Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели состояния воды

    Структура жидкой воды. Для объяснения аномальных свойств воды в жидком состоянии учеными созданы различные модели ее структуры. В основе многочисленных моделей жидкая вода рассматривается как кристаллическое вещество (жидкие кристаллы). Упорядоченное (кристаллическое) расположение частиц воды в жидком состоянии доказано экспериментально. Полагают, что прн плавлении льда его решетка частично разрушается и эти пустоты и ажурная структура льда заполняются освободившимися молекулами воды. Плотность жидкой воды вследствие этого увеличивается. Учеными подсчитано, что в жидкой фазе при 0°С несвязанные, заполняющие пустоты молекулы составляют около 16% от их общего количества. [c.9]


Рис. 4.3. Модель состояния воды в поле нона по Фрэнку. Рис. 4.3. Модель состояния воды в <a href="/info/1262559">поле нона</a> по Фрэнку.
    В структуре молекулы воды угол между связями О—Н равен 104,5°, т.е. близок к тетраэдрическому. Объясняется это тем, что атом кислорода также подвергается неполной р -гибридизации. При этом примесь -состояния еще меньше, чем для азота в аммиаке. Отсюда геометрическая модель молекулы воды представляет также несколько искаженный тетраэдр, в котором две вершины заняты двумя атомами водорода, а две другие — неэквивалентными электронными облаками, не участвующими в образовании химических связей (рис. 42). [c.83]

    Диаграмма состояния воды имеет такой простой вид только в области не слишком высоких давлений. Начиная же примерно с 2000 бар она усложняется вследствие образования других модификаций льда. На рис. 121 изображена пространственная модель состояния воды, охватывающая давления до 10 000 бар. Кроме осей температуры и давления, в этой модели введена также третья — ось объемов. Каждое поле модели отвечает области существования одной определенной фазы, т. е. двухвариантной системе. Площадки, связывающие различные поля, отвечают равновесию между этими двумя фазами (система одновариантна). Эти площадки соответствуют линиям рис. 120 и ширина их характеризует изменение объема при данном фазовом переходе. Наибольшим объемом (наименьшей плотностью) обладает обычный лед, устойчивый при невысоких давлениях (лед /). Меньшим объемом (большей плотностью) обладает жидкая вода. Далее следует лед JII, лед II, лед V и лед VI. Так как эти модификации льда обладают большей плотностью, чем жидкая вода, то равновесию воды с каждой из них [c.332]

    Указанное выше противоречие может быть объяснено с использованием формализма простейшей качественной модели жидкой воды — модели двух состояний (см., например, [187]). [c.57]

    Для этого модели пластовой воды вводились в контакт при нормальной температуре и периодическом перемешивании с мелкораздробленным карбонатом кальция, приготовленным по ГОСТ 3313-46. Так как растворение связано с поглощением углекислоты из воздуха, то достижение состояния равновесия требует весьма длительного времени. Для выбранных условий эксперимента оно составляет 3,5 месяца (рис. 1) и находится в хорошем соответствии с исследованиями, проведенными в аналогичных условиях 5]. [c.92]


Рис. 31. Модель состояния поверхности при физической и химической адсорбции воды на цинке. Рис. 31. <a href="/info/230806">Модель состояния</a> поверхности при физической и <a href="/info/3230">химической адсорбции</a> воды на цинке.
    Указанное выше противоречие может быть объяснено с использованием формализма простейшей качественной модели жидкой воды — модели двух состояний (см., например, [187]). В работе [161] показано, что при неглубоком смещении равновесия в сторону состояния с пониженной плотностью и пониженной энтальпией есть такая область концентрации двух структур, в пределах которой увеличение второй производной объема воды соответствует уменьшению второй производной сжимаемости до нуля и меньше. На структурном уровне понижению энтальпии соответствует упрочнение водородной связи, что согласуется со спектроскопическими данными [189] и результатами машинных расчетов [166, 167]. [c.57]

