Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий иа угле

    Активный уголь восстанавливает серебро, золото, платину и палладий без выделения двуокиси углерода. Очевидно, восстанов- [c.53]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    В настоящее время в общем газовом анализе часто применяют сжигание свободным кислородом в присутствии катализаторов. Из больного числа исследованных катализаторов наилучшие результаты получены с металлическими платиной и палладием. Пал.тгадий и платину применяют в виде проволочной спирали, впаянной в верхнюю часть стеклянной шшетки (рис. 4), или в осанчденнсм виде на носителях (асбест, активированный уголь, керамика), С лучшими образцами катализаторов этого типа [2,31 водород количественно окисляется при комнатной температуре, а метан сгорает при 400—500° С. [c.29]

    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    Последнее должно быть критерием выбора постоянного изготовителя. Автор катализатора должен убедиться, что изготовитель имеет большой опыт в нужной области. Некоторые фирмы зарекомендовали себя как превосходные изготовители ряда металлических катализаторов, например палладия, платины, никеля и ванадия, или таких их носителей, как оксид алюминия, оксид кремния, цеолиты или уголь. Кроме того, фирма может в значительной мере владеть специфическими методиками приготовления катализатора. [c.40]

    К раствору палладийхлорпстоводородной кислоты добавляли предварительно откачанный в вакууме активированный уголь с таким расчетом, чтобы получить катализатор, содержащий 10% палладия. Активированный уголь, пропитанный палладийхлористоводородной кислотой, к которому был добавлен формалин, охлаждали до 0°С и к нему осторожно добавляли по каплям 50%-ный раствор едкого калия так, чтобы температура реакционной смеси не превышала 5°С. [c.99]

    Дихлорид палладия Уголь активированный [c.81]

    При гетерогенном катализе реакция происходит на поверхности раздела фаз, причем решающую роль играет строение поверхности твердого вещества-катализатора. В первую очередь она должна быть большой, чтобы обеспечивать достаточную величину реакционной зоны. Поэтому твердый катализатор стремятся приготовить как можно в более раздробленном состоянии. В то же время использование пылевидного материала непригодно по технологическим соображениям. И в качестве катализаторов применяются или высокопористые вещества (например, активированный уголь — уголь, приготовленный путем пиролиза из природного угля или чаще древесины, кости, так, что в нем сохраняется жесткий углеродный скелет, пронизанный большим числом пор силикагель — диоксид кремния, изготовленный осторожным обезвоживанием кремниевой кислоты, так что в нем сохраняется кремнекислородный скелет так называемый никель Ренея, получаемый обработкой щелочью никельалюмипиевого сплава, при которой растворяется алюминий и остается компактный, но содержащий большой объем пор никель, и т. д.), или вещества, нанесенные на высокопористые носители (медь на угле, палладий на асбесте и др.). [c.220]


    Из благородных металлов чаще всего в катализе используются платина и палладий. В несколько меньших количествах применяется родий, главным образом при гидрировании монооксида углерода в определенные одно-, двух- и трехатомные спирты. Благородные металлы часто наносят на активированный уголь в строго заданных условиях, тщательно определяя тин активи- [c.108]

    Носители или трегеры — пористые, термостойкие, каталитически инертные материалы, на которые осаждением, пропитыванием или другими методами наносят катализатор. При нанесении каталитических веществ на пористый носитель достигается их тонкое диспергирование, создаются большие удельные поверхности при размерах пор, близких к оптимальным п увеличивается термостойкость катализатора, поскольку затруднено спекание его кристалликов, разобщенных на поверхности носителя. При таком методе нанесения достигается экономия дорогих катализаторов, например, платины, палладия, серебра. Носитель, как правило, влияет на активность катализатора. Естественно, что применяются носители не понижающие активность, а повышающие ее. Таким образом, нет точной границы между понятиями — активатор и носитель. Наиболее часто в качестве носителей применяют окись алюминия, силикагель, синтетические алюмосиликаты, каолин, пемзу, асбест, различные соли, уголь. [c.123]

