Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные кристаллы, кристаллическая структура

    Существование дальтонидов и бертоллидов противоречит закону постоянства. . ., который, строго говоря, применим лишь к соединениям с молекулярной структурой (пар, молекулярные жидкости и молекулярные кристаллы). Хотя кристаллический вюстит имеет нестехиометрический состав (Рео,8дО—Рео,950), можно утверждать, что парообразная закись железа содержит стехиометрические молекулы. ... [c.308]


    Влиянию молекулярного веса парафина на размер образуемых им кристаллов посвящены работы [112, 120]. В этих работах показано, что с повышением молекулярного веса и температуры кипения парафина его кристаллическая структура становится все более мелкой. На рис. 36 показаны разные фракции ставропольской нефти, закристаллизованные в одинаковых условиях. Из рисунка видно, что при повышении температуры кипения фракции линейные размеры кристаллов парафина уменьшаются. [c.103]

    Твердые тела, построенные из индивидуальных молекул, удерживаемых вместе силами слабого притяжения, называют молекулярными кристаллами. Благородные газы (Не, 1Че, Аг, Кг, Хе, Ни) при очень низких температурах существуют в виде молекулярных кристаллов, которые связаны слабыми межатомными силами. Например, Аг замерзает при — 189°С, образуя плотноупакованную кристаллическую структуру, показанную на рис. 14-1. К числу элементарных веществ, которые кристаллизуются с образованием молекулярных твердых тел, относятся галогены, например Вгг замерзает при - ТС с образованием кристаллической структуры, показанной на рис. 14-2. [c.601]

    Следовательно, с повышением молекулярного веса и температуры кипения парафина его кристаллическая структура становится все более мелкой. При этом повышению температуры кипения соответствует весьма резкое уменьшение размера кристаллов. Для иллюстрации этого на рис. 8 приведена серия микрофотографий последовательных фракций одной из парафинистых нефтей, закристаллизованных в равных условиях. Из рис. 8 видно, что даже при относительно небольшом повышении температуры кипения фракции, например на 50° (от 400 —450° до 450—500°), уменьшаются линейные размеры кристалликов парафина более чем в 2 раза. [c.65]

    Теперь дадим примеры молекулярных н кристаллических структур, в основе которых лежат системы 2-, 3- и 4-связанных точек. Хотя логически циклические и цепочечные системы (для которых р = 2) должны предшествовать полиэдрическим (р З), мы сначала обратимся к последним, переходя при этом от конечных к бесконечным группировкам атомов. Такой подход не согласуется с химической классификацией молекул и кристаллов, он также не дает возможности рассмотреть детали структуры и является скорее топологическим, чем геометрическим. Но он наглядно показывает, как небольшое число очень простых расположений используется в огромном многообразии структур элементов и соединений. Приведем основные разновидности этого многообразия  [c.118]

    При обработке более высокомолекулярной фракции концентрации игольчатых парафинов возрастают, и они могут выделиться вместе с обычными пластинчатыми кристаллами, которые примут форму игл или неясно выраженную кристаллическую структуру. При одновременном выпадении обеих последних форм неясно выраженная кристаллическая структура имеется в большем количестве при обработке фракций еще более высокого молекулярного веса происходит переход к так называемым аморфным (в действительности мелкокристаллическим) церезинам. [c.519]


    Основным условием оптической активности вещества (на молекулярном или кристаллическом уровнях) является то, чтобы структура данной молекулы или кристалла не была совместимой со своим зеркальным изображением. Это свойство непосредственно связано с конкретным типом симметрии молекул или кристалла. Только отсутствие центра, плоскости и переменных осей симметрии у молекулы или кристалла приводит к оптической активности последних. Молекулярные структуры обладающие оптической активностью, называются асимметрическими. Отсутствие у асимметричных молекул перечисленных элементов симметрии допускает существование энантиоморфных молекул, соотносящихся между собой как правая и левая рука. Второе условие оптической активности связано с количественным соотношением в смеси двух энантиоморфных молекул правых [О] и левых (Ь). Если в смеси присутствует одинаковое количество Ь- и О-форм данной молекулы, то никакого оптического вращения наблюдаться не будет. [c.35]

