Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

опила цнп потенциал

    Степень нспользования тепловых ВЭР составляет в среднем менее 50% потенциала. Оборудование для утилизации тепла отходящих дымовых газов подвергается сильной сероводородной коррозии, так как основное топливо в печах — мазут с содержанием серы 2—2,5%. За рубежом используют регенеративные вращающиеся воздухоподогреватели, способные работать в условиях сероводородной коррозии. Опыт эксплуатации такого воздухоподогревателя в СССР на установке Л-35-11/600 показал, что в результате утилизации тепловых ВЭР можно экономить 6 тыс. т у. т. [c.169]


    Проведем опыт, при помощи которого можно измерить величину вольта-потенциала. Пусть пластинки из двух различных [c.534]

    Если опыт проводился при давлении, отличном от 1 атм, то необходимо внести поправку при расчете потенциала [c.318]

    Решение этой проблемы, как подсказывает мировой опыт создания новейших технологий передовыми научно-техническими коллективами, видится в активном использовании современных высокоинтеллектуальных вычислительных систем и предполагаемых в ближайшем будущем ЭВМ пятого поколения, что позволит вовлекать в решение научно-технических задач весь потенциал знаний, накопленных мировой наукой. Речь идет об использовании не просто ЭВМ как электронного арифмометра, а ЭВМ, обладающей интеллектом . Проблема создания и использования искусственного интеллекта — актуальная проблема современного научно-технического прогресса. В ней, как в фокусе, сконцентрировались интересы представителей всех областей человеческого знания. Именно в этой горячей точке научно-технического прогресса ожидается выход на качественно новые рубежи [2, 3]. [c.5]

    Химический потенциал компонента поэтому можно определить как изменение энергии системы (внутренней, Гельмгольца, Гиббса), вызванное изменением массы этого компонента на единицу при неизменных массах остальных компонентов и оп- [c.22]

    Поляризация является следствием отставания электродных процессов от перетока электронов в гальваническом элементе. Анодный процесс выхода ионов металла в электролит Ме"+ — Л1е"+ X тНаО) отстает от перетока электронов от анода к катоду, что приводит к уменьшению отрицательного заряда на поверхности электрода и делает потенциал анода положительнее катодный процесс ассимиляции электронов О + пе[Опе]) отстает от поступления на катод электронов, что приводит к увеличению отрицательного заряда на поверхности электрода и делает потенциал катода отрицательнее (рис, 135). [c.193]

    Очевидно, решение рассматриваемых проблем возможно только с помощью современных ЭВМ. Для этой цели разработаны соответствующие алгоритмы и программы. Весьма перспективно выполнение оптимизации в интерактивном режиме, т. е. в режиме диалога исследователя с ЭВМ. Благодаря этому, исследователь активно использует свои знания, опыт и творческий потенциал для нахождения и оценки оптимального решения [73]. [c.181]

    Опыт эксплуатации атмосферно-вакуумной установки производительностью 1 млн. т год показал, что принципиальная технологическая схема установки вполне обеспечивает возможность работать на разных режимах в соответствии с проектными данными и получать предусмотренные проектом качественные нефтепродукты при максимальном отборе их от потенциала. В процессе осваивания технологической схемы были выявлены ее недостатки и внесены ценные рационализаторские предложения по улучшению работы установки усовершенствованию технологии процесса, более полного использования оборудования и пр. [c.160]


    Вершина параболы соответствует точке нулевого заряда. В этой точке поверхностное натяжение не зависит от потенциала, так как производная с а/ /ф равна нулю, т. е. поверхностный слой имеет нулевой заряд, что означает отсутствие двойного электрического слоя. Потенциал же поверхности в этой точке ие равен нулю. Например, можно подобрать такой раствор, в котором химический потенциал иона будет равен его химическому потенциалу на опу-]ценной в раствор металлической пластинке. В этом случае перераспределения ионов между фазами не будет и двойной электрический слой не возникает. Такой раствор называется нулевым раствором, а потенциал на пластинке в нем — потенциалом нулевого заряда. Разность потенциалов двух электродов (веществ) в нулевом [c.49]

