Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий на активированном угле Л ЗОг

    В настоящее время в общем газовом анализе часто применяют сжигание свободным кислородом в присутствии катализаторов. Из больного числа исследованных катализаторов наилучшие результаты получены с металлическими платиной и палладием. Пал.тгадий и платину применяют в виде проволочной спирали, впаянной в верхнюю часть стеклянной шшетки (рис. 4), или в осанчденнсм виде на носителях (асбест, активированный уголь, керамика), С лучшими образцами катализаторов этого типа [2,31 водород количественно окисляется при комнатной температуре, а метан сгорает при 400—500° С. [c.29]


    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    Смесь 2,5 г хлористого палладия, 6 мл концентрированной соляной кислоты (ч. д. а.) и 15 мл воды кипятят с обратным холодильником до образования прозрачного раствора (около 2 час), разбавляют 43 мл воды и выливают на 28 г очиш,енного активированного угля (см. Уголь активированный), находящегося в плоской фарфоровой чашке. Образовавшуюся массу упаривают досуха на водяной бане и окончательно высушивают в сушильном шкафу при 100°. Измельченный катализатор хранят в хорошо закрытой банке. Этот катализатор можно применять непосредственно, если образующаяся при гидрировании кислота не мешает протеканию реакции. В противном случае катализатор предварительно обрабатывают следующим образом необходимое количество хлористого палладия, нанесенного на активированный уголь, гидрируют в растворителе, в котором будет проходить гидрирование, до полного поглощения водорода. Катализатор отсасывают на пористом стеклянном фильтре, отмывают тем же растворителем от хлористого водорода и полученный влажный катализатор используют для гидрирования. [c.616]

    При гетерогенном катализе реакция происходит на поверхности раздела фаз, причем решающую роль играет строение поверхности твердого вещества-катализатора. В первую очередь она должна быть большой, чтобы обеспечивать достаточную величину реакционной зоны. Поэтому твердый катализатор стремятся приготовить как можно в более раздробленном состоянии. В то же время использование пылевидного материала непригодно по технологическим соображениям. И в качестве катализаторов применяются или высокопористые вещества (например, активированный уголь — уголь, приготовленный путем пиролиза из природного угля или чаще древесины, кости, так, что в нем сохраняется жесткий углеродный скелет, пронизанный большим числом пор силикагель — диоксид кремния, изготовленный осторожным обезвоживанием кремниевой кислоты, так что в нем сохраняется кремнекислородный скелет так называемый никель Ренея, получаемый обработкой щелочью никельалюмипиевого сплава, при которой растворяется алюминий и остается компактный, но содержащий большой объем пор никель, и т. д.), или вещества, нанесенные на высокопористые носители (медь на угле, палладий на асбесте и др.). [c.220]


    К раствору палладийхлорпстоводородной кислоты добавляли предварительно откачанный в вакууме активированный уголь с таким расчетом, чтобы получить катализатор, содержащий 10% палладия. Активированный уголь, пропитанный палладийхлористоводородной кислотой, к которому был добавлен формалин, охлаждали до 0°С и к нему осторожно добавляли по каплям 50%-ный раствор едкого калия так, чтобы температура реакционной смеси не превышала 5°С. [c.99]

    Многие катализаторы получают нанесением активных компонентов на носитель — оксид алюминия, алюмосиликат, силикагель, активированный уголь, асбест, керамику и др. Нередко носитель и сам обладает каталитической активностью. Например, оксид алюминия является катализатором некоторых реакций. Благодаря нанесению на носитель оксида или металла обеспечивается высокая удельная поверхность этих компонентов. К катализаторам на носителях относятся такие промышленно важные системы, как палладий на оксиде алюминия, никель на силикагеле, платина на алюмосиликате, оксид хрома на оксиде алюминия. [c.25]