    Попытки определения энергии водородной связи в воде были предприняты давно и небезуспешно. Однако значения, полученные различными авторами, не совпадали между собой, хотя и имели один и тот же порядок. Они находятся в интервале от 1,3 до 8,1 ккал моль [6, 52, 85, 87, 103, ИЗ—115]. Расхождение возникает,очевидно, потому, что авторы исходят из различных представлений понятия водородной связи, структурной модели воды, состояния воды, при котором производится расчет. В настоящее время наиболее достоверным, приемлемым и часто используемым значением является 4,5—5,0 ккал моль [15, 84, 116]. [c.20]

    В проекции пространственной модели фазового состояния воды на плоскость р/, наиболее удобной для пользования, отражены три обширные области, в которых три фазы существуют каждая в отдельности. В таких однокомпонентных однофазных системах число степеней свободы равно двум (бивариантные системы) и для их описания должны быть известны температура и давление. Границами, разделяющими области на этой диаграмме, являются линии (следы проекций, соответствующих плоскостям объемной модели), и поэтому точкам, лежащим на них, соответствует равновесие двух фаз вода—пар (АВ), вода— лед (АО), лед — пар АС). Как уже отмечалось, для характеристики таких систем достаточно указать лишь температуру или давление, так как они имеют только одну степень свободы. [c.8]

    В соответствии с современными представлениями [14, 15] ближняя гидратация однозарядных и крупных двухзарядных ионов имеет скорее кинетический, чем термодинамический характер, в связи с чем попытки точного определения числа молекул воды, занятых в гидратных оболочках, весьма затруднены. Учитьшая указанные обстоятельства и разработанную Г.А. Крестовым модель состояния ионов в растворе [3], представляется возможным в качестве первого приближения оценивать количество молей свободного растворителя по разности между общим числом молей растворителя и электролита в данном количестве раствора и числом молей растворенной соли [16]. Формула (28) может быть записана в более общем виде  [c.106]

Рис. 5.1. Молекулярные энергетические состояния в жидкой воде, предполагаемые в некоторы.ч моделях жидкой воды. Рис. 5.1. <a href="/info/318847">Молекулярные энергетические</a> состояния в <a href="/info/98098">жидкой воде</a>, предполагаемые в некоторы.ч <a href="/info/50835">моделях жидкой</a> воды.
    В качестве одного из исходных положений принята модель молекулы воды, также рассчитанная методом МО ЛКАО, и обладающая следующей электронной конфигурацией в исходном состоянии [c.100]

    К сожалению, сорбционная теория, разработка которой осуществлена известным цитологом Д. Н. Насоновым, содержит ряд неизвестных или трудно определяемых параметров, например, упорядоченность воды как функция состояния белка, растворимость тех или иных веществ как функция упорядоченности воды и т. д. Поэтому в настоящее время всеобщее признание получила мембранная теория , согласно которой транспорт обменных веществ в клетку и из клетки осуществляется особыми мембранными насосами , причем внутриклеточная вода в мембранной теории играет роль растворителя со свойствами обычной воды. Отсюда видно, что модель диффузии воды в коллагене согласуется с представлениями мембранной теории о роли воды, в то время как теория анизотропного вращения молекул воды согласуется с адсорбционной теорией. На основе сказанного экспериментальное доказательство справедливости диффузионной модели имеет принципиальное значение. [c.138]