    Кристаллическая структура смесей углеводородов. При исследовании взаимного влияния н-алканов в случае их совместной кристаллизации необходимо иметь в виду, что н-алканы являются изоморфными веществами [41, 61, 80—84] с ростом молекулярного веса увеличивается лишь ось с. Это видно из следующих данных для кристаллов ромбической сингонии  [c.85]

    Энантиоморфизм проявляется в некоторых физических свойствах кристаллов, например, в возникновении оптической активности. Кристаллы правого и левого кварца различаются знаком направления вращения плоскости поляризации. При плавлении или растворении, т. е. при разрушении кристаллической структуры, оптическая активность кварца исчезает, тогда как при растворении молекулярных энантиоморфных кристаллов оптическая активность в растворах сохраняется. Смеси одинакового количества правых и левых молекул, называемые рацематами, не проявляют оптической активности. То же относится к кристаллам, в структурах которых имеется одинаковое число правых и левых винтовых осей (алмаз). [c.45]

    Между молекулярной структурой нефтяного сырья и кристаллической структурой изготовленной из него углеродной продукции существует четкая связь, что позволяет управлять процессами производства нефтяного углерода и его облагораживания. Кристаллит-ную структуру нефтяного углерода определяют методами рентгеноструктурного анализа, электронно-парамагнитного резонанса и др. [c.148]

    Как мы уже отмечали, тип строения вещества определяется прежде всего тем, какие связи соединяют его структурные единицы,—межмолекулярные или межатомные. Мы рассматриваем в этой главе молекулярные соединения, построенные из структурных единиц, связанных сравнительно слабыми межмолекулярными связями, включая в определенных случаях водородные связи. Благодаря этому в твердом состоянии все они -имеют кристаллическую структуру. Твердые молекулярные соединения, построенные из молекул, связанных ван-дер-ваальсовскими связями, называются молекулярными кристаллами. В молекулярных твердых растворах в структуру молекулярных кристаллов входят разные молекулы. Заметим, что с химической точки зрения твердые молекулярные растворы — это молекулярные соединения. [c.20]

    Зонная структура энергетического спектра, как мы видели выше, отражает ту особенность природы атомных кристаллов (металлов, полупроводников и изоляторов), что в них существует непрерывный трехмерный каркас межатомных связей и свойственное кристаллическому веществу периодическое поле. Электронный энергетический спектр молекулярных кристаллов, построенных из отдельных нульмерных молекул, соединенных ван-дер-ваальсовскими связями, не имеет обычной зонной структуры, а представляет собой совокупность до некоторой степени искаженных в результате слабого обменного взаимодействия молекул молекулярных энергетических спектров, состоящих из дискретных энергетических уровней. Кристаллы цепочечной, сетчатой и каркасной структуры, в том числе разнообразные соединения включения, мы рассматриваем как разновидности молекулярных кристаллов, построенных, соответственно, из одно-, двух- и трехмерных молекул или из их комбинаций. Их энергетические спект- [c.118]

    Катионный обмен глинистых минералов позволяет в значительных пределах изменять структурно-механические характеристики и величину энергии связи их коагуляционных структур. Однако на характер деформационного процесса значительного воздействия он не оказывает (рис. 6). Происходит это потому, что катионный обмен не влияет ни на форму кристаллов, ни на число нарушений кристаллической структуры минерала, изменяя только дисперсность частиц и толщину гидратных пленок, т. е. увеличивая или уменьшая величину сил молекулярного взаимодействия. [c.23]


    Решетки с молекулярной структурой в узлах содержат молекулы, связанные между собой слабыми межмо-лекулярными связями, которые легко разрушаются поэтому молекулярные кристаллы, как правило, легкоплавки и обладают малой твердостью. Примерами таких кристаллических веществ могут служить кристаллический иод (/ л = 113,4° С), в узлах решетки которого находятся молекулы 1 , лед, плавящийся при 0°С кристаллы Oj, плавящиеся под давлением при —57° С, и др. [c.322]