    В отделении структурных исследований Института физической химии Польской Академии наук во Вроцлаве исследованы магнитные свойства и структура металлических контактов, в частности палладия [3], платины [4, 5], никеля [6], нанесенных на у-АЬОз, а также на активированный уголь, с целью установить физическое состояние металлического компонента в контактах и связь с каталитической активностью. Эти металлы были выбраны потому, что их электронная структура в компактном состоянии хорошо известна, а это позволяет обнаружить изменения в состоянии высокой дисперсности. [c.155]

    Ацетат олова — ацетат палладия — активированный уголь 100° С, 9 ч. Конверсия I —79,7%, в продуктах—91,4% II. Ацетат олова увеличивает активность ацетата палладия в 90 раз [295] [c.331]

    Из благородных металлов чаще всего в катализе используются платина и палладий. В несколько меньших количествах применяется родий, главным образом при гидрировании монооксида углерода в определенные одно-, двух- и трехатомные спирты. Благородные металлы часто наносят на активированный уголь в строго заданных условиях, тщательно определяя тин активи- [c.108]

    Могут применяться хромоникелевый катализатор и активированный уголь последний — активный катализатор при температурах, превышающих температуры кипения азота [1, 6, 22, 24], а также катализатор, содержащий 30—35% СггОз на геле А Оз [96]. В качестве катализаторов испытаны окись никеля на глиноземе [97], сплав серебра с палладием [98], чистый рутений [99]. [c.64]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Другие процессы хемосорбции. Такие соединения, как перекиси, производные озона и другие кислородсодержащие соединения (—О—О—), легко переводятся в более простые соединения в присутствии катализатора. В ряде случаев таким материалом может быть активированный уголь, однако большинство соединений разлагается только в тех случаях, когда на уголь нанесен металлический катализатор, например металлическая медь, серебро, платина и палладий, которые наносятся на подложку из растворов их комплексных солей. [c.181]


    Научная деятельность академика Н. Д. Зелинского многогранна. Он одним из первых осуществил синтезы индивидуальных углеводородов нефтей. Первый синтетический нафтен, полученный им в 1895 г., был 1,3-диметилциклогексан. Он синтезировал также циклопропановые, циклобутановые, циклопентановые и другие углеводороды, в том числе с сопряженными двойными связями, а также бициклические углеводороды (спираны). Важнейшим направлением исследований Н. Д. Зелинского было изучение каталитических превращений углеводородов. Ему удалось найти эффективные катализаторы, обеспечивающие избирательность реакций дегидрогенизации. В частности, Н. Д. Зелинский применял платину и палладий, нанесенные на активированный уголь. В 1934 г. Н. Д. Зелинский совместно с Н. И. Шуйкиным открыл, что ароматические соединения могут быть получены каталитической дегидрогенизацией парафиновых углеводородов. Это направление в дальнейшем было развито Б. А. Казанским, А. Ф. Платэ и др. Прп дегидрогенизации низших углеводородов были получены олефины (1949). Н. Д. Зелинскому также принадлежат исследования по химии гетероциклических соединений. [c.292]

    Алкены устойчивы к действию водорода в момент выделения. Их гидрирование осуществляют в присутствии катализаторов, в качестве которых чаще всего используют никель, платину и палладий в мелкодисперсной форме (например, только что полученные восстановлением оксидов), когда их поверхность наиболее развита и активна. Подобные катализаторы для придания им структурной устойчивости обычно наносят на так называемую подложку (носитель) - активированный уголь, оксид алюминия, силикагель, пемзу и т.д. Реакцию проводят при повышенной температуре. Механизм такого катализа, называемого гетерогенным, заключается в том, что на поверхности катализатора адсорбируются молекулы водорода и алкена, которые при этом не только пространственно сближаются, но и активируются. [c.63]

    Дегидрирование заключается в удалении одной или более пар атомов водорода с образованием ненасыщенных связей. Каталитическое дегидрирование гидроароматических соединений представляет собой классический метод синтеза полициклических ароматических соединений [129]. Наиболее часто используемыми катализаторами являются платина и палладий, которые применяют в виде тонкого порошка или наносят на активированный уголь. Можно использовать также никелевые или медные катализаторы, но в этом случае необходимы более высокие температуры. Обычно реакционную смесь нагревают при 350 °С или кипятят в растворителе с температурой кипения около 200 °С. [c.353]