    Предложено много различных моделей состояния воды, но во всех этих моделях признается образование льдоподобной ажурной тетраэдрической структуры — каркаса, в котором молекулы воды соединены друг с другом водородными связями. В такой струкхуре каждая молекула воды в среднем окружена четырьмя другими молекулами воды. Наличие тетраэдрической структуры воды было впервые предсказано в классической работе Бернала и Фаулера и подтверждено позже рентгенографическими исследованиями. Наряду с молекулами, входящими в каркас, существуют свободные молекулы воды, не связанные водородными мостиками. Эти молекулы частично заполняют области неплотной упаковки внутри структуры воды, перемещаясь в них. В результате теплового движения между молекулами каркаса и свободными молекулами происходит постоянный тепловой обмен. Понижение температуры приводит к уменьшению числа свободных молекул, т. е. к упрочнению, или иначе, к стабилизации структуры воды. Повышение температуры дает обратный эффект — уменьшается число молекул, входящих в каркас, и тетраэдрическая структура воды ослабляется. [c.406]


    В связи с приведенными термодинамическими результатами следует заметить, что на любой гидрофильной поверхности молекулы воды адсорбируются локализованно. Постулируемая в работе [98] нелокализованная модель адсорбции воды в межслоевых промежутках монтмориллонита объясняется [85] некорректностью использования обычного термодинамического подхода для анализа состояния связанной набухающими сорбентами воды. [c.37]

    Полинг считал, что клатратные клетки в структуре воды также представляют собой пентагональные додекаэдры [И], однако рентгепоструктурные исследования не подтвердили этих предположений. Данные рентгеноструктурпых изменений жидкой воды скорее согласуются со структурой, предложенной для объяснения свойств воды О. Я. Самойловым [18]. В структуре модели жидкой воды О. Я. Самойлова предполагается, что равновесная взаимная ориентация молекул воды, связанных водородными связями, существующая в структуре льда I, при плавлении частично разрушается. Молекулы воды, обладающие избытком энергии, при этом мигрируют в полости льдоподобной структуры, заполняя в ней около 50% объема всех пустот. Стесненность движения этих молекул в пустотах деформированной льдоподобной структуры отличает его от движения изолированных молекул в газообразном состоянии. Близкие представления развиваются также в работе Грётхейма и Крог-Му [19]. Г. А. Крестов [2] считает, что модель О. Я. Самойлова наиболее близко отражает реальную структуру жидкой воды. [c.11]

    В последние годы становится все более популярной идея о существенной роли димерных молекул в формировании структуры жидкой воды. Так, Викке [26] считает, что димерные молекулы воды являются третьим состоянием воды. Количество таких димеров с повышением температуры растет за счет разрушения тетраэдрических Н-связей, что, возможно, и является причиной увеличения растворяющей способности воды с ростом температуры [27]. Идею о существовании димеров в равновесии с водой, тет-раэдрически связанной в структурные образования, использует и Ю. В. Гуриков [25]. Сложность его двухструктурной модели, однако, едва ли делает ее более совершенной, чем модели О. Я. Самойлова и Фрэнка и Вина, а экспериментальных прямых доказательств эта теория, как и другие, по существу не имеет. [c.14]

    Большой практический интерес вызывают модели качества воды в реках. Предложенная в [Цхай, 1995] модель воспроизводит пространственное распределение, содержания в реке двадцати видов химических показателей (БПК5, взвешенные вещества, нефтепродукты, фенолы, железо, фосфаты и др.). Уравнения модели представляют собой вариант одномерной системы для установившегося неравномерного движения воды с учетом боковой приточности в непризматическом русле реки. Задача прогноза решается для восемнадцати периодов в течение расчетного года для паводка (апрель-июнь) — ежедекадно, для остального времени — ежемесячно. Решение уравнений модели осуществляется численно модифицированным методом прогонки с организацией нескольких итерационных процессов. В указанной работе предложена также технология построения математических моделей биогеохимического цикла азота и фосфора, которые могут быть использованы для оценки и прогноза состояния экосистемы водоема. Модели ориентированы на стандартную входную информацию, получаемую от Государственной службы наблюдения. [c.291]