    Опыт показывает, что потенциал каждого электрода изменяется в большей или меньшей степени, когда через него пропускается электрический ток. Возникающий при этом потенциал называют потенциалом под током в отличие от равновесного электродного потенциала, т. е. при отсутствии тока. Такое явление объясняется тем, что прохождение через электролит тока неизбежно приводит к изменению условий на электроде в связи с протеканием реакции, скорость которой пропорциональна силе тока. Так как скорость поступления реагирующего вещества (или отвода образующегося вещества) не равна скорости реакции, будет наблюдаться отклонение потенциала от начального значения его. Это явление называется поляризацией. Причины поляризации могут быть различными. Поляризация, связанная с изменением концентрации ионов металла, водорода или свободного кислорода в приэлектродном слое, носит название концентрационной. [c.38]

    Накопленные знания и огромный научный потенциал в вузах, опыт освоения передовых технологий в отраслевых институтах и фундаментальные исследования в академических учреждениях явились надежной основой создания самостоятельного Отделения нефти и газа в республиканской академии (июнь 1995 года). [c.8]

    Чтобы исследовать влияние концентрации вводимого в золь электролита на электрокинетический потенциал одновременно ставят несколько (4—6) приборов. В каждый из них вводят золь, содержащий различные добавки электролита. Записывают его концентрацию. Опыт прекращают, когда изменение уровней границы раздела для раствора с наибольшей концентрацией электролита достигнет 1—1,5 см. При этом в других трубках разность уровней окажется больше. После окончания опыта подачу тока отключают и измеряют вольтметром подаваемое напряжение. [c.176]

    На рис. 135 показаны кривые становления потенциала на электролитическом никеле в зависимости от pH раствора. Опы- [c.298]

    Опыт 3, дополняющий опыт 2, проводят на установке для определения выхода по току по объему выделившегося газа, описанную в работе 21 и показанную на рис. 21.2 (но без измерения потенциала). Анод — взвешенный съемный стержень из алюминия (на рис. 21.2 позиция 4). [c.87]

    Несмотря на то что стандартный потенциал (А1ч АР++Зе )> составляет —1,67 В, алюминий очень устойчив к коррозии, так как на воздухе и в воде моментально покрывается очень прочной и плотной пленкой оксида алюминия А Оз- Если эта пленка покрывает не всю поверхность, происходит окисление алюминия (опыт 1). Для повышения коррозионно- и износоустойчивости алюминия методом анодного окисления на нем создают плотный слой АЬОз толщиной 10—30 мкм. В декоративных целях этот слой можно окрасить органическими красителями. [c.603]

    Опыт 58. Диффузионный потенциал и его определение [c.136]

    Значительный интерес представляют электрические явления, наблюдаемые при движении частиц дисперсной фазы в золях (или при движении дисперсионной среды относительно неподвижных коллоидно-пористых материалов). Эти явления впервые были описаны Рейссом (опыт 79) и получили название электрокинетических явлений. К ним относятся электрофорез (опыт 80—82) и электроосмос (опыт 83, 84), а также обратные им явления — потенциал седиментации и потенциал протекания. [c.174]

    Опыт 80. Измерение величины дзета-потенциала золя гидроокиси железа методом электрофореза [c.178]

    Тлеющий разряд является одним из наиболее распространенных типов разряда при низких давлениях. Он относится к типу самостоятельных разрядов, т. е. раз рядов, не прекращающихся после прекращения действия постороннего ионизатора. Несамостоятельный разряд может перейти в самостоятельный при условии, если число электронов и ионов, возникающих при разряде, больше или равно числу ионов, уходящих из разряда. Возник новение ионов в разряде происходит благодаря раз витию электронных лавин. Каждый электрон, находя щийся в разрядном промежутке, ионизует при столкно нении атом, при этом получаются новые электроны, ко торые, в свою очередь, ионизуют другие атомы. Число электронов, двигающихся к аноду, увеличивается с уда лением от катода. Разность потенциалов, при которой происходит переход несамостоятельного разряда в само стоятельный, называется потенциалом зажигания. Как показывает опыт, потенциал зажигания зависит от про изведения рй, где р — давление и с1 — расстояние межд электродами разрядной трубки (см. рис. 10). Как видно из рисунка, кривые имеют минимум. Это объясняется тем, что, с одной стороны, рост давления или величины разрядного промежутка увеличивает число ионизующих [c.36]