    Химические индивиды представляют собой как простые вещества, так и сложные (соединения). Простые вещества можно рассматривать как частный случай соединений постоянного состава, называемых дальтонидами в узком смысле. К этому же классу следует отнести и сложные вещества, обладающие молекулярной кристаллической структурой (например, твердый СО2). Отличительный признак молекулярных кристаллов — образование фаз постоянного состава. Таким образом, на диаграмме состояния эти соединения представляют собой линейные фазы с нулевой областью гомогенности. [c.207]

    Химические свойства простых веществ. При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т.п., т.е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и др.) к пассивации в агрессивных окисляющих средах, хотя сами эти металлы достаточно активны. Кроме того, различные модификации одного и того же простого вещества могут заметно различаться по химической активности (например, белый и красный фосфор). Таким образом, химические свойства простых веществ представляют собой единство атомной, молекулярной и кристаллической форм химической организации со всеми характерными для них особенностями. [c.249]

    До конца 30-х годов оставался не выясненным принцип построения молекулярных кристаллов. Кристаллические структуры органических соединений характеризовали, главным образом, углеродным скелетом, поскольку метод ренттеноструктурного анализа не позволял указать точное положение атомов водорода. [c.16]

    Силы межмолекулярного взаимодействия ненаправленные, поэтому при конденсации пара в молекулярные кристаллы образуются структуры, основанные на стремлении молекул более экономно заполнить объем, создать условия для более тесного сближения (вспомним, что ван-дер-ваальсовы силы действуют лишь на очень коротких расстояниях). Поскольку ван-дер-ваальсово взаимодействие очень слабо, твердые тела, образованные за счет этих сил, обладают низкой механической прочностью, легко плавятся, для них характерно высокое давление пара. Например, кристаллический иод плавится при 113,7 С, давление пара над кристаллами—13 гПа уже при 73 С. Из гетеросоединений аналогичный пример представляет ОзО , молекулярные кристаллы которого плавятся при [c.352]

    В принципе возможные тииы молекулярной или кристаллической структуры, состоящей нз заданного числа атомов, следовало бы выводить, исходя из известных требований образования химических связен, что позволило бы сопоставить реально наблюдаемые структуры со всеми мыслимыми (с точки зрения геометрии и топологии) вплоть до некоторого заранее установленного предела сложности, ибо очень важно знать, почему те пли иные принципиально возможные структуры никогда не встречаются в молекула.х пли кристаллах. Систематические исследования возможных структурных типов ис многочисленны в этой и следующей главах мы рассмотрим наиболее существенные элементы структурной геометрии — простейшие системы связанных точек и плотнейшие упаковки равных сфер. Зиаиие возможных типов трехмерных сеток уже проливает некоторый свет на вопросы такого, нанример, характера почему алмаз представляет собой систему колец из 6 атомов углерода и почему некоторые кристаллические формы В2О3 и Р2О5 состоят из колец, включаюш,их 10 атомов В (или Р) и [c.81]

    Корреляции термодинамических свойств идеальных газов с размерами и структурой молекул, многие из которых обобщил Янз [313], оказались очень плодотворными, но тем не менее в свойствах органических твердых веществ найдено очень мало полезных закономерностей. Как показывают результаты по изомерным гептанам (рис. 16), изменения в структуре кристаллов и фазовом поведении, которые часто бывают вызваны сравнительно маленькими различиями в строении молекул, резко влияют на теплоемкость органических твердых веществ. Члены гомологического ряда могут иметь различные кристаллические формы, так что соответственно различные вклады колебаний решетки в теплоемкость могут приводить к отсутствию каких-либо закономерностей в данных для всего ряда. Более значительные различия в теплоемкости обусловлены различиями в фазовом поведении (рис. 16). К сожалению, характер фазовых изменений каждого отдельного вещества обычно не может быть связан количественно с молекулярной или кристаллической структурой. Так, например, 2,2-диметилбутан [160] имеет втвердом состоянии два фазовых перехода с изотермическим изменением энтальпии, тогда как следующий гомолог, 2,2-диметилпентан, имеет только один нейзотермический переход без какого-либо изотермического энтальпийного инкремента. Очевидно, что результаты по этим двум соединениям не дают основания для предсказания свойств высших 2,2-диметилалканов. [c.64]

