Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки субстрат дыхания

    Дыхание — это окисление органического вещества, являющегося субстратом дыхания. Субстратами для дыхания служат углеводы, жиры и белки. [c.344]

    Однако сахара — не единственное органическое вещество, благодаря которому происходит дыхание. Субстратами дыхания могут быть органические и жирные кислоты, а также белки. При [c.23]

    Вполне вероятно, что белки используются как субстрат дыхания не только в голодных, но и в обычных нормальных листьях. Однако в последнем случае снижение содержания белков не обнаруживается вследствие того, что наличие в тканях достаточных запасов углеводов обеспечивает возможность пополнения [c.275]


    Присутствия субстратов дыхания, если АТР-синтетаза инактивирована в результате мутации. Напротив, АТР-зависимые транспортные системы, чувствительные к осмотическому шоку, устойчивы к действию протонофоров, блокируются арсенатом и в мутантных бактериях с неактивной АТР-синтетазой зависят от гликолиза, а не от дыхания. АТР-зависимые транспортные системы существуют и у грамположительных бактерий, однако в этом случае в них не входят периплазматические связывающие белки. [c.173]

    В качестве основного субстрата дыхания растения используют углеводы — наиболее распространенные и важные в энергетическом отношении соединения, причем в первую очередь окисляются свободные сахара. Если растения испытывают в них недостаток, субстратами окисления могут быть запасные полимерные вещества — полисахариды и белки, а также жиры, но лишь после их гидролиза. Поли- и дисахариды гидролизуются до моносахаридов, жиры — до глицерина и жирных кислот, белки - до аминокислот (рис. 4.10). [c.164]

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]

    Митохондрии активно транспортируют ионы и некоторых других двувалентных металлов. Добавление Са + (200—300 нмоль/мг белка) к аэробной суспензии митохондрий в присутствии субстрата окисления вызывает стимуляцию дыхания. Когда практически весь добавленный Са + окажется во внутреннем пространстве митохондрий, скорость потребления кислорода возвращается к исходному уровню (конт- [c.450]


    Отмытые и подсушенные с помош,ью кусочка фильтрова льной бумаги электроды полярографа осторожно опускают в кювету, заполненную 2 мл среды 1 (проба 1) до полного выхода пузырька воздуха. С помощью специального потенциометра устанавливают перо включенного самописца в исходное положение, соответствующее исходной концентрации кислорода в среде (в самописцах типа КСП-4 — в крайнее правое положение). Включают движение диаграммной ленты и, убедившись в отсутствии дрейфа, с помощью микропипетки добавляют в кювету 0,04—0,05 мл густой суспензии митохондрий (4—6 мг белка). В течение 40—60 с регистрируют медленное эндогенное дыхание и добавляют 0,02 мл сукцината (10 мМ), который вызывает небольшую стимуляцию дыхания. Через 40—60 с в кювету вносят раствор СаСЬ ( 100 мкМ). При этом дыхание сначала резко активируется, затем быстро снижается до исходного уровня. Добавку повторяют несколько раз до тех пор, пока стимуляция дыхания после каждого добавления сменяется четко выраженным торможением. Учитывая количество добавленного СаСЬ, оценивают его максимальную концентрацию, вызывающую обратимую стимуляцию дыхания. Для препарата интактных прочно сопряженных митохондрий (4—6 мг белка в кювете) эта концентрация обычно составляет 400—500 мкМ. В пробе 2 убеждаются в том, что выбранная концентрация СаСЬ вызывает обратимую стимуляцию дыхания с отчетливым выходом в контролируемое состояние. Для определения величины АДФ/О записывают следующую пробу. С этой целью в кювету со средой последовательно добавляют митохондрии, сукцинат и АДФ в концентрации от 300 до 400 мкМ (определение АДФ/О см. на с. 462). Проводят три аналогичных измерения с использованием в качестве субстрата окисления смесь глутамат—малат (по 5 мМ). В этом случае целесообразно уменьшить концентрацию добавляемого СаСЬ в 1,5—2 раза, а в среду инкубации предварительно добавить (непосредственно в кювету) 1 мМ НАД+ для предотвращения утечки эндогенных пиридиннуклеотидов. [c.452]