    Получают [77] пиридоксаминдихлоргидрат по следующей методике. В реактор из эмалированной стали загружают воду, активированный уголь и раствор хлористого палладия в концентрированной соляной кислоте и пропускают водород до восстановления хлористого палладия. Затем в реактор загружают раствор оксима пиридоксаля в воде и продолжают восстановление водородом оксима до пиридоксамина. Количество участвующего катализатора в пересчете на палладий—3% к массе оксима. Затем отфильтровывают катализатор фильтрат сгущают в вакууме и кристаллизуют. Выход пиридоксамина 98,2%, температура плавления 198—200° С. [c.169]

    Н. Д. Зелинским и сотрудниками. В качестве катализаторов ими использовались платина, палладий и никель, нанесенные на носители, например на активированный уголь и окись алюминия. Каталитическое дегидрирование в присутствии указанных восстановленных металлов протекает в паровой фазе при 300—330° без образования каких-либо промежуточных продуктов дегидрирования типа циклоолефинов или циклодиолефинов. Лишь циклопарафины, содержащие шесть углеродных атомов, способны дегидрироваться пятичленные углеродные кольца, а также любые другие циклические структуры, кроме шестичленных углеродных колец, остаются неизмененными (правило Зелинского). Для дегидрирования шестичленных нафтеновых структур рекомендованы с.пе-дующие катализаторы 1) платина на окиси алюминия (или на древесном угле), [c.137]

    Следует еще упомянуть о способности палладия, нанесенного на активированный уголь, катализировать восстановительное дегалогенирование органических соединений. Реакции ведут в жидкой фазе при комнатной или несколько повышенной температуре и атмосферном или несколько повышенном давлении водорода [250, 318, 389, 450, 510, 514—516, 518—520]. [c.1006]

    Нитрогруппу обычно восстанавливают алюмогидридом лития, являющимся одним из наиболее сильно действующих гидридов. Действительно, в то время как боргидрид натрия в водном растворе метилового спирта при 25 °С не действует на нитрогруппу [20], алюмогидрид лития в сочетании с палладием, нанесенным на активированный уголь, в щелочном растворе оказывает достаточно эф- фективное действие [21]. Восстановление третичных алициклических нитросоединений алюмогидридом лития осложняется изомеризацией образующихся в качестве промежуточных соединений производных тидроксиламина, что приводит к образованию первичных и вторичных аминов [22]. [c.472]

    Целью данной работы является изучение механизма окислительного ацетоксилирования 1,3-бутадиена в присутствии модифицированных теллуридов палладия и родия, нанесенных на активированный уголь. [c.24]

    Процесс очистки технической МХУК методом гидрирования проводится водородом на контактной массе (активированный уголь марки АГ-3 с нанесенным металлическим палладием в количестве 2 ) барботажным методом в емкостных аппаратах, работающих периодически. В ходе процесса заметное количество катализатора истирается, что приводит к потерям катализатора и загрязнению готового продукта угольной пылью. [c.191]

    Изотерма адсорбции диборана палладием, нанесенным на активированный уголь, имеет тот же вид, что и изотерма адсорбции [c.145]

    Кроме жидкофазного способа разработан парофазный метод с твердым катализатором. Его готовят, пропитывая носитель (окись алюминия, силикагель, пемзу, активированный уголь) смесью хлоридов палладия и меди (например, 2% Р(1С12+10% СиСЬ на угле), с последующей сушкой. Через этот контакт при ПО— 150°С пропускают паро-газовую смесь воздуха, олефина и водяных паров на нем одновременно протекают и окислительно-восстановительные и гидролитические реакции. Катализатор размещают 1В реакционном аппарате несколькими слоями, а в простран- [c.572]