    Наличие в молекуле витам.ина В12 сравнительно тяжелого атома кобальта позволило группе Ходжкин пытаться установить его структуру описанным выше методом. Анализ четырех различных кристаллов витамина В12 и родственных ему соединений (вОздуш-но-сухих кристаллов, витамина В12, влажных кристаллов, помещенных в маточную жидкость, кристаллов селеноцианатного производного витамина В12 и кристаллов гексакарбоновой кислоты, полученной при разложении витамина) позволил получить частичные сведения о каждой из этих структур, что привело к установлению молекулярной и кристаллической структур молекулы витамина В12. [c.236]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    УстановАена определенная закономерность ме жду специфичностью каталитического действия и типом кристаллической структуры твердых тел. Каталитической активностью ионного и электронного типов обладают твердые тела соответственно с ионной и металлической кристаллической структурой, а также кристаллы промежуточного (ионно — металлического) типа. Молекулярные и ковалентные кристаллы в отношении катализа практически инер — ти ы. [c.88]

    В последнее время все большее применение в качестве адсорбентов и катализаторов находят цеолиты, как природные, так и синтетические. Цеолиты — это алюмосиликаты, обладающие строго регулярной кристаллической структурой. Каркас кристалла цеолита состоит из структурных тетраэдрических элементов 8104 и А1О4 , соединенных между собой общими атомами кислорода. Отрицательный заряд каркаса благодаря наличию в нем трехзарядного алюминия компенсируется зарядом катионов щелочных и щелочноземельных металлов, располагающихся в полостях структуры. В зависимости от кристаллической структуры окна этих полостей имеют размеры 0,4—1,1 нм (соизмеримые с размерами молекул). Поэтому на цеолитах могут адсорбироваться только те вещества, молекулы которых имеют размер по наименьшей оси (критический диаметр) меньше диаметра окна полости. Отсюда второе название цеолитов — молекулярные сита. Цеолиты жадно поглощают воду, и поэтому широко применяются для осушки газовых и некоторых жидких сред. При нагревании вода из них испаряется, с чем и связано нх название — цеолиты (кипящий камень — кипеть, литое — камень). Цеолиты научились синтезировать совсем недавно (1948). Особенностью их синтеза является процесс кристаллизации после получения алюмосиликагеля. [c.130]

    Молекулярные твердые соединения построены из молекул, соединенных друг с другом лишь ван-дер-ваальсовыми силами, включая в определенных случаях водородные связи, и состав этих веществ есть сумма составов всех молекул, вошедших в его структуру. Они образуют молекулярные кристаллы, структурными единицами которых служат молекулы. Молекулярные твердые соединения образуются в результате отвердевания, т.е. фазового превращения вещества, когда имеет место лишь межмолекулярное взаимодействие и не происходит разрыв существующих или образование новых химических связей. При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, образуя настолько плотную упаковку, насколько позволяет конфигурация. молекул /69/. [c.107]