    Современное состояние наших знаний в этой области достигнуто благодаря использованию целого ряда экспериментальных подходов. К ним относятся 1) применение более совершенного спектроскопического оборудования для измерения содержания переносчиков (НАД, флавопротеидов, цитохромов) и кинетики их восстановления и окисления в разнообразных дыхательных органеллах 2) использование разнообразных методов, позво-ляюш их удалять из митохондрии ферменты, участвующие в окислении субстратов, окислительном фосфорилировании и других реакциях, связанных с дыханием, с тем чтобы можно было исследовать лишь те реакции, которые ответственны за перенос электронов 3) дальнейшее дробление митохондрий и дыхательных субчастиц для получения комплексов дыхательных ферментов, свободных от структурных белков эти комплексы можно подвергать дальнейшей очистке для получения гомогенных препаратов и исследования свойств, функций и взаимосвязи их компонентов 4) воссоздание цепи переноса электронов с использованием вышеупомянутых препаратов совместно с растворимыми ферментами 5) использование ингибиторов дыхания. [c.389]

    Микроорганизмы отличаются высокой биохимической активностью. В процессах жизнедеятельности они могут использовать жиры, белки, углеводы, кислоты и различные другие органические, а также и минеральные соединения. Питательные субстраты, на которых развиваются микроорганизмы, подвергаются глубоким химическим изменениям. При воздействии различных микроорганизмов на одно и то же вещество образуются разнообразные продукты распада. Нередко один и тот же микроорганизм действует не на одно вещество, а на ряд их. Ввиду этого в окружающую среду выделяются многообразные продукты обмена веществ микроорганизмов. Обмен веществ осуществляется в процессе питания и дыхания. [c.24]

    Растворимые продукты переваривания переносятся затем в зоны роста зародыша. Сахара, жирные кислоты и глицерин служат субстратами для дыхания как в зоне запасных веществ, так и в зоне роста в последней они могут использоваться также для анаболических реакций, т. е. для реакций, связанных с синтезом. Особенно важное значение для этих реакций имеют глюкоза и аминокислоты. Глюкоза используется главным образом для синтеза целлюлозы и других веществ, образующих клеточные стенки. Аминокислоты используются в основном для синтеза белков, играющих важную роль в качестве ферментов и структурных компонентов цитоплазмы. Кроме того, для многих процессов, перечисленных в табл. 7.7 и 7.8, необходимы минеральные вещества. [c.127]

    Заканчивая описание регулирующих дыхание ферментных систем, необходимо упомянуть еще об одной группе катализаторов. Непосредственно не участвуя в окислении молекулы субстрата и транспорте электронов, эти ферменты выполняют, тем не менее, очень важную роль в предварительной подготовке дыхательного материала и, тем самым, в осуществлении клеткой функции дыхания. Напомним, что способность ферментов группы дегидрогеназ осуществлять первичное окисление дыхательного субстрата распространяется лишь на соединения с небольшой, относительно просто построенной молекулой (органические кислоты, спирты, простые сахара). Между тем, в качестве источника энергии клетка использует самые различные органические соединения, в том числе белки, сложные формы полисахаридов, жиры и др. Очевидно, этому должно предшествовать преобразование молекул полимеров, упрощение структуры молекулы и придание образующимся в ходе последнего продуктам химического строения, соответствующего специфике того или иного из окислительных ферментов. [c.238]


    Каким же образом этилен индуцирует созревание Несмотря на то что в одних плодах (например, авокадо и манго) образование этилена и усиление дыхания идут параллельно, в других (например, бананы) этилен действует только как запускающий механизм и его количество снижается еще до того, как скорость дыхания достигнет максимальной величины. Это свидетельствует о том, что этилен должен вызывать начало какого-то другого процесса, под влиянием которого впоследствии осуществляется дозревание плодов, тилен, вероятно, приводит ко многим эффектам. Во-первых/ этилен, по-видимому, повышает проницаемость мембран в клетках плода тем же способом, каким он действует в цветках вьюнка. Это дает возможность ферментам, которые ранее были отделены от своих субстратов мембранами, войти в контакт с этими субстратами и начать их разрушение. Для созревания необходим синтез белка. Установлено, что этилен повышает скорость этого процесса. Парадоксально, что для начала синтеза самого этилена требуется синтез особых белков [c.310]

