Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебательно-вращательные спектр правила отбора

    Для колебательно-вращательных спектров правила отбора по J могут быть ДУ= 1иД/=0, 1в зависимости от симметрии формы колебаний. Прим. ред. [c.142]

    Колебательно-вращательные спектры охватывают не только многоатомные молекулы с постоянным дипольным моментом. Колебательные спектры с низким разрешением присутствуют в инфракрасной области и области рамановских частот. Правила отбора, определяющие число линий рамановских и инфракрасных спектров, очень сильно зависят от симметрии. Так, например, линейная трехатомная молекула ВАВ обладает двумя сильными линиями в инфракрасном спектре и только одной сильной линией (иной частоты) в раман-спектре. Оба спектра дополняют друг друга. Молекула, обладающая центром симметрии, всегда имеет сильную линию в раман-спектре и не имеет ее в инфракрасном спектре [c.13]


    Обычно можно считать с достаточно хорошей степенью приближения, что правила отбора для чисто колебательного спектра и для чисто вращательного спектра остаются неизменными и при взаимодействии колебаний и вращения молекулы. Поэтому правила отбора для колебательно-вращательных спектров получаются путем сочетания правил отбора для чисто колебательных и чисто вращательных спектров. [c.315]

    ЗЗе. Колебательно-вращательные спектры комбинационного рассеяния. Теоретически возможны одновременные колебательные и вращательные переходы при комбинационном рассеянии правила отбора в этом случае одинаковы с теми, которые определяют отдельные переходы каждого вида, а именно Дг = + 1 и Д/ = 0, 2. Вследствие того что возможно условие Д/=0> в спектре комбинационного рассеяния наблюдается линия, соответствующая -ветви. Частота этой линии, которую обозначим ДУо, одинакова с частотой чисто колебательных переходов. Вследствие различия моментов инерции молеку-лы в двух колебательных состояниях ()-ветвь должна в действительности состоять из некоторого числа тесно расположенных линий (параграф 29д). Однако только для водорода, имеющего очень малый момент инерции, удалось разрешить линии, составляющие -ветвь. Тонкая структура несомненно существует и во всех других случаях, но до сих пор она не была еще разрешена. Надо отметить, что двухатомные молекулы, которые обычно не обладают -ветвью в своих колебательных спектрах, имеют -ветвь в спектрах комбинационного рассеяния. [c.252]

    Заключение об элементах симметрии равновесной конфигурации молекул из колебательной и вращательной структур спектров Правила. .отбора для колебательных переходов, связанные с симметрией молекул, могут быть использованы для суждения о симметрии молекул, а следовательно, и о геометрической форме молекул на основании экспериментально наблюдаемых инфракрасных и комбинационных спектров. Например, при наличии центра симметрии правила отбора показывают, что каждое нормальное колебание может проявляться в виде фундаментальной полосы либо в комбинационном спектре, либо в инфракрасном спектре, либо ни в том, ни в другом. Если молекула имеет центр симметрии, комбинационный и инфракрасный спектры не будут иметь фундаментальных полос с одина- [c.435]

    При переходе соблюдаются правила отбора, подобные упомянутым ранее, а в результате возникают полосатые спектры типа (см. рис. 1.22, б), располагающиеся, как правило, в видимой и ультрафиолетовой областях. Такие спектры следует называть электронно-колебательно-вращательными или сокращенно просто электронными. Таким образом, если в атоме данный электронный переход дает в спектре единственную линию, то в молекуле единственному электронному переходу может соответствовать множество линий, группирующихся в полосы. [c.253]


    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Спектры комбинационного рассеяния во многом подобны инфракрасным спектрам, так как и те и другие обусловлены колебательными, а иногда и вращательными переходами в веществе. Но правила отбора, [c.339]

    До сих пор обсуждение правил отбора касалось лишь электронной компоненты перехода. В молекулярных спектрах возможно появление колебательной и вращательной структуры, хотя для сложных молекул, особенно в конденсированной фазе, где столкновительное уширение линий становится существенным, вращательные, а иногда и колебательные полосы [c.42]

    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]

    При переходах молекулы из одного электронного состояния в другое правило отбора Ау = 1 перестает действовать, т. е. из данного колебательного уровня одного электронного состояния возможен переход на любой колебательный уровень другого электронного состояния. Схематически эти переходы в случае поглощения изображены на рис. 108. Каждому такому переходу соответствует система вращательных линий (не показанная на рис.), поэтому в спектре наблюдаются сложные полосы. [c.203]

