом положительного заряда и определение понятия восстановления как потерн атомом положительного или приобретения отрицательного заряда. Следовательно, образование междуатом-ной связи сопровождается одновременным окислением одного и восстановлением другого атома. С этой же точки зрения оказывается возможным классифицировать реакции так I. Если алгебраическая сумма положительных и отрицательных зарядов на определенном атоме молекулы изменяется, число корпускул на атоме либо А) увеличивается, либо В) уменьшается. И. Если алгебраическая сумма положительных п отрицательных зарядов на атоме остается без изменения, арифметическая сумма либо А) изменяется, либо В) остается постоянной [8, стр. 18151, причем 1А — реакции восстановления, 1В — реакции присоединения (включая окисление), ИА — образование ониевых соединений и ПВ — перегруппировки, в которых не имеют места процессы 1А, 1В и ПА. В соответствии с этой классификацией в той же статье рассмотрены некоторые органические реакции. [c.36]

    Относительно принципов расположения материала внутри четырех главных групп возможно расхождение мнений. Если вновь задаться вопросом, что общего есть во всех органических реакциях, то выясняется, что оно в основном состоит в разрыве существующих связе11 и в образовании новых. Во избежание повторений целесообразно положить в основу классификации не получение определенных групп, а образование связей. Избранная здесь последовательность обнаруживается в переходах от простого к более сложному. Большинство связей может возникнуть как при реакциях соединения, так и замещения. Отсюда возникает естественное подразделение основных глав. Рассмотрение материала с этой точки зрения облегчается тем, что в органической [c.8]

    В связи с простотой, быстротой, широтой применения и относительно малой опасностью внесения загрязнений [64—68, 229—231] экстракция является одним из главных методов разделения при определении следов элементов. Этот метод основан па распределении растворенного вещества между двумя несмешивающимися растворителями. Основным фактором в этом методе является коэффициент распределения, т. е. отношение общих концентраций растворенного вещества в двух жидких фазах после достижения равновесия. Чаще всего используют экстракцию различных металлов из водных растворов такими органическими растворителями, как эфир, хлороформ, четыреххлористый углерод и т. д. Образование нейтральных химических соединений существенно для экстракции элемента органическим растворителем [232 — 234]. В число этих соединений входят простые молекулы с ковалентными связями, гетерополикислоты, внутрикомплексные соединения, ионные ассо-циаты и комбинации некоторых перечисленных типов молекул. Классификация систем для экстракции металлов с этой точки зрения дана в работе Моррисона и Фрейзера [68]. Большинство элементов при определенных условиях образует экстрагируемые комплексы. Ра.зличпые органические [c.94]


Смотреть страницы где упоминается термин Органические соединения, классификация в связи с определением: [c.103]    [c.322]    [c.15]    [c.516]    [c.138]    [c.277]    [c.277]   
Акваметрия (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Классификация органических соединени

Органические соединения классификация

Связи связь, определение

Связующее определение

Связь в органических соединения

Соединение определение



© 2025 chem21.info Реклама на сайте