    Расчет скорости дыхания проводят по ленте самописца, учитывая скорость поглощения клетками кислорода в первые 1—3 мин после добавления субстрата рассчитывают также степень подавления дыхания (в %) при той или иной действующей концентрации ингибитора. Данные рассчитывают на миллиграмм общего клеточного белка (см. гл. 8). [c.163]

    В период, предшествующий полному созреванию сочных плодов (размягчению), наблюдается значительное кратковременное (на 2 — 3 дня) усиление дыхания тканей плода, после чего продолжается неуклонное падение поглощения О2. Подъем интенсивности дыхания перед полным созреванием плодов называется климактерическим подъемом дыхания. Сходное явление наблюдается и при пожелтении листьев (рис. 4.18). Перед климактерическим подъемом дыхания в тканях резко усиливается образование этилена, который оказывает на обмен двоякое влияние. С одной стороны, увеличивается проницаемость мембран и усиливается гидролиз белков, в результате чего возрастает количество доступных дыхательных субстратов. С другой стороны, в период подъема климактерического дыхания стимулируется синтез белков, возможно, дыхательных ферментов. Необходимо отметить, что климактерическое усиление дыхания является аэробным процессом и предотвращается хранением плодов при сниженном парциальном давлении кислорода в присутствии высокого содержания азота, СО2 и при низкой температуре. [c.176]

    Как известно, при диабете и при голодании прежде всего резко сокращаются запасы гликогена в печени. В этом случае происходит усиленное перемещение жиров из жировой ткани в печень, в которой и осуществляется интенсивное образование из жирных кислот ацетоуксусной кислоты и связанной с ней р-оксимасляной кислоты. Эти последние соединения являются важными субстратами дыхания периферических тканей (например, мышц), где они легко сгорают до СОз и НгО, компенсируя тем недостаточное поступление в ткани из печени другого важнейшего энергетического материала — глюкозы. Кроме того, вследствие недостатка углеводов происходит и распад белков ряд аминокислот превращается при этом в ацетоуксусную кислоту. В результате всего этого в организме появляется избыток ацетоуксусной кислоты. [c.299]

    Митохондрии — клеточные органеллы, обладающие наибольшей емкостью по отношению к ионам кальция. В отличие от других внутриклеточных структур, использующих АТФ для аккумуляции Са +, митохондрии транспортируют этот катион за счет трансмембранного электрического потенциала (около — 180 мВ), который генерируется системой переноса электронов и протонов в ходе окисления субстратов дыхания глутамата, сукцината, пирувата, жирных кислот и т. д. Концентрация Са +, перенесенного в митохондриальный матрикс, поддерживается в нем на низком уровле за счет связывания этого катиона с белками и неорганическим фосфатом. [c.45]

    Пять кювет полярографа заполняют раствором, содержащим ,1 М фосфатный буфер (pH 7,6) и цитохром с (100 мкг/мл). Объем раствора в каждой кювете — 2 мл. В пробы с помощью микропипеток добавляют сукцинат в конечных концентрациях 0,3 0,6 1,25 5,0 мМ. Измеряют скорость дыхания в присутствии различных концентраций субстрата. Для этого кювету устанавливают в штативе полярографа, погружают в нее электроды. После установления начального значения тока добавляют 0,05 мл суспензии препарата Кейлина—Хартри (1,5 мг/мл) и регистрируют поглощение кислорода. Во всех пробах рассчитывают скорость дыхания в микромолях поглощенного кислорода за 1 мин на 1 мг белка. [c.436]