    Полное описание состояния молекулы в газовой фазе требует указания ее вращательного колебательного и электронного состояний. Спектроскописты изучают разности энергий между состояниями. В приближениях Борна — Оппенгеймера и независимых частиц полная волновая функция молекулы является простым произведением электронной, колебательной и вращательной волновых функций. Симметрия конкретного состояния определяется произведением представлений для электронной, колебательной и вращательной функций. Спектральные правила отбора зависят от полной симметрии исходного и конечного состояний, а не от индивидуальных типов симметрии волновой функции того или иного вида. Вращательная спектроскопия занимается меньшими энергетическими интервалами, чем колебательная и тем более электронная спектроскопия. Обычно когда изучается вращательный спектр молекулы, она находится в основном электронном и колебательном состояниях. Поэтому в ней возникают лишь изменения вращательного состояния, и накладываемые симметрией правила отбора в этом случае определяются только представлениями вращательных состояний. Эти правила отбора обсуждались в гл. 3. [c.347]

    Рассмотрим вращательные спектры молекул типа симметричного волчка (см. 134). Волновые фуикции вращательных состояний таких молекул определяются выра кением (134,10), а энергетические уровни — формулой (134,14). Для вычисления правил отбора, соответствующих 1-переходам (дипольное электрическое излучение), надо рассмотреть матричные элементы дипольных электрических переходов на функциях (134,10). В адиабатическом приближении вращение молекулы не сопровождается изменением электронного и колебательного состояний, поэтому при переходе функции фд остаются неизменными, и достаточно рассмотреть только функции [c.661]

    Поглощение излучения в близкой инфракрасной области вызывает изменение колебательной энергии молекул. Такие изменения обычно сопровождаются и изменениями вращательной энергии, так что спектр в близкой инфракрасной области (приблизительно от 2 до 15 ммк или от 5000 до 700 слг ) состоит из ряда полос, каждая из которых имеет тонкую структуру (см. приложение, рис. 19). Уровни колебательной и вращательной энергии молекулы изображены схематически на рис. 104. При данном изменении колебательного квантового числа вращательное квантовое число либо остается неизменным, либо меняется на единицу, так что правило отбора для J в ко- [c.329]


    Правила отбора для вращательных переходов в данном колебательном состоянии, например, основном (рис. 5.2а), разрешают переходы только между соседними уровнями, так что оптическое возбуждение такого перехода может лишь выравнять заселенности уровней, но не приведет к инверсии заселенностей. Поэтому ДИК-лазеры работают в основном по схеме, представленной на рис. 5.26, когда накачка осуществляется на колебательно-вращательном переходе, а генерация — на вращательных переходах в верхнем и, возможно, нижнем колебательных состояниях. Инверсия заселенностей в возбужденном колебательном состоянии возникает за счет увеличения заселенности верхнего рабочего в лазерном переходе уровня, так что могут возникнуть каскадные переходы типа —1)—>-(/ —2)— 1 —3) —>... В нижнем (основном) колебательном состоянии инверсия создается за счет обеднения при накачке заселенности нижнего рабочего в лазерном переходе уровня при достаточной тепловой заселенности верхнего рабочего уровня. В этом случае могут возникнуть каскадные переходы (/"+ )—>,/", ... (рис. 5.26). Понятно, что в возбужденном колебательном состоянии, когда с начала возбуждения до времени заметного развития релаксационных процессов вращательные уровни практически пусты, инверсия заселенностей осуществляется легче, чем в основном состоянии, когда при комнатных температурах имеет место существенное заселение вращательных уровней. По-видимому, большинство наблюденных к настоящему времени лазерных ДИК-нереходов относится к вращательным переходам в возбужденных колебательных состояниях. Встречаются, однако, лазерные переходы и в основном колебательном состоянии. Здесь следует заметить, что пока более или менее однозначно интерпретирована лишь малая доля всех реализованных лазерных ДИК переходов. Это объясняется прежде всего совершенно недостаточным знанием вращательных спектров и молекулярных констант для возбужденных колебательных состояний. Поэтому среди этих переходов в рассматриваемом диапазоне спектра вполне могут быть и колебательно-вра-щательные лазерные переходы между различными типами колебаний. [c.170]