    Для вторичной перегонки широких бензиновых фракций на не сколько узких фракций используют различные технологические схемы [2] одно-, двух- и трехколонные, причем все схемы прямого потока с отбором в каждой колонне целевых фракций в виде дис-тиллятного продукта (рис. IV-1). Опыт промышленной эксплуатации установок по этим схемам показал, что одно- и двухколонные схемы не обеспечивают требуемой четкости ректификации и отбора от потенциала целевых фракций. [c.208]

    Опыт показывает, что это изменение условий перехода в элементарный водород или воды в элементарный кислород и приводит к изменению потенциалов соответствующих пар. Например, в то время как стандартный потенциал пары 2Н+/Нг на платинированной платине равен (по водородной шкале) нулю, при той же концентрации Н- -ионов и давлении газообразного водорода I а гладком платиновом электроде он равен —0,07 в. Точно так же I отенциал этой пары изменяется и при употреблении электродов 1 3 других металлов, например из меди, свинца, ртути и т. д. [c.430]

    Рмс. 5. Поперхиостный скачок потенциала /[, обусловленный избирательной адсорбцией иоиов (ани-опов) [c.27]

    Из теории Нернста следует вывод о независимости стандартных электродных потенциалов от природы растворителя, поскольку величина Р, определяющая нормальный, или стандартный, потенциал электрода, не является функцией свойств растворителя, а зависит липJь от свойств металла. Одиако ни опыт, ни теоретические соображения не согласуются с подобного рода представлениями, что также приводит к необходимости пересмотра физических предпосылок теории Нернста. [c.220]

    Первое предположение о причинах данного явления сводится к тому, что различие между обратимой э.д.с. и напряжением возникает как результат омических потерь напряжения. В этом случае напряжение, необходимое для проведения какой-либо реакции в электролитической ванне, будет слагаться из обратимой э.д.с. Е (определяемой изменением изобарно-изотермического потенциала) и падения напряжения в электролите и в электродах Еом (зависящего от плотности тока). Такое предположение объясняет причину увеличения напряжения на аание при прохождении через нее тока по сравнению с обратимой э.д.с. той же системы. Точно так же уменьшение напряжения гальванического элемента при отборе от него тока можно отнести за счет того, что часть э.д.с. расходуется на преодоление сопротивления в утри самого элемента. Омические потери напряжения являются, таким образом, одной из причин различия между обратимой э.д.с. и рабочим напряжением. Опыт показывает, однако, чго [c.287]

    Окислительно-восстановительные потенциалы измеряют с помощью ин-аифферентного платинового электрода. Так как в стандартном водородном электроде ток также подводится платиной, то электродные потенциалы этого типа не включают гальвани-потенциалов MeilMej. Если же при измерении окислительно-восстановительного потенциала использовать электрод из другого индифферентного металла, например золота, то электродный потенциал включит в себя гальвани-потенциал пфли контакта Pt/Au. При этом измеряемый суммарный электродный окислительно-восстановительный потенциал относительно стандартного водородного электрода остается неизменным, так как оп соответствует тому же процессу перехода электрона от одного иона к другому. При замене платины золотом скачок на границе электрод раствор изменится так, что дополнительный гальвани-потенциал Pt[Au будет компенсирован. [c.556]