    Реактивы и растворы. Хлороформ. Ацетон. Гексан. Натрий сернокислый х. ч., безводный. Активированный уголь марки БАУ. Уксусная кислота, лимонная кислота. Пластинки Силуфол . Бромфеноловый синий индикатор. Хлористый палладий. Азотнокислое серебро. Резорцин. Карбонат натрия. Стандартные растворы хлорофоса и фосфамида в ацетоне с содержанием 100 мкг/мл. Проявляющие реактивы № 1 (2%-ный раствор резорцина и 10%-ный водный раствор карбоната натрия перед опрыскиванием растворы смещивают в отнощении 2 3), № 2 (0,2%-ный раствор хлористого палладия), № 3 (1%-ный водный раствор азотнокислого серебра и 0,5%-ный раствор бромфенолового синего в 50%-ном этиловом спирте перед употреблением смещивают в отношении 1 1). 5%-ный водный раствор уксусной или 2,5%-ный лимонной кислоты для снятия фона. [c.128]

    Самыми активными из металлических катализаторов для реакций гидрирования являются благородные металлы, из которых в лабораторной практике применяют платину и палладий высокой степени дисперсности в виде платиновой или палладиевой черни или эти металлы осаждают на носители активированный уголь, силикагель, диатомовую землю, карбонат или сульфат бария и др. Свободную платиновую и палладяе- [c.147]

    Как видно из табл. 2.3 и 2.4, плотности тока обмена восстановления Кислорода значительно ниже плотностей тока обмена ионизации водорода и предельных диффузионных плотностей тока кислорода. Поэтому выбор активного катализатора кислородного электрода для ТЭ исключительно важен. Катализ 1то-рами Кислородных электродов в щелочных растворах служат платина и палладий, их сплавы и серебро, а также активированный уголь. Каталитическую активность угля можно повысить введением оксидов некоторых металлов, например шпинелей №Со204,СоА1204,МпСо204 [10, с. 161 35, с. 131, 144, 145]. При температурах 200 С и выше активен литированный оксид никеля [7]. Катализаторами кислородного электрода в кислотных электролитах служат платина и ее сплавы и активированный уголь. Предложены также органические катализаторы - фтало-цианины и порфирины кобальта и железа, нанесенные на углеродистую основу [10, с. 161 11 47 66, с.60]. С помощью термообработки удалось значительно повысить их стабильность [11, 47]. Воздушные электроды, содержащие термически обработанные Органические комплексы, устойчиво работали при плотности тока 300 А/м свыше 3000 ч (9 10 А ч/м ) - [78, с. 157].,  [c.70]

    Трихлорпурин превращен в пурин каталитическим дегалогениро-ванием над палладием, нанесенном на особо активированный уголь в водноспиртовом растворе в присутствии ацетата натрия или разбавленной щелочи в качестве связывающих кислоту средств [37, 38]. Сообщается [38], что этим способом из 2,8-дихлораденина с выходом 70% получен аденин [38]. Имеются указания, что этот способ имеет преимущество перед дегалогенированием с помощью палладия на сульфате бария. Восстановление 2,6,8-трихлорпурина над продажным палладиевым катализатором на угле может быть легко остановлено на стадии 2-хлорпурина [13, 37] или 2,8-дихлорпурина [13]. В процессе каталитического дегалогенирования важно поддерживать щелочную или нейтральную реакцию раствора, так как Бендих [39] показал, что пурин [c.264]

    Более сложной задачей является ступенчатое восстановление алкинов в алкены. Для этого можно использовать палладий на носителе благодаря его высокой селективности, однако довольно часто приходится прибегать к отравлению катализатора, чтобы избежать дальнейшего восстановления алкена. Обычно в качестве носителей применяют ВаЗО , СаСОз, активированный уголь или оксид алюминия. Типичным представителем дезактивированных палладиевых катализаторов является Р(1/Ва504, ингибированный хинолином эта система с хорошим выходом восстанавливает циклододецен-1-ин-6 до цис,цис- хш лододекадиена-1,6 [1ба] [схема (7.13)]. [c.259]