    Особую группу ферментов составляют надмолекулярные (или мультимолекулярные) ферментные комплексы, в состав которых входят не субъединицы (в каталитическом отношении однотипные протомеры), а разные ферменты, катализирующие последовательные ступени превращения какого-либо субстрата. Отличительными особенностями подобных муль-тиферментных комплексов являются прочность ассоциации ферментов и определенная последовательность прохождения промежуточных стадий во времени, обусловленная порядком расположения каталитически активных (различных) белков в пространстве ( путь превращения в пространстве и времени). Типичными примерами подобных мультиферментных комплексов являются пируватдегидрогеназа и а-кетоглутаратдегидрогеназа, катализирующие соответственно окислительное декарбоксилирование пировиноградной и а-кетоглутаровой кислот в животных тканях (см. главу 10), и синтетаза высших жирных кислот (см. главу 11). Молекулярные массы этих комплексов в зависимости от источника их происхождения варьируют от 2,3 10 до 10 10 Ассоциация отдельных ферментов в единый недиссоциирующий комплекс имеет определенный биологический смысл и ряд преимуществ. В частности, при этом резко сокращаются расстояния, на которые молекулы промежуточных продуктов должны перемещаться при действии изолированных ферментов. Ряд таких мультиферментных комплексов, иногда называемых ферментными ансамблями, структурно связан с какой-либо органеллой (рибосомы, митохондрии) или с биомембраной и составляет высокоорганизованные надмолекулярные системы, обеспечивающие жизненно важные функции, например тканевое дыхание (перенос электронов от субстратов к кислороду через систему дыхательных ферментов). [c.129]

    Восстановление сульфатов. Разложение органических серосодержащих соединений (белки, аминокислоты) сопровождается выделением сероводорода. Источником образования сероводорода является также восстановление сернокислых и серноватистокислых солей. Большое количество сероводорода образуют сульфатре-дуцирующие бактерии в процессе сульфатного дыхания. Эти бактерии в отличие от денитрифицирующих бактерий являются облигатными анаэробами, а в качестве доноров водорода они используют главным образом органические кислоты, спирты и молекулярный водород. Органические субстраты окисляются ими не до конца. Чаще всего конечным продуктом окисления является уксусная кислота. Акцептором водорода у сульфатреду-цирующих бактерий являются сульфаты  [c.132]

    Таким образом, сперматозоиды обладают весьма выраженными катаболическими процессами. Эти клетки богаты субстратом и митохондриями и обладают весьма интенсивным дыханием. С другой стороны, по мнению Ж. Браше (1957), обмен белков и нуклеиновых кислот в этих клетках чрезвычайно незначителен, а может быть, не происходит вообще. [c.256]

    Аэробные организмы, к которым относятся млекопитающие, получают большую часть энергии за счет биологического окисления, при котором электроны переносятся от органических молекул на молекулу кислорода. Этот перенос совершается длинной цепью ферментов — промежуточных переносчиков электронов (ЦПЭ), функционирующих в форме высокоорганизованных комплексов, прочно связанных с внутренней мембраной митохондрий. Значительная часть свободной энергии электронов запасается при этом в форме энергии фосфатной связи АТФ (окислительное фосфорилироваыие). Все ферменты биологического окисления, или тканевого дыхания, относятся к классу оксидоредуктаз. По химической структуре эти ферменты являются сложными белками. Присутствие окислительно-восстановительных ферментов в тканях и биологических жидкостях может быть обнаружено по их действию на соответствующие субстраты. При изучении действия окислительно-восстановительных ферментов результаты исследования оформляют в виде таблицы  [c.111]

    Впервые идея о том, что фенольные соединения могут участвовать в окислительно восстановительных процессах, была выдвинута в начале нашего века Палладиным [52, 53], который предположил, что некоторые фенольные соединения, в частности флавоны и антоцианы, принимают участие в дыхании растений, являясь переносчиками водорода дыхательного субстрата па конечных этапах дыхания. В начале 20-х годов Опарин [54, 55] экспериментально показал, что система хлорогеновая кислота + полифенол-оксидаза способна окислять аминокислоты, ряд пептидов и даже некоторые белки. В середине 30-х годов Сцент-Дьердьи [56] пришел к выводу, что у высших растений конечные этапы дыхания могут осуществляться двумя механизмами полифенолоксидазным и пероксидазно-аскорбатоксидазным. Однако и в последнем случае, по мнению Сцент-Дьердьи, посредником между пероксидазой и аскорбиновой кислотой должны являться флавоноиды, содержащие орто-гидроксильную группу. [c.122]

