Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободный радикал методы изучения

    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]


    Действие сил растяжения вдоль оси молекулярной связи К1—Кг проявляется в ослаблении кажущейся энергии ее образования и, таким образом, способствует увеличению вероятности разрыва связи. Если ослабление кажущейся энергии связи существенно, то механическое воздействие можно считать основной причиной деструкции цепи. Поскольку разрыв цепной молекулы сопровождается образованием органических радикалов, а последующее появление неспаренных свободных электронов регулируется механическими силами, то изучение процесса образования радикалов и их реакций дает необходимую с точки зрения молекулярной теории информацию относительно сил, действующих па цепь. Исследования свободных радикалов методом парамагнитного резонанса усиленно развивались в течение последних 30 лет [1, 2]. С тех пор данный метод успешно применялся для объяснения механизма образования свободных радикалов в химических реакциях и под действием облучения видимым и ультрафиолетовым светом, рентгеновским и 7-излучением и облучением частицами [1, 3]. Дополнительно изучались величина фактора спектроскопического расщепления магнитное окружение неспаренного спина свободных электронов и структура свободного радикала. Во всех этих случаях спин свободного электрона действует как зонд, который, по крайней мере временно, присоединяется к определенной молекуле, принимает участие в ее движении и взаимодействует с окружающим магнитным полем. [c.156]

    Другие методы основаны на магнитных свойствах неспаренных электронов. Измерение парамагнитной восприимчивости являлось долгое время наиболее ценным методом анализа, пригодным для изучения свободных радикалов, но этот метод далеко превзойден спектральным методом электронного парамагнитного резонанса (ЭПР), применимого для изучения даже корот-козкивущих радикалов в весьма малых концентрацях. Основные принципы, лежащие в основе этого метода, очень близки принципам ЯМР-спектроскопии, хотя ЭПР-спектры наблюдают при гораздо более высоких частотах, уже непосредственно в области радиочастот. Важными моментами являются следующие. Во-первых, интенсивность поглощения пропорциональна концентрации свободного радикала, что позволяет оценивать эту величину. Во-вторых, в спектре поглощения наблюдается сверхтонкая структура, появляющаяся за счет взаимодействия неспаренного электрона со спинами соседних ядер. Если ядро имеет спиновое число /, то мультиплетность линий за счет взаимодействия будет определяться формулой 21 1), причем интенсивность всех линий будет одинаковой. Конечно, интенсивности могут увеличиваться, если электрон взаимодействует с двумя или более идентичными ядрами, как происходит с делокализованным электроном в[метильном радикале (ср. с взаимодействием спинов в ЯМР-спектрах). Для этой частицы в спектре имеется квадруплет с интенсивностями 1 3 3 1. Спектр интересного циклогептатриенил-радикала С7Н7- содержит восемь линий, расположенных на равных расстояниях друг от друга и указывающих на взаимодействие электрона с семью эквивалентными атомами водорода, что свидетельствует о равномерном распределении электрона по кольцу. В общем случае, если взаимодействие (в гауссах) равно С, то степень локализации электрона в поле ядра, осуществляющего это взаимодействие, определяется величиной С/500. Для метильного радикала С равно примерно 23 Гс (2,3-10 Т), и, следовательно, электрон проводит V2o часть своего времени в поле каждого из ядер водорода, что указывает на довольно большую степень электронной делокализации. [c.177]


    Реакции диссоциации на радикалы. Большие возможности импульсного фотолиза при исследовании короткоживущих продуктов делают этот метод совершенно незаменимым при изучении реакций свободных радикалов и других промежуточных продуктов и состояний в различных фотохимических реакциях. Методом импульсного фотолиза были зарегистрированы спектры простых свободных радикалов и изучена кинетика их превращений. При импульсном фотолизе смеси кислорода и хлора наблюдается поглощение свободного радикала С10-, который затем превращается в исходные соединения. Действительно, реакция не происходит, если судить [c.171]

    ЭПР является наиболее чувствительным и универсальным методом обнаружения свободных радикалов. Современные установки позволяют открывать присутствие 10 "—10 и даже меньше молей свободного радикала с шириной линии 1 э. Это превосходит возможности всех других методов, по крайней мере для исследования жидких II твердых фаз. К сожалению, такой чувствительности не всегда достаточно для открытия нестабильных свобо(дных радикалов, образующихся в ходе химических реакций. Однако изучение кинетики и механизма некоторых химических процессов с помощью ЭПР осуществляется и теперь  [c.368]