    Гидрирование малеиновой и фумаровой кислот в щелочной среде в црисутствин гидразингидрата можно проводить на 5%-ном палладии, осажденном на активированный уголь. Малеиновая кислота при этом в течение 30 мин восстанавливается в янтарную на 95%, в то время как фумаровая за три часа восстанавливается на 90% [4]. В этих условиях в продуктах восстановления малеиновой кислоты, кроме янтарной кислоты, обнаруживается в значительных количествах ее стереоизомер — фумаровая кислота. Стореомутация проявляется в большей степени йри повыше НИИ температуры и особенно сильно в щелочной среде [5].  [c.50]

    При нанесении платины или палладия на активированный уголь гидрирование органических соединений, в том числе нитросоединений, протекает почти при обратимом водородном потенциале. Это свидетельствует или о значительной концентрации водорода в порах угля, или о преимущественной адсорбции непредельного соединения на поверхности угля с освобождением поверхности платины (или палладия) для преимущественной адсорбции водорода. Последнее предположение кажется нам более вероятным. Подобное же явление встретилось нам при гидрировании диметилацетиленилкарбинола на сплавах палладия с серебром. Скорость реакции на сплавах состава Рё Ag=2 1 и 1 1 обратно пропорциональна концентрации карбинола в растворе, падение потенциала довольно значительно и достигает 200 —250 мв. Таким образом, ацетиленилкарбинол в значительной мере вытесняет водород с поверхности. При увеличении содержания серебра в сплаве до отношения Рс1 Ag, равного 1 2, картина несколько меняется скорость реакции [c.176]

    МОЖНО определить лишь при достаточно высокой концентрации аммиака и особенно аммонийной соли. Это означает, что лутео-ион в рассматриваемых условиях устойчив. Указанный факт наводит на мысль, что металлический электрод и система комплексов кобальта (И) могут совместно катализировать установление равновесия в системе солей кобальта (III). Непосредственно это было доказано несколькими опытами. Так, розео-нитрат, растворенный в 1 н. растворе нитрата аммония, 2 н. по отношению к аммиаку, частично превращался в лутео-соль при добавлении ртути и небольшого количества соли кобальта (II) при перемешивании всей смеси в атмосфере азота. Однако сам раствор розеонитрата в отсутствие катализаторов вполне устойчив. Несколько капель коллоидного раствора палладия и небольшое количество соли кобальта (II) оказывают еще более сильное каталитическое действие, чем ртуть. Из нескольких предварительных опытов с такого рода каталитическими системами было установлено, что скорость образования лутео-соли возрастает с увеличением отношения концентрации аммиака к концентрации аммонийной соли, т. е. с увеличением pH. Можно предположить так же, что скорость образования лутео-соли возрастает с увеличением концентрации кобальта (П). Казалось бы, по существу характер процесса вдаь ной каталитической системе ясен. Однако указанные системы имели ограниченное значение для исследования состояния равновесия в растворах, содержащих комплексные соединения кобальта (III), по следующим причинам 1) взаимодействие в таких системах происходило довольно медленно 2) наличие кобальта (II) усложняло проведение опытов, например вызывало необходимость создания атмосферы азота и др. 3) присутствие в равновесных растворах коллоидного палладия затрудняло оптические исследования. Именно поэтому большое значение имело то обстоятельство, что активированный уголь оказался очень эффективным катализатором в указанных процессах. Было найдено, что равновесие между комплексными соединениями кобальта (III) в присутствии угля устанавливалось в течение нескольких часов даже без добавления соли кобальта (II). [c.245]