    Металлическая связь. Характерной особенностью кристаллических структур металлов является то, что электроны могут свободно перемещаться в объеме металла. Следствием свободного перемещения элек тронов является непрозрачность металлов, металлический блеск и высокая электрическая проводимость. При образовании связей между атомами металлов (металлической связи) электроны оказываются принадлежащими всем атомам кристалла, т. е. они находятся не на атоМ" ных, а на молекулярных орбиталях. [c.129]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    При образовании молекулярных кристаллов в условиях низких температур, исключающих межатомные взаимодействия, процесс отвердевания наблюдается в чистом виде. Молекулы без сколько-нибудь существенных изменений входят в кристаллическую структуру, связанные между собой только слабыми ненаправленными межмолекулярными связями. Именно поэтому молекулярные кристаллы имеют настолько плотную упаковку, насколько позволяет конфигурация молекул. Заметим, что с химической точки зрения и этот, казалось бы, чисто физический процесс цред-ставляет собой процесс синтеза, так как его продуктом является твердое молекулярное соединение — новое вещество, образующееся из молекул исходных веществ. Чисто межмолекулярные взаимодействия представляет собой кристаллизация неона, аргона, криптона, ксенона и радона. Хотя их кристаллы состоят из атомов, тем не менее это настоящие молекулярные кристаллы образующие их молекулы одноатомны. Понятно, что между такими молекулами не может быть никакого другого взаимодействия, кроме ван-дер-ваальсовского.  [c.21]

    Мы видим, что аморфные вещества не являются разупорядо-ченными кристаллическими веществами. И, таким образом, кристаллическая модель не может отражать природу аморфных веществ, так же как кристаллическая решетка не может содержать никакой информации о структуре аморфных веществ. Кристаллическая модель твердого вещества не отражает существования направленной составляющей связи, соединяющей структурные единицы твердого вещества. Между тем давно известно, что природа кристаллов определяется в конечном счете именно этим фактором. В самом деле, тип кристаллической структуры определяется характером межатомной связи и кристаллические структуры издавна классифицируются по типу связи ковалентной, водородной или ионной, металлической, молекулярной — ван-дер-ваальсовской. При этом различают координационные, каркасные, слоистые, цепочные и островные структуры. [c.162]

    Кристаллическая структура элементов В -подгруппы подчиняется правилу Юм-Розери, согласно которому координационное число фиксированного атома п = 8 — Ы, гд,е N — номер группы периодической системы, в которой находится данный элемент. Например, в кристаллическом иоде и броме (7-я группа) каждый атом имеет по одному ближайшему соседу, что соответствует молекулам Ь и Вгг. Эти молекулы связаны со своими соседями ван-дер-ваальсовыми силами, образуя молекулярные кристаллы. Селен и теллур (6-я группа) образуют кристаллическую структуру в виде спиральных цепочек с координационным числом 2. Атомы элементов пятой группы (Аз, 5Ь, В1) упаковываются в решетке с координационным числом 3 + 3. Углерод, кремний и германий (4-я группа) образуют типично ковалентные кристаллы с координационным числом 4. [c.168]

    Применение резонансного рассеянии у-квантов к расшифровке конкретных кристаллических структур в настоящее время находится в стадии становления. Однако мржно предположить, что мессбауэрография найдет свое место среди современных методов исследования кристаллической структуры и, прежде всего, в применении к расшифровке структур сложных биологических объектов и молекулярных кристаллов. [c.239]

    Заметное отклонение структуры молекулярного кристалла от плотнейшей упаковки происходит при наличии между молекулами водородной связи, например у льда. Искажение валентных углов здесь требует значительных затрат энергии. Этим объясняется рыхлая структура льда. Энергия кристаллической решетки молекулярного кристалла выражается тепловым эффектом его сублимации. Эта величина для разных веществ колеблется от долей единицы до нескольких десятков кДж/моль и более, что значителы о ниже, чем энергии решетки других типов кристаллов. [c.137]

    Типы кристаллических решеток по видам межчастичной связи в кристаллах. По указанному признаку различают следующие основные типы кристаллических решеток молекулярные, атомные (или гомеопо-лярные), металлические и ионные (или гетерополярные). Однако эта классификация достаточно условна и ие исчерпывает всего многообразия кристаллических структур по видам межчастичных связей в них. Существуют различные промежуточные образования. Между частицами кристалла одного и того же вещества большей частью действуют силы неодинаковой природы. Например, в гетерополярных кристаллах наряду с электростатическими силами между ионами действуют также и дисперсионные ван-дер-ваальсовы силы. Однако в каждом отдельном случае один из видов межчастичных сил обычно доминирует над другими (выражен резче остальных). По этому основному (ведущему виду связи данное кристаллическое образование на практике и относят к одной из указанных выше четырех категорий. [c.116]