    Спектры комбинационного рассеяния во многом подобны инфракрасным спектрам, так как и те и другие обусловлены колебательными, а иногда и вращательными переходами в веществе. Но правила отбора, которые определяют интенсивность полос поглощения в инфракрасном спектре и интенсивность линий-спутников в спектре комбинационного рассеяния, различны. Поэтому только часть линий в спектрах комбинационного рассеяния совпадает по частоте с полосами в инфракрасном спектре. Другая часть линий, которая есть в спектрах комбинационного рассеяния, вовсе отсутствует в инфракрасных спектрах или имеет небольшую интенсивность. И наоборот, не всем интенсивным полосам в инфракрасном спектре соответствуют линии в спектре комбинационного рассеяния. [c.378]

    В экспериментально полученном спектре физически адсорбированного метана (рис. 123, б) не наблюдалось тонкой вращательной структуры полос поглощения. Тем не менее этот факт не исключает возможности свободного вращательного движения молекул, по крайней мере около одной оси. Считалось, что вращательные линии колебательных полос могли быть достаточно уширены в результате взаимодействия молекул с поверхностью, что могло препятствовать их разрешению. Для каждой модели были рассмотрены вращательные уровни энергии, их заселенность и правила отбора для переходов между ними. [c.374]

    В предыдущих соотношениях для интенсивностей спектральных линий и интегральных интенсивностей колебательно-вращательных полос мы не учитывали тонких деталей спектров двухатомных молекул. Пренебрежение взаимодействием колебания и вращения представляется оправданным для большинства синглетных систем полос, хотя значительные расхождения были замечены, например, для На [35]. Более подробное обсуждение правил отбора для электронных полосатых спектров (включая такие вопросы, как свойства симметрии, случаи связи Гунда н чередование интенсивности для молекул с одинаковыми ядрами) можно найти в книге Герцберга [15]. [c.142]

    Электронные спектры дают чувствительные методы обна ружения и идентификации свободных радикалов и являются многообещающим источником важной информации, касающейся уровней энергии свободных радикалов. Из изучения систем электронных полос были получены точные значения энергий электронных возбужденных состояний свободных радикалов. Из изучения колебательных и вращательных правил отбора оказалось возможным в определенных случаях получить информацию, касающуюся типов симметрии электронных состояний. Для некоторых простых свободных радикалов был проведен детальный колебательный и вращательный анализ спектра и получены точные значения колебательных и вращательных постоянных. Следует отметить, что из полного набора этих постоянных могут быть рассчитаны термодинамические свойства свободных радикалов. С помощью вращательных постоянных были определены длины связей и углы между ними, вращательные постоянные использовались для проверки предсказаний теории молекулярных орбит. В одном или двух случаях при изучении электронных спектров оказалось возможным получить сведения, касающиеся энергий диссоциаций и по- [c.64]

    На практике колебательные спектры комбинационного рассеяния намного важнее вращательных. Поскольку линии комбинационного рассеяния света так слабы, что обертоны обнаружить невозможно, следует принять, что спектр, состоящий только из основных линий, появляется в результате гармонических колебаний. В этих условиях соблюдается правило отбора Av= + i, и спектр комбинационного рассеяния должен состоять из одной стоксовской и одной антистоксовской линий, сдвинутых по обе стороны от линии падающего луча на величину [c.217]

    В спектрах комбинационного рассеяния проявляются пере ходы между колебательными и между вращательными уровнями и, таким образом, эти спектры сходны с инфракрасными. Но, по скольку правила отбора иные, чем для инфракрасных спектров информация, полученная из спектров комбинационного рассея ния, существенно дополняет данные инфракрасной спектроско ПИИ и дает ценные сведения о строении. [c.219]

    В монографии рассмотрены энергетические состояния двухатомных и простейших многоатомных (главным образом трехатомных) молекул, а также переходы между ними. Классификация состояний и вывод правил отбора для переходов проведены на основе теории групп, необходимые сведения о которой также включены в книгу. Изложены методы анализа колебательной и вращательной структуры электронных спектров, в том числе использование изотопного замещения для этих целей. Показано, как из экспериментальных спектров могут быть определены молекулярные постоянные, углы между связями и др. [c.320]

    Имеются также обилие правила отбора, с помощью которых можно определить, даст ли вообще молекула колебательный или вращательный спектр. Общих правил отбора, относящихся к видимой или ультрафиолетовой области, не существует, поэтому все молекулы имеют электронные спектры. С другой стороны, гомоядерные двухатомные молекулы, такие, как СЬ, не могут дать колебательный спектр в инфракрасной области вследствие действия общих правил отбора. Оба типа правил отбора основаны на симметрии, и фундаментальных отличий между ними нет. Однако целесообразно ввести такое разграничение. [c.42]