    Другие методы получения рассмотрены прн описании синтеза янтарной-1,4-С2 кислоты. Предлагаемый метод, по существу, представляет собой описанный Карашем [1, 2] способ получения янтарных кислот, разработанный им в процессе проведения обширного исследования реакций с участием атомов и свободных радикалов. Предполагается, что при термическом разложении перекиси ацетила образуются свободный метильный радикал, молекулы двуокиси углерода и свободный ацетокси-радикал. Свободный метильный радикал захватывает а водо-роднын атом у алифатической кислоты (или ее производного) с образованием нового свободного радикала, который димери-зуется [2]. Выходы, в расчете на исходную перекись, близки к количественным. Практические результаты, полученные при изучении механизма реакции, в общем соответствуют механизмам, предложенным Карашем и Гледстоном [1]. [c.130]

    Метод спиновых меток. Основная идея метода состоит в присоединении к той или иной функциональной группе белка свободного радикала и изучению характеристик его сигналов ЭПР. Наиболее удобны в этом отношении нитроксильные радикалы, содержаш ие свободнорадикальную группу N-0  [c.276]

    Газообразные Ог, Од. N0 и N02 также можно рассматривать как свободные радика.лы, и применить для анализа этих газов и определения их свойств в адсорбированном состоянии классические методы изучения парамагнетизма. [c.423]

    Реакции диссоциации на радикалы. Большие возможности импульсного фотолиза при исследовании короткоживущих продуктов делают этот метод совершенно незаменимым при изучении реакций свободных радикалов и других промежуточных продуктов и состояний в различных фотохимических реакциях. Методом импульсного фотолиза были зарегистрированы спектры простых свободных радикалов и изучена кинетика их превращений. При импульсном фотолизе смеси кислорода и хлора наблюдается поглощение свободного радикала С10-, который затем превращается в исходные соединения. Действительно, реакция не происходит, если судить о ней только по изменению системы за большой промежуток времени, так как она возвращается к первоначальному состоянию за несколько миллисекунд. При облучении смеси СЬ + Ог протекают реакции по уравнениям  [c.171]

    Наиболее изученным и широко применяемым методом полимеризации тетрафторэтилена является полимеризация в присутствии инициаторов. Применение инициаторов обеспечивает получение высокомолекулярного продукта с высоким выходом при незначительной продолжительности процесса. Сравнительно большая скорость полимеризации тетрафторэтилена в присутствии инициаторов по сравнению со скоростью полимеризации при применении других методов инициирования этого процесса связана с тем, что распад молекулы инициатора на свободные радикалы требует значительно меньшей затраты энергии, чем образование свободного радикала при непосредственной активации молекулы тетрафторэтилена. [c.33]

    Успех метода ЭПР в радикальной химии базируется на том, что в основе его лежит прямое и непосредственное изучение поведения неспаренного электрона, обусловливающего парамагнетизм свободного радикала. Именно благодаря этому ЭПР позволил рассмотреть тончайшие детали строения и поведения этих интереснейших частиц. [c.19]

    Впервые для идентификации радикалов, образующихся в газовой смеси, был использован метод металлических зеркал (Ф.Паннет, 1929 г.). Позднее появился толуольный метод (М.Шварц, 1950 г.) об участии радикалов судили по образованию дибензила из толуола, добавляемого в реакционную смесь. Затем стали широко использовать для идентификации радикалов и изучения кинетики их преврашения метод ЭПР. Нередко, однако, возникает такая ситуация, когда концентрация радикалов настолько мала, что метод ЭПР не позволяет их обнаружить. Тогда используют соединения - ловушки свободных радикалов, такие как (СНз)зСНО. Последний, реагируя со свободным радикалом, дает стабильный нитроксильный радикал, фиксируемый методом ЭПР. [c.437]


    АПМ определяется различными факторами (природой переходного металла, алкильных групп, растворителя), влияние которых должно явиться объектом дальнейших исследований. Поскольку во многих, если не в большинстве, случаях распад АПМ сопровождается очень малым выходом свободных радикалов, изучение механизма их образования требует весьма чувствительных методов исследования. Своеобразным и высокочувствительным индикатором является реакция радикальной нолимеризации. В самом деле, на образование одной макромолекулы со степенью полимеризации 1000 требуется всего 1 или (при рекомбинационном обрыве) 2 свободных радикала. Отсюда следует, что чувствительность обнаружения радикалов по продукту полимеризации оказывается повышенной в 500—1000 раз по сравнению с продуктом обыкновенного химического превраш ения. [c.211]