    В работе [121] в качестве унифицированной характеристики окисляемости моторных топлив предложен так называемый окислительный потенциал (ОП). Под ОП понимается количество КМп04, которое в кислой водной среде в контакте с топливом при 25 °С расходуется на окисление компонентов топлива. Несостоятельность показателя ОП как характеристики окисляемости топлив показана в работе [96]. В известной мере этот показатель можно использовать для сравнительной оценки степени окисленности топлив. Методы измерения кинетических параметров окисления топлив сведены в табл. 3.2. [c.75]

    Величина и знак исходного потенциала указывают на состав компонентов активно серы (табл. 54). Если исходный потенциал иоло-/Иительт ый, то это значит, что в топливе нет меркаптановой п сероводородной серы, а может присутствовать свободная сера. В этом случае предварительный опыт можно закончить и перехии к основному. [c.319]

    Ge -O является энергичным восстановителем в щелочной среде, так как основной процесс сопровождается образованием HgO, т. е. убылью изобарного потенциала. Наоборот, РЬ Оа проявляет бОо1ьшую окислительную активность в кислой среде, так как кислород связывается ионами Н опять-таки в воду (Д0" 298)ц о(ж) = — 56,72 ккал/моль. [c.95]

    Если, например, активность ионов 2п + в растворе цинковой соли равна г-ион л, то равновесный потенциал цинка, опу-пгенного в этот раствор, будет равен [c.26]

    Вывод классических уравнений движений из квантовых показывает, что классическая механика применима при условии малости длины волны де-Бройля X по сравнению с характерным размером I об.тасти действия потенциала, в котором движется частица. Из правил квантования следует, что условие к (ШР) <5 эквивалентно условию Пк для связанных состояний системы (колебательное и вращательное движение). Для тепловых энергий Т 1000 К) и молекул среднего атомного веса [М 20) X, составляет величину ппр>[дка К)" см, что заметно меньше размера молекул (3-10 сж). Для этих же условий наиболее вероятные значения вращательных квантовых чисел ] обычно превышают 10, тогда как для колебаний условие 1 к 1. как правило, не выполняется. Таким образом, описание поступательного и вращательного движения молекул в рамках классической механики полностью оправдано. Что касается колебательного движения, то опо может быть описано классически только в случае, когда колебательная энергия заметно превышает величину колебательного кванта, например в случае сильно г1Кзотермнческих реакций. [c.57]

    Тто касается 1аиисимости вероятности / 1,,, от приведенной массы р, и частоты ы, то рис. 18 показывает выполнимость приближенного линейного соотношения Р,,,, оп (fl(й )V для ряда молекул А , релаксирующих в собственном газе прп Т 300 К [4181. ТТргЕ установлении такой корреляции молчаливо допускается, конечно, что характерный параметр потенциала 1/а приблизительно одинакова для всех указанных молекулярных пар. Заметим [c.85]

    И может быть свободным. Опыт показывает, что при комнатной температуре это движение тормозится. Причина торможения, в основном, — отталкивание, возникающее от перекрывания орбиталей С—Н-связей двух фрагментов СН3 при их поворотах. Если СНз-груп-пы расположены так, как показано на рис. 43,а (шахматная форма), атомы Н максимально удалены друг от друга, их отталкивание минимально (молекула рассматривается вдоль связи С—С). Такое расположение ядер отвечает устойчивой равновесной конфигурации с минимумом потенциальной энергии. При затененной форме расположения (рис. 43, б) атомы И сближены до предела, отталкивание между двумя фрагментами СН3 максимально, и потенциальная энергия достигает наивысшего значения II 1/тах)- Величина Утах называется тормозящим потенциалом внутреннего вращения. Если энергия вращения фрагментов ниже Ушах, они совершают крутильные колебания около положения равновесия. Для молекулы этана тормозящий потенциал составляет всего - 13 кДж/моль и преодолевается легко при повышении температуры. Явление заторможенного внутреннего вращения наблюдается помимо этана в перекиси водорода, в молекулах замещенных углеводородов и многих других молекулах. [c.106]