    Промышленные катализаторы гидрирования представляют собой высокодисперсные металлы, обычно нанесенные на пористые носители. Высокой гидрирующей активностью отличаются металлы УП1 и I групп периодической системы элементов (никель, кобальт, платина, палладий, родий, медь и др.). В качестве носителей этих металлов наиболее часто используются окиси алюминия, кремния, цинка, хрома, активный уголь, диатомиты. Находят применение в промышленности и сплавные катализаторы [46, 55]. Готовят катализаторы пропиткой носителя растворами легкоразлагающихся соединений активного металла или же методом их совместного осаждения с носителем [56]. Как правило, перед использованием в процессе катализаторы предварительно восстанавливают. [c.411]

    В сосуде для гидрирования к 4 г угля марки сибунит прибавляют водный раствор 0,5 г дихлорида палладия. Восстановление проводят в установке, показанной на рис. 1.3. После того как поглощение водорода закончится, катализатор отфильтровывают, промывают водой, спиртом и, наконец, эфиром. Полученный катализатор содержит 4 % палладия, нанесенного на уголь. [c.81]

    Гидрирование ЦДТ в циклододекан с практически количественным выходом получается на нанесенных на окись алюминия, силикат н уголь металлах VHI группы — никеле, кобальте, меди, палладии и др. Область температур превращения ЦДТ в -циклододекан — 20—250 С, давлений—от атмосферного да 30 МПа. Один из наиболее активных катализаторов — палладиевый. [c.18]

    Могут применяться хромоникелевый катализатор и активированный уголь последний — активный катализатор при температурах, превышающих температуры кипения азота [1, 6, 22, 24], а также катализатор, содержащий 30—35% СггОз на геле А Оз [96]. В качестве катализаторов испытаны окись никеля на глиноземе [97], сплав серебра с палладием [98], чистый рутений [99]. [c.64]

    Другие процессы хемосорбции. Такие соединения, как перекиси, производные озона и другие кислородсодержащие соединения (—О—О—), легко переводятся в более простые соединения в присутствии катализатора. В ряде случаев таким материалом может быть активированный уголь, однако большинство соединений разлагается только в тех случаях, когда на уголь нанесен металлический катализатор, например металлическая медь, серебро, платина и палладий, которые наносятся на подложку из растворов их комплексных солей. [c.181]

    Катализатор процесса - палладий - наносится в количестве 0,2-2,0% на устойчивый к действию горячей уксусной кислоты носитель, например уголь, некоторые типы окиси алюминия, силикагель. Модифицированный катализатор содержит 0,5-5,0% ацетата щелочного металла /30/, который добавляют по мере его расходования /37/, или небольшие количества солей меш и железа /34/. [c.289]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]


    Автору не известны поставшики используемых в данном случае специальных катализаторов. Перечисленные ниже (1ир-мы поставляют палладий, нанесенный на уголь и окись алюминия. Заказчик, предпочитающий использовать катализаторы, нанесенные на окись алюминия, обычно указывает поставщику, что катализатор не должен растворяться в горяч уксусной кислоте. [c.289]

    Реализация атомарно-дисперсного состояния металла фиксируется при нанесении палладия на различные носители (уголь, силикагель, сульфат бария, карбонат кальция). Скорость гидрирования резко возрастает при появлении на поверхности кристаллической фазы палладия. Это объясняется тем, что при определенной степени заполнения поверхности в катализаторе появляется растворенный водород, который более активен при гидрировании соединений с тройными связями и нитросоединений. При этом меняется не только состав активного центра, но и форма активного водорода. Таким образом, кинетический метод позволяет уловить начало [c.111]

    Уголь с абсорбированной на нем окисью палладия фильтруют через воронку Бюхнера и промывают теплой водой до исчезновения щелочной реакции раствора на лакмус. Осадок сушат при температуре 110° и>. [c.526]

    Из катализатора, бывшего в употреблении, легко вновь получить металл (палладии или платину). Для этого катализатор нагревают в стакане на кипящей водяной бане с избытком царской водки до тех пор, пока не образуется коричневый раствор хлористого палладия (или платинохлористоводородной кислоты). Смесь разбавляют водой, отфильтровывают уголь, который промывают горячей 10%-ной соляной кислотой и водой до полного отсутствия в нем палладия (или платины). Раствор, полученный после нагревания пробы угля с царской водкой и фильтрования, должен быть совершенно прозрачным после подщелачивания его едким натром, добавления формалина и нагревания до кипения не должен мутнеть и тем более не должен образовываться черный осадок. [c.529]