    Двоякое поведение жидкой воды следует также из большого числа других экспериментальных данных. Так, зависимость плотности воды от температуры и понижение температуры максимальной плотности жидкости с возрастанием давления можно хорошо объяснить, если учесть возможность самоперехода объемной структуры воды в более плотную форму. Таким же образом вызываемые давлением разрушения объемной структуры с образованием в жидкости менее плотных компонентов можно объяснить влиянием температуры на вязкость воды, находящейся под высоким давлением [33]. Данные по поглощению ультразвука водой также согласуются с развитыми представлениями о пребывании воды в виде двух отличающихся по состоянию жидкостей. Минимум, наблюдаемый при 55° на кривой поляризуемость электрона — температура, объясняется термическим разрушением структурных пустот и степенью заполнения этих пустот ближайшими молекулами воды [35]. Кроме этого, близкие значения энергии активации диэлектрической релаксации, ламинарного потока и самодиффузии (4,6 ккал/люль) также позволяют предположить, что лимитирующей стадией для всех этих процессов является разрушение структуры [36]. Количественная обработка такого двойственного поведения воды дает возможность определить степень разрушения водородных связей, которая меняется в зависимости от выбранной модели от 0,1 до 70% при 0° [37]. Очевидно, эти величины относятся к различным моделям или к различным степеням разрушения водородных связей. Как следует из данных по дисперсии рентгеновских лучей, многие физические свойства воды, которые свидетельствуют о ее существовании в двух жидких состояниях, можно объяснить, используя существенно отличающиеся друг от друга модели [29, 38]. Следовательно, точное определение природы менее связанного плотного состояния воды представляет значительную трудность, [c.15]

    Наиболее подробным и отвечающим современному состоянию проблемы является обзор О. Я. Самойлова и Т. А. Носовой [14]. Вместе с цитированной выше статьей Г. Френка [11] он дает объективную картину довольно сложного состояния вопроса об однозначном выборе модели строения воды и водных растворов электролитов. По нашему мнению, наиболее аргументирована в настоящее время экспериментальными фактами модель, впервые предложенная [c.27]

    По крайней мере со времен Рентгена [301] выдвигались гипотезы о структуре жидкой воды. Попытки проверить или отвергнуть эти гипотезы затруднялись отсутствием общей теории жидкого состояния воды. По этой же причине теории о структуре воды основывались на двух подходах, ни один нз которых не был достаточно строгим. Первый подход состоял в формулировке модели жидкой воды, трактовке модели некоторым способом, обычно требовавшем большого количества допущений, с помощью методов статистической механики, и сравнении теоретических значений микроскопических свойств с экспериментальными величинами. Совпадение теоретических величин с опытными данными рассматривалось как показатель соответствия модели действительности (см. раздел 5). Второй подход, принятый в этой главе, состоит в установлении аспектов структуры жидкости на основе макроскопических свойств воды. Свойства воды исследованы настолько широко и детально, что даже если какое-либо из них и может быть связано только качественным или полуколичествепным образом с некоторой особенностью жидкой структуры, приемлемая картина воды создается только при рассмотрении многих ее свойств. [c.154]

    Все предложенные различными исследователями модели структуры воды в жидком состоянии должны отвечать результатам измерений малоуглового рассеяния рентгеновских лучей и медленных нейтронов в воде, согласовываться с результатами, полученными другими методами исследования, и объяснять не только физические свойства воды (плотность, вязкость, диэлектрическую проницаемость и др.), но и ее растворяющую способность. К таким моделям относятся различные варианты кластерных структур, предложенные Немети и Шерага [3], Френком И Веном [4] и другими, модель льдоподобных пустот Самойлову [5], а также модели, учитывающие аналогию между составом тазогидратов и клатратов ряда органических молекул в вод-/йых растворах. [c.9]

    В терминах простой модели адсорбированной воды [8] вода, находящаяся в окружении В (псевдообъемная вода), первой удаляется из пор в ходе дегидратации. При этом в порах остается вода в двух связанных состояниях А1 и Аг (или в комбинированном состоянии А). Предполагается, что комбинированное состояние А охватывает два слоя воды и что оно не зависит от величины диаметра пор пористого стекла (см. табл. 2 в работе [8]). [c.321]