    При достаточно чувствительном способе детектирования можно получить чисто вращательный спектр молекулы в возбужденном колебательном состоянии. Все наблюдения таких спектров до сих пор проводились с помощью микроволновой спектроскопии, и даже в этом случае необходимо иногда нагревать образец для того, чтобы в возбужденное колебательное состояние перешло достаточное число молекул. Здесь действуют те же общие и частные правила отбора, что и в основном колебательном состоянии, так что при интерпретации спектров не возникает никаких новых вопросов. Однако важность результатов, получаемых для молекул в возбужденном состоянии, состоит в том, что они позволяют определить значение равновесного межъядерного расстояния г . Для двухатомных молекул момент инерции в возбужденном состоянии больше, чем в основном, а потому для вращательной постоянной в возбужденном состоянии можно написать [c.64]

    Кроме того, интенсивность линий почти линейно зависит от концентрации образца. При регистрации непрерывного спектра КР в области от оо до 2,5 мкм (О—4000 см ) нет необходимости иметь несколько наборов призм или решеток. Правила отбора для спектров КР являются менее ограничительными, чем правила отбора для ИК-спектров, поэтому вращательно-колебательная линия спектра КР может непосредственно давать информацию о параметрах молекулы, в то время как подобная линия на ИК-сиектре позволяет определять только комбинации этих параметров. Комбинационный и ИК-спектры а-пинена показаны на рис. 6-28. [c.286]

    Правила отбора для вращательно-колебательного спектра КР 129] [c.162]

    Интенсивность перехода J J зависит поэтому только от одной компоненты несферической части тензора поляризуемости. Если эта компонента равна нулю вследствие правил отбора для колебательных переходов, то соответствующая вращательная полоса в спектре отсутствует. [c.164]

    Молекулярная спектроскопия включает две основные проблемы определение энергетических уровней и определение вероятностей переходов между ними. В предыдущих разделах рассматривалась исключительно первая из этих проблем и было показано, как можно установить структуру молекулы из анализа вращательной тонкой структуры вращательно-колебательных полос ИК- и КР-спектров, а также установлено, что решающую роль играют при этом динамика колебании, вращений и их взаимодействие. Однако, за исключением правил отбора в спектре КР и ссылок на случайные расчеты распределения интенсивности [c.315]

    В ИК спектре поглощения двухатомных молекул колебат. частоты наблюдаются только у гетероядерных молекул (НС1, N0, СО и т. п.), причем правила отбора определяются изменением их электрич. дипольного момента при колебаниях. В спектрах КР колебат. частоты наблюдаются для любых двухатомных молекул, как гомоядерных, так и гетероядерных (N , О2, N и т. п.), т. к. для таких спектров правила отбора определяются изменением поляризуемости молекул при колебаниях. Определяемые из К. с. гармонич, постоянные и v , постоянные ангармоничности, а также энергия диссоциации Од-важные характеристики молекулы, необходимые, в частности, для термохйм. расчетов. Изучение колебательно-вращат. спектров газов и паров позволяет определять вращат. постоянные (см. Вращательные спектры), моменты инерции и межъядерные расстояния двухатомных молекул. [c.431]

    Настоящее рассмотрение ограничивалось двухатомными молекулами с нулевыми компонентами электронного момента количества движения вдоль межъядерной оси (т. е. молекулами в -состояниях с квантовым числом Л = 0). Для этих молекул правило отбора АЙГ = + 1 строго выполняется. Однако для двухатомных молекул с А О переходы с АЛГ = О также разрешены и дают ()-ветвъ колебательно-вращательного спектра. Двухатомные молекулы с А =/= О можно рассматривать как симметричные волчки. Можно показать, что для таких молекул при ДА = 0, чему соответствуют инфракрасные колебательно-вращательные спектры, поскольку электронные состояния молекул остаются неизменными, выражение (7.67) должно быть заменено формулой Гёпля —Лондона [17—19]  [c.130]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]

    В спектроскопических экспериментах электронные переходы обычно происходят при более высоких энергиях, чем колебательные, которые в свою очередь имеют более высокие энергии, чем вращательные переходы. Реальные спектральные переходы происходят между состояниями, в которых следует различать все трн тнпа возбуждений (электронный, колебательный и вращательный). При такнх переходах может изменяться любой тип возбуждения. Поэтому общие правила отбора представляют собой комбинацию правил отбора для переходов всех трех типов. Выведите общие правила отбора для переходов в инфракрасной областн спектра двухатомной молекулы. [c.89]