    Так как пировиноградная и уксусная кислоты являются промежуточными продуктами окислеиия не только углеводов, но также, как мы увидим, и жиров, а отчасти и белков, то очевидно, что рассматриваемый каталитический механизм может иметь очень важное значение, способствуя окислению самых различных субстратов тканевого дыхания. В этом цикле освобождается и основная масса энергии важнейших окислительно-восстановительных процессов, которая частично сохраняется в высокоэргических фосфатных связях АТФ и других синтезируемых веществ. [c.267]

    В последнее время было показано, что сложные ферментные системы, катализирующие процессы тканевого дыхания, окислительного фосфорилирования и т. д., неразрывно связаны с рядом внутриклеточных субмик-роскопических структур цитоплазмы и ядра. Некоторые из этих структур различимы только под электронным микроскопом. На этом субмикроскопи-ческом уровне ферменты составляют функционально единое целое со структурой клетки. Митохондрии, например, можно, по-видимому, рассматривать как своеобразные организованные белково-липоидные комплексы ферментов. В ряде случаев в системах, включающих эти субмикроскопиче-ские клеточные структуры, можно воспроизводить in vitro сложнейшие биохимические процессы тканевого дыхания — окисление ряда субстратов до СОа и НаО, окислительное фосфорилирование и другие превращения, которые обычно протекают в живых клетках. Поэтому при изучении механизма тканевых окислительно-восстановительных процессов, биосинтеза белка и т. д. весьма важное значение приобрели методы дифференциального центрифугирования субклеточных структур — митохондрий, рибосом, ядер, гиалоплазмы и т. д. [c.134]

    Хьюм и др. [38] показали также, что окислительная активность митохондрий, выделенных из яблок (особенно из ткапи кожицы), повышалась на протяжении климактерического периода, причем это повышение начиналось за несколько дней до того, как усиливалось выделение СО2 в целом плоде. (Митохондриальную активность измеряли по поглощению кислорода и выделению углекислоты при добавлении сукцината и малата.) Это наблюдение наряду с тем фактом, что во время климактерического периода несколько возрастало содержание белка, привело Хьюма и его сотрудников к предположению, что в этот период происходит синтез ферментов (пируватдекарбоксилазы и малик-фермента), причем энергия, необходимая для этого синтеза, поступает за счет повышенной митохондриальной активности. Исследователи предположили, далее, что причиной конечного падения интенсивности дыхания до величины, которая остается затем почти постоянной (пока не наступит полный распад ткани), является недостаток кислотного субстрата, необходимого как для цикла Кребса, так и для малик-фермента. Нил и Хьюм [64] показали, что дыхательный коэффициент у дисков из сильно перезревших [c.488]

    Однако одного увеличения ферментного белка и наличия субстрата окисления еще недостаточно для возрастаипя окисления в том случае, если оно сопряжено с процессом фосфорилирова-1шя. В живых клетках существует оиределепный фактор, лимитирующий скорость дыхания, — так называемый дыхательный контроль [18]. Таким лимитирующим фактором является концентрация АДФ — одного из обязательных участников процесса фосфорилирования, который в ходе этой реакции принимает на себя неорганический фосфор, превращаясь при этом в АТФ. [c.67]