    Исследованиями А. Б. Таубмана и С. А. Никитиной с сотр. [39] показано, что нельзя однозначно истолковывать механизм очень большой устойчивости эмульсий прямого типа, образующихся при смешении углеводородов с водой в присутствии неионогенных ПАВ. Адсорбционные слои, образующиеся, например, в растворах ОП-10, сами по себе не обладают сильно выраженной структурно-механической прочностью и значение -потенциала таких эмульсий недостаточно для их стабилизации. Большая устойчивость этих систем обеспечивается прочностью межфазных надмолекулярных структур в форме фазовых пленок ультраэмульсии. [c.32]

    Опыт эксплуатации газофракционирующих абсорберов показал их значительную эффективность в отношении извлечения из газовой фазы пропан-пропиленовой фракции и полной деэтанизации остатка. Целевым назиач( нием схемы рассмотренного тина является максимально полное извлечение ценных фракций Сд и С4. Извлечение этих фракций от потенциала достигает 90—95%. Установки разделения газов, работаювще по схеме типа рассмотренной, могут работать в сочетании с установками каталитического крекинга, коксования и других ироцессов нефтеперерабатывающего завода, а также служить для разделения смесей газов, полученных с этих установок. [c.312]

    При большом избытке ионов серебра в растворе изменение потенциала при добавлении очередной порции раствора АеЫОа становится опять близким к нулю. [c.298]

    Мередит и Тобиас (1960) измеряли электропроводность модельных систем небольших элементарных ячеек кубической решетки из непроводящих луцитовых сфер, опущенных в воду. Результаты исследований представлены на рис. .29, б вместе с теоретическими кривыми. Как видно, экспериментальные значения при концентрации 51% не согласуются с уравнением ( .112). Авторы считали, что такое расхождение может быть вызвано пренебрежением высшими членами ряда, опущенными при вычислении Релеем потенциала электрического поля. Опи вывели модифицйрованное уравнение Релея  [c.365]

    Как вытекает из уравнения (5.10.6), требуется очень точное измерение Е] и Е чтобы ошибка определения величины 4 Е бьша предельно малой, по этой же причине необходимо, чтобы > 10 мВ, поэтому измерения и нужно проводить достаточно близко к т.э., где эта разность сравнительно большая, но до наступления скачка потенциала в к.т.т. Также необходимо, чтобы Ур был намного больше О" + й1/. Поэтому оп-редение проводят при сильном разбавлении титруемого раствора. Это означает, что метод особенно ценен для анализа очень разбавленных растворов (определение малых количеств веществ). [c.155]

    Наиболее сильным окислителем в кислой среде является марганцево-кислый калий. Тем не менее опыт показывает, что нельзя ограничиться применением только одного этого рабочего раствора. Высокий окислительный потенциал системы Мп07/Мп "" (в кислой среде) является иногда недостатком, так как способствует образованию активных промежуточных продуктов в результате возникают сопряженные реакции окисления. Поэтому в ряде случаев вместо марганцевокислого калия удобнее пользоваться двухромовокислым калием (с дифениламином или фенилантраниловой кислотой в качестве индикатора) или ванадиевокислым аммонием. В других случаях реакция между определяемым веществом и ионом перманганата идет не стехиометрически. Так, в реакции со многими органическими веществами перманганат может, при длительном взаимодействии, окислить их полностью, например до СО и Н О. Однако реакция идет довольно медленно, а образование промежуточных стадий не имеет резкого ступенчатого характера. Поэтому при определении некоторых органических соединений вместо марганцевокислого калия применяют бромноваго-кислый калий, йод или другие окислители. Эти окислители имеют более низкий потенциал и окисление не идет так далеко, как при действии перманганата. Однако бром илн йод взаимодействуют с молекулами мног их органических веществ довольно быстро и в точных стехиометрических отношениях. Таким образом, ряд обстоятельств обусловливает необходимость применения различных окислителей в зависимости от конкретных условий. [c.365]