    Возможно комбинирование методов. Дегалогенизацию предю-жено осуществлять действием спиртных растворов гидроксидов натрия или калия при 50—150°С, давлении < 0,4 МПа, в присутствии катализатора гидрогенизации типа палладий (уголь) без подачи водорода [307]. Особенностью способа является возможность обезвреживания не только отработанных нефтяных, но и синтетических масел (например, силиконовых) с остаточным содержанием экологоопасных соединений 10 %. [c.363]

    Дегидрогенизация гомологов индена, а также а- и / -метилгидро-индена в нафталин температура 450 производные индена при нагревании до 350° превращаются в производные гидриндена, которые гидрогенизуются при этой температуре Палладий — уголь 1 2896 [c.363]

    Получают [77] пиридоксаминдихлоргидрат по следующей методике. В реактор из эмалированной стали загружают воду, активированный уголь и раствор хлористого палладия в концентрированной соляной кислоте и пропускают водород до восстановления хлористого палладия. Затем в реактор загружают раствор оксима пиридоксаля в воде и продолжают восстановление водородом оксима до пиридоксамина. Количество участвующего катализатора в пересчете на палладий—3% к массе оксима. Затем отфильтровывают катализатор фильтрат сгущают в вакууме и кристаллизуют. Выход пиридоксамина 98,2%, температура плавления 198—200° С. [c.169]

    Примеры. Синтез NHg на катализаторе железо — уголь п=3. Гидрирование фумаровой кислоты (С=С) на катализаторе палладий — уголь или на Pd—BaSOi n=2. [c.176]

    Специфично и имеет особое значение как метод удаления защитной группы (см. 1.2) гидрирование бензиловых эфиров карбоновых кислот на палладиевых катализаторах при температуре 20 °С и атмосферном давлении. Продуктами реакции являются соответствующая карбоновая кислота и толуол. Бензиловые эфиры гидрогенолизуются легче, чем восстанавливаются двойная углерод-угле-родная связь и нитрогруппа, причем реагируют даже соединения, содержащие в молекуле атом двухвалентной серы. Вместо молекулярного водорода при дебензилировании могут быть использованы доноры водорода - цнклогексен и циклогексадиен, легко ароматизирующиеся на палладии реакцию проводят в инертной атмосфере с реагентами, взятыми в стехиометрическом отношении, в уксусной кислоте или этаноле в присутствии палладия (10 %), нанесенного на уголь  [c.74]

    Щелочь бралп пз такого расчета, чтобы на 1 г палладия приходилось 2—3 г едкого калия. После добавления щелочи реакционная смесь нагревалась на водяной бане до 70°С в течение 1 часа, зате.м оставлялась на ночь. На другой день пал-ладированный уголь переносили на воронку Бюхнера и промывали дистиллированной водой до отрицательной реакции на ион хлора. [c.100]

    Для количественного определения гексагидроаромати-ческнх углеводородов в норийском бензине мы применяли катализатор палладий на активированном угле, который, как показали Б. А. Казанский и X. И. Арешидзе [6], еще в меньшей степени ароматизирует парафиновые углеводороды, чем платииированный уголь. [c.132]

    Нитрогруппу обычно восстанавливают алюмогидридом лития, являющимся одним из наиболее сильно действующих гидридов. Действительно, в то время как боргидрид натрия в водном растворе метилового спирта при 25 °С не действует на нитрогруппу [20], алюмогидрид лития в сочетании с палладием, нанесенным на активированный уголь, в щелочном растворе оказывает достаточно эф- фективное действие [21]. Восстановление третичных алициклических нитросоединений алюмогидридом лития осложняется изомеризацией образующихся в качестве промежуточных соединений производных тидроксиламина, что приводит к образованию первичных и вторичных аминов [22]. [c.472]

    Рентгеноструктурные исследования п-аллильных комплексов переходных металлов [63] свидетельствуют об зр -гибридизации углеродных атомов. Так, п-аллилпалладийхлорид — это димерная молекула, имеющая плоскость симметрии. Каждый атом палладия связан с одной аллильной группой, в которой связи С—С идентичны и угол С—С—С равен 128,5°, что свидетельствует также о том, что эта группа действует как бидентатный лиганд. Плоскость, проходящая через три атома углерода аллильной группы, пересекает плоскость, в которой лежат атомы палладия и хлора (Pd l)2, под углом около 110°. Атомы водорода приблизительно копла-нарны атомам углерода. [c.108]