    В живых организмах многообразные химические превраш,е-ния протекают на поверхностях высокоспециализированных катализаторов — ферментов. Все исследованные до настоя-ш,его времени ферменты в химическом отношении представляют собой либо чистые белки, либо сложные белки с небелковыми иростетическими группами. Таким образом, биокатализ является по существу гетерогенным катализом на поверхностях белковых макромолекул. Рассмотрим, например, схему процессов тканевого дыхания, образующих так называемый главный путь окисления веществ в клетках и являющихся основным источником энергии, необходимой для жизнедеятельности. Суммарная реакция в конечном итоге приводит к переносу водорода окисляемого субстрата к кислороду воздуха и образованию воды однако она разбивается на множество отдельных ступеней, сопровождающихся постепенным пони кением потенциала системы. Часть этих стадий сводится к переносу [c.306]

    В качестве субстратов окисления (т. е. веществ, от которых отнимается водород) в тканевом дыхании используются разнообразные промежуточные продукты распада белков, углеводов и жиров. Однако наиболее часто окислению подвергаются промежуточные продукты цикла трикарбоновых кислот (ЦТК) - цикла Кребса (изолимонная, а-кетоглутароаая, янтарная и яблочная кислоты). Цикл Кребса - это за-верщающий этап катаболизма, в ходе которого происходит окисление [c.37]

    Рост клеток можно остановить, если отделить их (путем центрифугирования или фильтрации) от пита тельной среды и суспендировать в нейтральной , осмо тически подходящей среде, например забуференном фи зиологическом растворе или минерально-солевой среде лишенной источников углерода и азота (разд. 25.1) Обработанные таким образом клетки называются по коящимися. Они обладают тем же набором ферментов что и растущие клетки, но находятся в относительно неактивном состоянии. На таких клетках можно изучать реакции или группы реакций, представляющие особый интерес. Например, можно определять поток электронов, идущий от субстратов, таких, как В-лактат или сукцинат, через систему дыхания в условиях, когда рост и метаболические требования минимальны. Покоящиеся клетки некоторых видов способны синтезировать белки, и их часто используют для изучения этого процесса. Кроме того, покоящиеся клетки служат объектом при изучении транспортных процессов, включая транслокацию субстратов и ионов. С этой целью отмытые клетки обычно суспендируют в осмотически пригодной среде, содержащей для подавления синтеза белка хлорамфеникол (50—100 мкг/мл). При проведении некоторых экспериментов, например связанных с изучением транспорта, часто рекомендуется использование эндогенных источников энергии (разд. 19.2). [c.377]

    Ясно, что необходимость Mg-ATФ для многих стадий экзоци- тоза диктуется двумя обстоятельс1вамн либо тратой М -АТФ как субстрата некоей АТФазы, либо тратой Мд-АТФ как косуб-страта протеинкиназы, фосфорилирующей определенные белки и ферменты в цепи стадии экзоцитоза. Данная трата АТФ после возбуждения нервных окончаний восполняется компенсаторной реакцией — значительным усилением дыхания, окислительного фосфорилирования и гликолиза. Таким образом, процесс деполяризации мембран терминалей наряду с тратой АТФ на экзо-дитоз синхронно включает и компенсаторный процесс — синтез АТФ в митохондриях и цитоплазме за счет гликолиза. [c.76]

    В жизнедеятельности микробов ферменты играют большую роль. Они являются обязательными участниками разнообразных биохимических реакций, лежащих в основе функций питания, дыхания, размножения. По характеру связи с цитоплазменными структурами и по месту проявления своего действия ферменты делятся на внутри- и внеклеточные. Каждый вид микроорганизмов продуцирует постоянный для него набор ферментов, одни из которых расщепляют в разной степени белки и углеводы, а другие вызывают окисление и восстановление различных субстратов. [c.60]

    При дыхании за счет белков ДК также равен 0,7—0,8. Если ды ательиым субстратом служат органические кислоты, то сум- [c.236]


Смотреть страницы где упоминается термин Белки субстрат дыхания: [c.462]    [c.442]    [c.285]    [c.401]    [c.464]    [c.21]    [c.135]    [c.801]    [c.204]    [c.245]    [c.538]    [c.113]    [c.243]    [c.141]    [c.165]    [c.66]   
Физиология растений (1989) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхание субстраты

Субстрат



© 2025 chem21.info Реклама на сайте