    Далее введем небольшое количество чистого /-го газа в смесь при Р = onst и опять сожмем смесь от давления Я до давления Р. Зная изменение AG на каждом этапе, можно определить химический потенциал неидеального газа в смеси. Однако эта процедура требует либо экспериментального решения, либо детального знания уравнения состояния смеси. [c.99]

    С целью получения реальных данных о совместном разряде принято построение парциальных поляризациоиных кривых в растворах, содержащих в литре 32 г Си + (в виде сульфата), 100 г Н2504, 5 г Аз + (в виде сульфата). Были проведены опыты электролиза,,-причем. каждый опыт выполнялся в условиях строгого соблюдения постоянства заданного потенциала В течение всего времени опыта. [c.54]

    Опыт 3. Выяснить характер изменения ВТ металла от продолжительности электролиза в одном из указанных элек-трол1 зеров при температуре и плотно-сти тока, заданных преподавателем. Сопоставить значения катодного потенциала с данными поляризационной кривой. [c.137]

    В принципе можно выбрать такую силу тока в электролитической цепи, чтобы она составляла менее 1 % величины диффузионного предельного тока. В этом случае мешающие реакции начинают протекать только после того, как прореагировало 99% определяемого вещества. Попрешность составляет, таким образом, менее —1%. Но проведение анализа при небольшой силе тока требует больших затрат времени. Поэтому обычно поступают по-другому в анализируемый раствор вво-.дят довольно большую концентрацию вспомогательного ре-.агента, окислительно-восстановительный потенциал которого немного больше окислительно-восстановительного потенциала определяемого иона. К началу электролиза определяемый ион опять восстанавливается или окисляется. В соответствии с уменьшением концентрации определяемого иона у поверхности электродов электродный потенциал снова возрастает, но только -ДО тех пор, пока его значение ие станет равным значению потенциала иона вспомогательного реагента. После этого окисляется или восстанавливается реагент. Поскольку его концентрация намного больше концентрации определяемого иона, обеспечивается дополнительная подача вещества путем диффузии к поверхности электродов. Электродные потенциалы остаются постоянными (не происходит разложения воды 100%-ный выход ло току), остается постояиным значение Яг, а следовательно, и г. Диффундирующий от электродов вспомогательный реагент, являющийся окислителем или восстановителем, реагирует в растворителе с определяемым ионом, и, таким образом, действует только как посредник. [c.274]

    Опыт 2. Влияние pH среды на окислительно-восстано-вительный потенциал перманганата калия. В три пробирки положить по кристаллику КМПО4 и по два кристаллика МагЗОз. Прилить по 10—15 капель в первую пробирку— разбавленной серной кислоты, во вторую — концентрированного раствора едкого натра, в третью — дистиллированной воды. Записать изменение окраски в каждой пробирке. Применяя ионно-электронный метод, расставить коэффициенты в уравнениях реакций  [c.130]

    Необходимо иметь в виду, что в концентрационных гальванических элементах более высокий положительный потенциал у электрода, где находится более высокая концентрация одноименных с данным металлом ионов. Поэтому на той части цинкового стержня, которая погружена в более концентрированный раствор ZnS04, имеет место выпадение металлического цинка, а на части стержня,. погруженной в сильно разбавленный раствор ZnS04, происходит растворение цинка и переход в раствор в виде ионов (опыт Б). [c.133]


Смотреть страницы где упоминается термин опила цнп потенциал: [c.76]    [c.257]    [c.466]    [c.327]    [c.218]    [c.64]   
Руководство по газовой хроматографии (1969) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Опыт 80. Измерение величины дзетп-потенциала золя гидроокиси железа методом электрофореза

Опыт 98. Изменение потенциала системы кобальт(Ш)—кобальт(П) в присутствии аммиака

Опыт 99. Изменение потенциала системы железо(Ш)—железо(Н) в присутствии фторид-иона (реакция окисления иодид-иона)

Проведение опыта и подсчет потенциала



© 2025 chem21.info Реклама на сайте