    Изомеризацию углеводородов могут вызывать катализаторы каждого из указанных выше классов. Примером основных катализаторов, активных в изомеризации, являются гидроокиси щелочных металлов [12, 13, 63, 88, 115], амиды [82а, 250], гидриды [309а] и натрийорганические соединения [131, 2176]. Однако с основными катализаторами изомеризация, невидимому, ограничивается лишь перемещением двойной связи в олефинах [12, 13, 82а, 2176, 250, 309а] и некоторыми превращениями ацетилено-алкадиеновых углеводородов [63, 88, 115, 131]. Представителями электронных катализаторов, активных в изомеризации, являются различные формы чистого никеля или никеля на носителях [29, 63а, 135, 270, 290, 316], палладий [315], платина [137, 144] и активированный уголь [48, 273]. С катализаторами этого рода изомеризация, по-видимому, ограничивается изменением положения двойной связи [135, 137, 144, 270, 290, 315], взаимопревращением пространственных изомеров олефинов [63а, 270, 273, 290] и инверсией конфигурации при насыщенном атоме углерода [29, 48,. 316]. Обычно наиболее активны в реакциях изомеризации углеводородов кислотные катализаторы. [c.49]

    Методом получения равновесных смесей, а следовательно и методом изучения термодинамической устойчивости, явилась равновесная конфигурационная изомеризация, проводимая в среде водорода в присутствии металлов VIII группы. Использовались два метода равновесной конфигурационной изомеризации а) метод с применением микрореактора, смонтированного на газовой линии хроматографа (микрореактор был снабжен байпасом, позволяющим выдерживать исследуемые углеводороды на поверхности катализатора любое заданное время) б) выдерживание углеводородов в стальных капсулах при заданной температуре под давлением водорода. Наилучпшм катализатором явился палладий (или платина), нанесенный на диатомитовый кирпич (паровая фаза) или на активированный уголь (жидкая фаза). В обоих случаях эпимеризация (конфигурационная изомеризация) протекала достаточно гладко, причем лучшая селективность была достигнута в жидкофазном методе. Надо, впрочем, отметить, что побочные реакции, протекающие в микрореакторе (Сб-дегидроциклизация, гидрокрекинг), не могли существенно повлиять на достижение равновесия пространственных изомеров. [c.41]

    Итоги многих из этих работ рассмотрены в монографии Сокольского [7]. Ранее сообщалось [8, 9] о гидрировании различных ацетиленовых оксисоеди-нений и их производных с платиновыми, палладиевыми катализаторами, а также палладий- и родийборидными катализаторами, нанесенными на активированный уголь марки БАУ. [c.241]

    Статистический способ заключается в перемешивании небольших количеств сорбента в колбе с раствором, содержащим определяемые микропримеси. В работе [53] в качестве сорбента применен активированный уголь для определения золота, платины и палладия в горных породах с чувствительностью до 1,5-10 % и ионообменные смолы для концентрирования РЗЭ [52]. После отделения примесей сорбент отделяют, высушивают, озоляют и золу подвергают спектральному анализу. Способ весьма заманчив в связи с его простотой и возможностью проводить разделение металлов из малых объемов. Однако этот метод весьма ограничен изтза сильного загрязнения активированных углей и смол наиболее распространенными элементами (Fe, Си, Са, Mg, Мп и др.). [c.178]

    Наиболее активными катализаторами для гидрирования являются мелкодиспергированЕые металлы VIII группы Периодической системы (никель, кобальт, платина, палладий), а также медь. Во многих случаях используют катализаторы, нанесенные на носители (активированный уголь, асбест, сернокислый барий). Применение катализаторов на носителях повышает их устойчивость и сопротивляемость каталитическим ядам. [c.258]


Смотреть страницы где упоминается термин Палладий на активированном угле Л ЗОг: [c.112]    [c.307]    [c.20]    [c.182]    [c.65]    [c.131]    [c.60]    [c.416]   
Препаративная органическая химия Реакции и синтезы в практикуме и научно исследовательской (1999) -- [ c.4 ]




ПОИСК





Смотрите так же термины и статьи:

Активированный уголь

Палладий

Палладий иа угле

Палладий палладий

Уголь активирование



© 2025 chem21.info Реклама на сайте