    Г. Химические методы. Обсуждавшийся выше метод зеркал является частным случаем более общего метода определения свободных радикалов, основанного на большой химической реакционноспособности радикалов. Так, если К представляет собой радикал, а — некое стабильное химическое соединение, способное реагировать с К, то введение в кинетическую систему приведет к изменению первоначальных концентраций и образованию новых продуктов. С этой точки зрения вещество выступает как ингибитор первоначальной реакции. Идеальный ингибитор реагировал бы с радикалами полностью и тотчас же, как только они образуются, и давал бы полную л несомненную информацию о первых стадиях ценной реакции на основе изучения новых образующихся продуктов. [c.97]

    Доказательством указанной выше диссоциации гексафенилэтана явилось, в частности, определение молекулярной массы его в растворе величина молекулярной массы оказалась более низкой, чем у гексафенилэтана, и более высокой, чем у трифенилметила, что указывало на присутствие смеси обоих соединений. Оказалось возможным вычислить содержание трифенилметила в растворе, пользуясь либо определением молекулярной массы, либо колориметрическими исследованиями так как трифенилметил — желтый, а гексафенилэтан — бесцветный, интенсивность окраски раствора пропорциональна концентрации свободного радикала. Важным методом изучения трифенилметила и других свободных радикалов, в частности их концентрации в растворах, явилось исследование их магнитных свойств — магнетохимические исследования. Свободный радикал обладает парамагнитными свойствами (притягивается магнитом), тогда как гексафенилэтан диамагнитен (не притягивается магнитом) (рис. 71). Парамагнитные свойства свободных радикалов объясняются наличием у них непарных электронов, магнитно не компенсированных, образование которых представлено на следующей схеме  [c.428]

    Важным методом изучения трифенилметила и других свободных радикалов, в частности их концентрации в растворах, явилось исследование их магнитных свойств — магнетохимические исследования (рис. 66). Свободный радикал обладает парамагнитными свойствами (притягивается магнитом), тогда как гексафенилэтан диамагнитен (не притягивается магнитом). Пара-магнитные свойства свободных радикалов объясняются наличием у них непарных электронов, магнитно [c.471]

    Оптические методы сыграли большую роль в изучении многих простых радикалов, в особенности, двухатомных. Однако до последнего времени они давали возможность обнаруживать свободные радикалы либо в пламенах (свободный радикал ОН при горении водорода), либо в случаях, когда радикалы относительно малоактивны (например, свободный радикал 80 при медленном окислении сероводорода). [c.23]

    При переходе неспаренного электрона из низшего энергетического состояния в высшее при условии hv=g H происходит резонансное поглощение СВЧ-энергии. Явление поглощения электромагнитного излучения парамагнитным веществом в постоянном магнитном поле, открытое в 1944 г. Е. К. Завойским, получило название электронного парамагнитного резонанса (ЭПР) и стало одним из наиболее совершенных методов изучения свободных радикалов. Методу ЭПР посвящено много работ и специальных монографий, см., например, [185]. При обычно используемой в ЭПР напряженности поля 300 мТ значение частоты будет 9000 МГц, что соответствует длине волны излучения 3 см. Таким образом, спектры ЭПР получаются в микроволновой области (радарная область спектра). Сигнал ЭПР дает ценную информацию о химическом строеншг радикала, степени делокализации неспаренного электрона, о распределении спиновой плотности по различным атомам радикала. Чувствительность современных ЭПР-спектрометров простирается до 10 моль/л радикала. [c.92]

    Получил и идентифицировал (1929) свободные метильные радикалы из тетраметилсвинца. Описал (1935) свойства свободного радикала бензила. Разрабатывал (1917—1929) прецизионный метод определения следовых количеств гелия. В результате ему впервые удалось установить абсолютный возраст метеоритов. Изучением метеоритов занимался до конца своей жизни. [c.336]