    Существует несколько общих эффектов влияния твердой фазы на колебательные спектры молекул. Из таких эффектов давно известны общий сдвиг частот, снятие вырождения, существующего в свободной молекуле, изменение правил отбора, которое приводит к появлению в спектре запрещенных переходов, мультинлетность ряда разрешенных переходов, возникающая вследствие резонанса между молекулами, и отсутствие тонкой вращательной структуры. Не так давно стало известно [51, 53, 81, 97], что интенсивности разрешенных переходов могут меняться в два или три раза при переходе к кристаллическому состоянию. Трансляционные или ротационные частоты решетки могут появляться в области низких 100 см частот в спектре комбинационного рассеяния или в виде слабых полос-спутников в инфракрасном спектре (в последнем случае появление полос связано с эффектами ангармоничности, обсуждаемыми ниже). [c.575]

    Кумулены Н2(С) Н2 в основном состоянии не могут вызвать инфракрасное поглощение для чисто вращательного перехода, так как они не обладают постоянным дипольным моментом. Однако хадгда они достигают вырожденного колебательного уровня, начинает действовать эффект Яна — Теллера, так что вырождение снимается за счет искажения молекулы. Искаженные частицы должны обладать дипольным моментом и обнаруживать инфракрасное поглощение из-за вращательных переходов [340]. В эффекте Рамана вращательные переходы разрешены. Из расстояния между линиями и теоретически выведенных правил отбора определена вращательная постоянная В, которая обратно пропорциональна моменту инерции, а тот, в свою очередь, включает междуядерные расстояния. Связь между вращательным спектром и междуядерными расстояниями следующая  [c.692]

    Анализ чисто вращательного спектра, а также полносимметричных вращательно-колебательных полос молекул типа симметричного волчка дает только значение момента инерции 1ь относительно оси, перпендикулярной оси симметрии молекулы. Определение значения А и, следовательно, момента инерции / относительно оси симметрии возможно при помощи анализа дважды вырожденных вращательно-колебательных полос. Так, интервал между линиями, принадлежащими Q-ветви (см. табл. 3), зависит от значения А, которое можно определить, комбинируя интервалы между линиями Q-ветвей для переходов с A/f = 1 и А/С = 2. Эти выражения содержат также коэффициент кориолисова взаимодействия , который можно определить наряду со значением А. Однако на практике спектр часто бывает неполным, плохо разрешенным и не поддается однозначному анализу. Более того, так как дважды вырожденные полосы возникают в ИК-спектре при более ограниченных правилах отбора (А/С = 1 ), то значения А и нельзя определить отдельно. Поэтому часто используют правило дзета-сумм, что позволяет снизить число определяемых независимых констант. Постоянные С можно рассчитать также теоретически из анализа нормальных колебаний, и их совместное рассмотрение с другими данными оказывает существенную помощь. Для полос, которые не имеют разрешенной структуры Q-ветви, предпринимались попытки получения из расчета их интенсивности (см. обсуждение на примере циклопропана, разд. IV, В, 2). Более успешными были расчеты интенсивности вырожденных полос молекул этана СгНе, СгВб и H3 D3 (см. обсуждение на стр. 236—247 и рис. 11, 12, 14 и 15), оказавшие существенную помощь при интерпретации спектра и определении структуры молекулы. Эти проблемы относятся к анализу вращательно-колебательного спектра КР, поэтому в данном разделе кратко рассмотрена теория центробежного искажения и кориолисова взаимодействия в той степени, в которой эта теория может быть описана в рамках гармонического силового поля. Поскольку центробежное искажение, а также кориолисово взаимодействие определяются колебательным силовым полем, обсуждению этих эффектов должно предшествовать изложение анализа нормальных колебаний, которое в общих чертах приведено ниже. [c.283]


Смотреть страницы где упоминается термин Колебательно-вращательные спектр правила отбора: [c.162]    [c.166]    [c.162]    [c.166]    [c.74]    [c.171]    [c.81]    [c.337]    [c.215]    [c.238]    [c.262]   
Теоретическая химия (1950) -- [ c.191 , c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Вращательное правило отбора

Правила отбора

Правила отбора колебательных

Спектр вращательный колебательно-вращательный

Спектры вращательные

Спектры колебательно-вращательные

Спектры колебательные



© 2025 chem21.info Реклама на сайте