    Вполне логичное объяснение упрочнения структуры воды при добавках к ней спиртов дано О. Я. Самойловым [443] на основе предложенной им модели структуры воды (см. подробнее гл. И), в которой ближняя упорядоченность может быть охарактеризована как нарушенный тепловым движением льдоподобный каркас, пустоты которого частично заполнены перемещающимися по ним молекулами воды. М. Н. Буслаева и О. Я- Самойлов [443] объясняют появление экстремума на кривых зависимости теплот смешения от состава системы НгО—СН3ОН максимальной стабилизацией структуры воды в этой зоне. Такая стабилизация, по их мнению, наступает, когда все пустоты в ажурной структуре воды заполнены молекулами спирта. В таком состоянии молекулы СН,,ОН связаны с водой наиболее прочно, и смешанный растворитель представляет собою еди- [c.256]

    При рассмотрении строения молекулы аммиака было обращено внимание на то, что угол HNH равный 107°, очень близок к тетраэдрическому углу 109 28. Это дало повод считать участие неразделенной пары электронов у атома азота молекулы NH3 в формировании трех связей N—Н иначе говоря, в формировании связей участвуют 5-электроны в гибридных состояниях. Таким образом, геометрическую модель молекулы аммиака следует считать тетраэдрической при наличии одной неразделенной пары электронов в одной из вершин тетраэдра. Модель молекулы воды также следует считать тетраэдрической (в двух вершинах тетраэдра расп0.[10жены две неразделенные пары электронов). Некоторым подтверждением сказанному может служить сопоставление углов между связями у изоэлектронных молекул СН4, NH3 и Н2О НСН= 109 28, HNH= 107°47, НОН= 104°31.  [c.77]

    Вопрос о справедливости той или иной модели движения воды в коллагене имеет принципиальное значение, поскольку его решение связано с важными особенностями биологической роли воды, как отмечено в предисловии к настоящей главе. В частности, основные функции живого — мембранная проницаемость, молекулярная и ионная селективность клеток, мускульная активность, проводимость нервных импульсов и другие — по одной из гипотез ( адсорбционная теория ) определяются наличием особого, упорядоченного или структурированного состояния во всей гидратной оболочке белка. Согласно этой теории, вся или почти вся внутриклеточная вода связана или структурирована и растворимость данного вещества в ней является функцией степени структурной организации гидратной оболочки белка. В свою очередь, степень структурной организации водпо11 оболочки зависит от состояния самой белковой молекулы. Изменение состояния белка иод влиянием внешнего воздействия (например, нервного импульса) приводит в описываемой модели к очень сложной последовательности химических ре- [c.137]

    В терминах диаграммы переходного состояния (рис. 18) энтропию активации можно рассматривать как меру ширины участка энергетической седловины, через которую реагирующие молекулы переходят при достижении активированного состояния. Энтальпия активации является мерой высоты энергетического барьера, который должны преодолеть реагирующие молекулы, в то время как энтропия активации является мерой того, сколько молекул, достигших этой энергии, фактически реагируют. Энтропия активации отра-я ает стерические и ориентационные требования, энтропию разбавления, концентрационные эффекты (зависящие от выбора некоторого стандартного состояния, в котором выражаются равновесные константы и константы скорости) и эффекты растворителя. При эквивалентности остальных особенностей мономолекз лярные реакции будут иметь энтронии активации, близкие к нулю, поскольку для таких реакций обычно не существует концентрационных или ориентационных требований. Бимолекулярные реакции, которые описываются константами скоростей с размерностями, содержащими л/моль, будут иметь отрицательную энтропию активации в результате объединения двух молекул реагентов, находящихся в концентрациях 1 моль/л, в активированный комплекс и, вероятно, должны иметь еще большие отрицательные энтропии в результате стерических и ориентационных требований, включающих потерю поступательных и вращательных степеней свободы в переходном состоянии. Энтропия равновесной гидратации альдегида, которую можно рассматривать как модель взаимодействия воды и карбонильного соединения с образованием переходного состояния, составляет около —18 энтр. ед. (—75,6 Д/к/моль-К). Это заметно более отрицательная величина, чем энтропия, равная —8 энтр. ед. (—31,6 Дж/моль-К), которая требовалась бы для ассоциации молекул реагента в стандартном молярном растворе. [c.448]