    При изучении системы С6Н5С2Н5—А1Вгз [160, с. 173] в присутствии кислорода методом ЭПР наблюдается два рода сигналов. Сигнал а (рис. 3.4), появляющийся сразу после продувки кислородом воздуха, имеет семь групп линий, которые обусловлены взаимодействием неспаренного электрона с щестью эквивалентными протонами, характеризующимися константой взаимодействия йи равной 7,40 Э. Каждая линия в группе дополнительно расщепляется не менее чем на 11 линий с константой Яг., равной 1,17 Э. Для интерпретации спектра построены теоретические спектры с набором констант и числа протонов. Полное совпадение экспериментального и теоретического спектров наблюдается для парамагнитной частицы, у которой щесть эквивалентных протонов с й1 = 7,40 Э, четыре эквивалентных протона с 2 = 2,28 Э и два эквивалентных протона с аз=1,14 Э. Отсутствие в исходном этилбензоле шести эквивалентных протонов свидетельствует о том, что свободный радикал представляет собой продукт превращения углеводородов. [c.83]

    Возможность применения метода ЭПР к изучению адсорбированных радикалов основана на том, что неспаренный электрон радикала не образует связи с электронами сорбента. Отсюда следует, что на поверхности сорбентов отсутствуют свободные валентности, существование которых постулировалось в некоторых теориях гетерогенного катализа. [c.407]

    В качестве примера рассмотрим применение метода ЭПР к изучению свободного метильного радикала (—СНд), полученного при облучении ультрафиолетовыми лучами при 77° К полиалюмометил-силоксана (рис. 13). Спектр этого радикала представляет собой отдельные линии (так называемые компоненты), сгруппированные в мультиплеты, отстоящие друг от друга на равных расстояниях с отношением интенсивностей 1 3 3 1. [c.61]

    Охарактеризуйте строение и свойства трифенилметильного радикала. В чем причина его устойчивости Какой физический метод применяется для изучения свободных радикалов  [c.173]

    На рис. 149 показаны кинетические кривые расходования N-фенил--нафтиламина, накопления стабильных радикалов и поглощения кислорода при окислении октадекана при 171° С в присутствии 0,108 молъ1л ингибитора [47]. При окислении кумола в присутствии дифениламина методом ЭПР установлено образование радикала (СеН5)аШ [48, 49]. Аналогичный результат получен в другой работе [50], в которой была определена константа скорости реакции ROg + дифениламин — А ,= 6 10 ехр (— 3500/i r) л/молъ-сек. При изучении реакции свободного радикала дифенилпикрилгидразила с аминами оказалось, что с анилином и его производными гидразил реагирует со скоростью W = =А [гидразил] [анилин], что согласуется со следующим механизмом  [c.251]

    Расшифровка СТС спектров ЭПР очень важна для органической химии при исследовании свободных радикалов. По СТС спектров ЭПР определяют область делокализации неспаренного электрона в свободном радикале. Кроме того, можно найти плотность неспа-репного электрона на соответствующих атомах, что дает возмож-ность судить о реакционной способности отдельных фрагментов радикала. В неорганической химии изучение СТС спектров ЭПР дает ценную информацию при установлении структуры комплексных соединений. Метод ЭПР используют также и при исследовании дефектов в кристаллах, в том числе дефектов, возникающих после облучения нейтронами. ЭПР приобрел особый интерес и для квантовой электроники в связи с тем, что открылась возможность использова- [c.191]

    Может показаться, что возможна также флюоресценция какого-либо присутствующего в пламени вещества, возбуждаемая его ультрафиолетовым излучением. Однако изучение спектров поглощения пламен показывает, что они в высшей степени прозрачны в видимой и ультрафиолетовой областях спектра, так что флюоресценция не может играть существенную роль в спектрах испускания пламен. Отсутствие сильного поглощения света пламенем означает также, что самопоглощение не должно заметно ослаблять спектр испускания. Применяя приборы очень большой разрешающей силы или метод обращения спектральных линий (метод линейчатого поглощения), можно обнаружить поглощение радикала ОН, соответствующее полосе 3064 А отсюда следует, что излучение свободного гидроксила должно быть несколько ослаблено, хотя этот эффект, вероятно, слишком незначителен, чтобы заметно изменить [c.43]

    Таким образом, гидрирование осуществляется двухступенчатым переносом атомарного водорода от НСо(СМ)5 к двойной связи. В качестве промежуточного продукта образуется свободный радикал (по-лугидрированный продукт), который, однако, не может накапливаться до уровня наблюдаемости методом ЭПР. Промежуточный свободный радикал реагирует также с Со(СЫ)5 , который сам по себе является свободным радикалом, образуя кобальторганическое соединение (4). Это соединение нельзя рассматривать как другой промежуточный продукт, ибо согласно кинетическому анализу оно лишь понижает концентрацию реагирующих партнеров. Как видно из схемы, в случае изученных систем нет необходимости в активации субстрата посредством координации. [c.285]