    Твердое тело можно рассматривать как совокупность большого числа атомов, молекул или ионов ( 10 моль" ), связанных друг с другом обычными силами межатомного взаимодействия (см. гл. 4). Свойства твердого тела являются коллективными свойсгвами всей совокупности составляюишх его частиц. Твердое тело является в некотором роде большой молекулой , и подходы к описанию его свойств принципиально не отличаются от рассмотренных )з предыдущих главах для молекул. Однако большое число атомов, образующих твердое тело, делает невозможным прямое перенесение на него методов количественного расчета электронных и пространственных характеристик молекул и требует учета упорядоченности структуры твердого тела. В данной главе проиллюстрируем основную схему описания электронного строения твердых тел на примере атомных и молекулярных кристаллов, включающих бесконечное число идентичных атомов или молекул, однородно упакованных в регулярные ряды и плоскости, заполняющие весь объем кристалла. В отличие от такого идеального кристалла реальные кристаллические тела содержат дефекты кристаллической решетки, нарушающие регулярность. Крайним случаем нарушения регулярности является совсем случайное, хаотическое расположение атомов или молекул в твердом теле, какое наблюдается в аморфных твердых телах, как и в жидкостях. В зависимости от степени регулярности расположения атомов или молекул в твердом теле используют и различные модели для описания их строения и свойств. [c.523]

    Элементы УПА-групны (галогены) в соответствии с правилом 8—N должны иметь координационное число в кристаллах простых веществ, равное единице, т. е. каждый атом может иметь лишь одного ближайшего соседа. Действительно, все галогены (иод при обычных условиях, а остальные при низких температурах) образуют молекулярные кристаллические структуры , в которых расстояния между атомами в гантелеобразных молекулах значительно меньше, чем расстояния между молекулами в кристалле. Так, для хлора длина связи в молекуле 0,202 нм, а расстояние между молекулами в кристалле составляет 0,334 нм. Наконец, правило Юм-Розерп мож но применить и к элементам УП1А-группы (благородные газы) В соответствии с этим правилом при образовании кристаллов про стых веществ координационное число должно быть равно нулю Действительно, кристаллы благородных газов состоят из одноатом ных молекул, связанных силами Ван-дер-Ваальса. [c.30]

    В соответствии с преобладающим типом химической связи в бинарных соединениях реализуются pa3jjH4Hue кристаллические структуры плотно упакованные ОЦК и другие для металлидов (к.ч. 8, 12 и более), менее плотно упакованные (к.ч. 6, 8) для солеобразных ионных кристаллов и "рыхлые" структуры с невысокими координационными числами (к.ч. < 4) для ковалентных соединений. В последнем случае возможно также образование слоистых, цепочечных и молекулярных кристаллических структур. Изменение типа кристаллической структуры в зависимости от характера химической связи в бинарных соединениях можно проследить в так называемых изоэлектронных рядах. Изоэлектронным рядом называют последовательность соединений с одинаковым средним числом валентных электронов на атом. Наиболее известны и показательны в этом отношении изозлектронные ряды соединений, компоненты которых расположены симметрично относительно элементов IVA-группы. Четыре валентных электрона на атом обеспечивают возникновение пространственных тетра.эдри ческих структур с ковалентным типом связи у простых веществ этой группы. [c.258]


Смотреть страницы где упоминается термин Молекулярные кристаллы, кристаллическая структура: [c.145]    [c.24]    [c.145]    [c.525]    [c.525]    [c.50]    [c.131]    [c.263]    [c.161]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.354 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл молекулярные

Кристалл структура

Кристаллическая структура

Кристаллические структуры молекулярные

Молекулярная структура кристаллов

Молекулярные кристаллы, кристаллическая структура сублимации, таблица

Структура молекулярная



© 2025 chem21.info Реклама на сайте