    В настоящее время предложены различные модели структуры воды, которые можно разбить на две большие группы структурно однородные и структурно неоднородные (в смысле ближней упорядоченности). Последние, по Гурикову [225 стр. 5], подразделяются на мозаичные модели и модели двух состояний. [c.162]

    Океан служит областью седиментации карбонатов. В осадках развивается микрофлора донных отложений, образующая восстановленные газы (газогенерирующий этап), прежде всего НзЗ с доминированием сульфатредукции как заключительного этапа анаэробной деградации мортмассы и развитием на поверхности ила организмов, окисляющих соединения серы (сообщество сульфуреты), и даже придонные воды обычно оксигенированы. Благодаря высокому слою оксигенированной воды донные выделения из океана не достигают поверхности, даже в случае Черного моря - модели состояния древнего стратифицированного океана. Особый случай представляет локальное просачивание метана, наподобие грязевого вулканизма на суше (холодные метановые сипы ). Источником этого метана, помимо деятельности метаногенов, может служить разложение газогидратов метана. На дне океана в области спрединга на выходе эндогенных газов, образующихся при контакте морской воды с перегретыми породами базальтов океанической коры, развиваются особые микробные сообщества подводных гидротерм (термальные глубоководные оазисы ), в которых продукция органического вещества осуществляется за счет хемосинтеза и окисления газов кислородом фотосинтетического происхождения, приносимого в глубину холодными океаническими водами. [c.104]

    Д. Поланд и Г. Шерага [46, 47] предприняли попытку построить количественную теорию гидрофобных взаимодействий, основанную на трактовке У. Козмана и разработанных Г. Немети и Г. Шерагой [44, 48, 49] моделях структуры воды. Г. Немети и Г. Шерагой в 1962 г. была предложена статистическая модель воды, учитывающая пять ее состояний без водородных связей, с одной, двумя, тремя и четырьмя водородными связями. Введение гидрофобной молекулы увеличивает координационное число льдоподобной структуры (четыре водородные связи) и, следовательно, понижает энергию молекулы. Энергия остальных четырех состояний, напротив, повышается предположительно на одну и ту же величину. В результате из полуэмпирического выражения статистической суммы рассчитываются ДО, АНиАЗ, отвечающие контактам любых пар неполярных боковых групп белковой молекулы. Найденные значения для разных групп при 25° варьируют для АС от -0,2 до -0,5 ккал/моль, АН - от 0,4 до 1,8 ккал/моль и Д8 - от 1,7 до 10 кал/(моль град). Эти количественные оценки согласуются с качественными представлениями, но не более того. Сама структурная теория воды, основанная на модели смеси четко различающихся видов структур, не согласуется с рядом спектроскопических данных, 240 [c.240]

    С этой целью па основе разработанной Г. А. Крестовым [9, 15] модели состояния ионов в растворе и экспериментальных данных по растворимости благородных газов в воде различной степени дейтернро-ванности [16] были вычислены изменения энтропии воды и [c.77]


Смотреть страницы где упоминается термин Модели состояния воды: [c.315]    [c.230]    [c.181]    [c.255]    [c.14]    [c.250]    [c.225]    [c.92]    [c.42]    [c.336]    [c.42]    [c.50]   
Биофизика Т.1 (1997) -- [ c.229 ]




ПОИСК







© 2025 chem21.info Реклама на сайте