    Катализатор приготовляют заранее в аппарате для каталитического восстановления . Для этого в аппарат помещают 0,5 г хлористого палладия, 3,0 г активированного березового угля и 20 мл дестиллированной воды. Сосуд продувают водородом и затем в течение 2—3 часГ встряхивают с водородом при давлении 2—3 ат. Палла-дированный уголь отфильтровывают на воронке Бюхнера, промывают пять раз дестиллированной водой порциями по 50 мл, затем [c.292]

    Угол наклона dr /d Ig j кривой, описываемой этим уравнением, невелик для небольших значений /. Наклон увеличивается по мере приближения / к / ор + /г и достигает значения р при / > 3> /г + /кор- Перенапряжение выделения водорода для некорродирующего металла также можно выразить с помощью тафелев-ского уравнения, оно имеет вид il = Р Ig (/ + It)/Io и справедливо для всех значений / (см. рис. 4.5). Значения /,, вычисленные с помощью измеренных значений т], также следуют соотношению Тафеля, но с наклоном обратного знака. Наиболее медленной стадией разряда ионов водорода на платине или палладии, видимо, является рекомбинация адсорбированных атомов водорода. Справедливость этого допущения подтверждается тем, что найденное значение а = 2. Для железа а 0,5 и, соответственно, р = = 0,1. Вероятно, медленная стадия реакции выделения водорода на железе протекает по схеме [c.57]

    Содержание побочных продуктов снижается при проведении реакции в кислой среде, очевидно, благодаря протонированию первичного амина, затрудняющему его присоединение по связи =N. Этот подход пригоден только в отношении катализаторов, не реагирующих с кислотами. Практически применяют оксид платины и как растворитель уксусную кислоту высокие выходы первичных аминов (до 90 %) могут быть получены при использовании палладия, нанесенного на уголь, и спирта в присутствии 1-3 эквивалентов минеральной кислоты (НС1, H2SO4, H IO4). Аналогично, но за счет ацилирования, подавляется присоединение первичного амина к ненасыщенному интермедиату при гидрировании нитрилов в уксусном ангидриде продукт реакции в этом случае представляет собой N-ацетилпроизводное первичного амина  [c.63]

    Четыре приведенных выше прописи получения палладиевых катализаторов различаются между собой тем, что согласно первой из них (1) носителем является сернокислый (или углекислый) барий, тогда как согласно остальным— уголь, В прописях 1 и 2 в качестве восстановителя применяется щелочной раствор формальдегида, а в методиках 3 и 4 восстановление осуществляется водородом. Катализаторы, полученные по прописям 1, 2 и 4, приготовляются и хранятся до тех пор, пока не потребуются, причем палладий находится в них в уже восстаповлепном виде и готов к употреблению. В случаеже катализатора, полученного по способу 3 , восстановление палладиевой соли до металла осуществляют лишь перед употреблением и таким образом при хранении не имеет места потеря активности. Катализатор, приготовленный по прописи 1, подобен тому, который обычно рекомендуют для восстановления по способу Розенмун-да. Методику 4 в основном разработал Гартунг полученный с ее помощью катализатор широко применял в своих работах Коп , а также и другие исследователи. В катализаторе, приготовленном по прописи 4, относительное содержание палладия (по весу) в два раза больше, чем в остальных. [c.411]


Смотреть страницы где упоминается термин Палладий иа угле: [c.282]    [c.504]    [c.168]    [c.112]    [c.342]    [c.130]    [c.431]    [c.196]    [c.188]    [c.307]    [c.20]    [c.182]    [c.398]    [c.340]   
Синтезы гетероциклических соединений - выпуск 14 (1984) -- [ c.47 ]

Синтезы гетероциклических соединений Вып14 (1984) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Адамса палладий на угле

Катализатор палладий иа угле

Палладий

Палладий на активированном угле (катализатор)

Палладий на активированном угле Л ЗОг

Палладий на животном угле, катализатор

Палладий нанесенный на уголь

Палладий палладий



© 2025 chem21.info Реклама на сайте