    Другим классическим примером химических методов изучения свободных радикалов является так называемый толуольный метод Шварца. Он основан на том, что энергия С—Н связи в метильной группе толуола сравнительно не высока (82 ккал/моль). В то же время свободный радикал бензил СеНв СНг, образующийся при отрыве атома Н от метильной группы толуола, сравнительно малоактивен и не может, как правило, оторвать атом Н у каких-либо других молекул. Поэтому, если к системе, в которой образуются какие-либо высокоактивные свободные радикалы К-, примешать толуол, то в результате реакции  [c.26]

    Измеряя концентрацию йодалкила Ш, вычисляют концентрацию радикала. Аналогичный метод применим и к жидкой фазе, например при изучении свободных радикалов, образующихся в процессе полимеризации, йод вводится в реагирующую смесь и титраметрически определяются продукты взаимодействия радикалов с йодом. [c.144]

    Масс-спектрометрический метод обнаружения свободных атомов и радикалов и изучения радикальных реакций получил дальнейшее развитие в работах некоторых авторов. Так, например, Ингольд и Лоссинг [792] в ра.зличных реакциях идентифицировали радикалы СеНз, СеНзСНг, СбН-,0, СбНбСО, аллил СН2 = СН — СНг и винил НгС = СН. Фонер и Гадсон [616[ обнаружили в водородном пламени атомы Н и О и радикалы ОН, в метанокислородном пламени — радикал СН3. Те же авторы [617] обнаружили НО2 в качестве первичного продукта взаимодействия атомарного водорода с молекулами Ог и измерили потенциал ионизации этого радикала [c.79]

    На рис. XI.9 показаны скорости полимеризации различных мономеров. Химе-лирс и Смете проанализировали блоксополимеры, полученные таким методом, и нашли, что во всех изученных случаях содержание акрилонитрила превышает 85%. Этого следовало ожидать, потому что не каждая полимерная цепь содержит захваченный радикал. Захваченные свободные радикалы можно обнаружить методом электронного парамагнитного резонанса (ЭПР) . [c.367]

    Смысл явления ХПЯ заключается в том, что при проведении химической реакции в магнитном поле в тех случаях, если реакция идет с промежуточным образованием свободных радикалов, в спектрах магнитного резонанса продуктов может обнаруживаться или аномально большое поглощение, или радиоизлучение, которое может быть зафиксировано в течение времени ядерной релаксации (1—30 с). Наличие ХПЯ в продукте может служить признаком того, что он образовался в результате рекомбинации свободнора-дикальной пары, а вид спектра дает возможность судить о природе этой пары. Использование ХПЯ позволило подтвердить свободно-радикальный характер некоторых перегруппировок, а также сделать вывод о механизме распада азосоединений, С помощью метода ХПЯ удается различить, про.чодят реакции карбенов через синглетное или триплетное состояние карбена. В ряде случаев метод ХПЯ позволяет не только сделать качественные выводы о механизме процесса, но и оценить скорости быстрых элементарных стадий. Так, при помощи ХПЯ были измерены скорости взаимодействия бензильного радикала с ССЦВг и ССЦЗОгС [44, 1971, т. 93, с. 546 44, 1972, т. 94, с. 2007]. В настоящее время изучение ХПЯ все шире используется при исследовании механизмов реакций [11, [c.208]

    Нитропроизводные. Метод ЭХГ оказался наиболее плодотворным при получении свободных радикалов нитросоединений более половины ( 250) всех свободных радикалов, полученных методом ЭХГ, являются радикал-нитроанионами. Это объясняется прежде всего успехами, достигнутыми в полярографическом изучении нитросоединений, дающими теоретическое обоснование методу ЭХГ [156], а также тем обстоятельством, что указанные радикалы часто обладают достаточно высокой стабильностью даже в водных средах. [c.33]


Смотреть страницы где упоминается термин Свободный радикал методы изучения: [c.98]    [c.299]    [c.381]    [c.59]    [c.133]    [c.59]    [c.191]    [c.98]    [c.38]    [c.28]    [c.64]    [c.22]    [c.293]    [c.155]    [c.9]   
Биофизика (1983) -- [ c.46 , c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Свободные радикалы

Свободные радикалы изучение изотопным методом

Свободные радикалы ион-радикалы



© 2025 chem21.info Реклама на сайте