Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки и клеточная подвижность

    Белки клеточной стенки и клеточных мембран, судя по их аминокислотному составу и электрофоретической подвижности, действительно имеют резко выраженный кислый характер. [c.128]

    Актин составляет значительную долю белка всех эукариотических клеток например, в фибробластах эта доля достигает почти 10%, причем около половины входит в состав филаментов. В немышечных клетках актиновые филаменты выполняют по меньшей мере две функции. Во-первых, они образуют пучки с поперечными сшивками, служащие опорой для различных внутриклеточных структур и наружных отростков. Во-вторых, совместно с миозином они формируют различные сократительные системы, которые, по-видимому, ответственны за многие проявления клеточной подвижности. [c.110]


    Актиновые филаменты, микротрубочки, промежуточные филаменты и ассоциированные с ними белки, находясь под контролем неизвестных механизмов, обеспечивают изменения формы клетки и разнообразные виды клеточной подвижности. Кроме того, цитоскелет, по-видимому, играет роль структурного организатора цитоплазмы, связывая клеточные органеллы и растворимые белки. Микротрубочки, исходящие из клеточного центра, определяют характер [c.134]

    При переходе от молекулярных систем к надмолекулярным структурам живых клеток и организмов мы встречаемся со специфическими проблемами физики конденсированных сред. Биологические мембраны, сократительные системы, любые клеточные структуры имеют высоко специализированное гетерогенное строение. Во всех функциональных надмолекулярных структурах определяющую роль играют белки, взаимодействующие с другими органическими молекулами (например, с липидами в мембранах) и с различными ионами, начиная с малых ионов щелочных и щелочноземельных металлов. В гетерогенных надмолекулярных системах реализуется специальное динамическое поведение, ответственное в конечном счете за важнейшие явления жизнедеятельности. Это поведение определяется особым состоянием биологических надмолекулярных систем. Мембраны имеют жидкое или жидкокристаллическое строение, белки плавают в липидном море . Сократительные белковые системы, ответственные за превращение химической энергии (запасенной преимущественно в АТФ) в механическую работу, т. е. системы механохимические, построены из различных фибриллярных белков, взаимодействующих друг с другом. Естественно, что внутримолекулярная и молекулярная подвижность, т. е. конформацион-ные движения, играют главную роль в динамике надмолекулярных структур. В конечном счете электронно-конформационные или ионно-конформационные взаимодействия лежат в основе всей клеточной динамики. [c.611]

    Запасные белки, находящиеся в эндосперме или семядолях, малорастворимы (или вовсе нерастворимы) в воде, не проходят через клеточные оболочки, не используются непосредственно развивающимся зародышем. При прорастании семян они претерпевают глубокий распад с образованием растворимых и подвижных аминокислот. Гидролизуются белки под действием протеолитических ферментов. В прорастающих зернах пшеницы активность протеиназы усиливается приблизительно в 40 раз и гидролиз белков протекает с большой скоростью. Из получившихся аминокислот синтезируются новые белки, идущие на питание развивающегося зародыша и по- [c.398]


    Итак, современное состояние вопроса о строении протоплазмы заставляет сделать вывод о существовании весьма тонкого и подвижного цитоскелета, который сохраняется и при разжижении цитоплазмы. В петлях цитоскелета размещаются разнообразные глобулярные белки, молекулы которых при развертывании сами могут превращаться в скелетные образования, а также различные органические и неорганические вещества, вода. Таким образом, современное учение о тонком строении клеточного тела в известной мере вернулось к теории сетчатой или фибриллярной структуры протоплазмы, только на более высокой основе. Оно включило в это представление полувековые достижения коллоидной химии и наше значение химической структуры белковых веществ. [c.392]

    Клеточная оболочка состоит в основном из протеино-липидных комплексов, называемых липопротеинами. Цитоплазма — прозрачная среда, которая имеет консистенцию, изменяющуюся от подвижной жидкости до вязкого геля, и содержит видимые в микроскоп частицы. Митохондрии богаты белками и фосфолипидами. Аппарат Гольджи содержит главным образом липиды. Углеводные включения часто состоят из гликогена, а протеиновые включения — из рибонуклеопротеидов. Протоплазма обычно содержит не менее 75% воды, хлор-, фосфат- и сульфат-ионы, ионы калия, натрия, магния, кальция, связанную серу, следы меди, железа, марганца и иода, а также белки, углеводы и липиды. Большое количество белковых молекул придает протоплазме коллоидные свойства. [c.238]

    Изоэлектрическая точка (ИЭТ) растений является сложным био-физико-химическим показателем, тесно связанным с протекающими в протоплазме процессами обмена веществ и изменениями в ее структуре. ИЭТ — в значительной степени подвижная величина. То или иное смещение ИЭТ клеточных структур зависит от ряда причин прежде всего от состава белков и нуклеиновых кислот и их количественного соотношения, от физико-химического состояния веществ и характера их связи. На положение ИЭТ влияют условия окружающей среды и характер внутриклеточного метаболизма. [c.189]

    Слабые постоянные поля могут вызывать движение свободных клеток (электрофорез), а также вызывать латеральное перемещение заряженных рецепторов по поверхности клеточной мембраны у иммобилизованных клеток. Явления электрофреза мембранных рецепторов используется как инструмент для изучения подвижности белков в плазматической мембране. [c.46]

    В эукариотических клетках очень много ДНК. Как мы уже говорили, в клетках человека ее почти в 1000 раз больше, чем в типичной бактериальной клетке, а в клетках некоторых амфибий в 10 раз больше, чем клетках человека (рис. 1-28). Однако, по-видимому, лишь малая часть этой ДНК (возможно, около ] % в клетках человека) действительно кодирует белки. Зачем же нужны остальные 99% ДНК Одна из гипотез состоит в том, что она просто увеличивает массу ядра. По другой гипотезе, эта ДНК - собрание бесполезных для клетки последовательностей, веками накапливавшихся в ней в результате использования клеточных механизмов синтеза для собственного размножения. Действительно, в ДНК многих видов обнаружены так называемые мобильные (подвижные) элементы - последовательности, способные внезапно перепрыгивать из одного участка ДНК в другой и даже [c.37]

    Все биологические мембраны, включая плазматическую мембран и внутренние мембраны эукариотических клеток, имеют общие структурные особенности они представляют собой ансамбли липидных и белковых молекул, удерживаемых вместе с помощью нековалентных взаимодействий. Благодаря этим взаимодействиям поддерживается структурная целостность мембран Однако сами по себе клеточные мембраны являются подвижными, текучими структурами и большинство входящих в их состав молекул способны перемещаться в плоскости мембраны. Как показано на рис. 6-1, липидные молекулы образуют непрерывный двойной слой толщиной около 5 нм. Липидный бислой - это основная структура мембраны, которая и создает относительно непроницаемый барьер для большинства водорастворимых молекул. Белковые молекулы как бы растворены в липидном бислое. С их помощью выполняются разнообразные функции мембраны. Одни мембранные белки обеспечивают транспорт молекул внутрь клетки или из нее, другие являются ферментами и катализируют ассоциированные с мембраной реакции. Еще один класс белков осуществляет структурную связь плазматической мембраны с цитоскелетом, с одной стороны, и(или) с внеклеточным матриксом либо с соседней клеткой - с другой. Отдельную группу составляют белки, выполняющие роль рецепторов для получения и преобразования химических сигналов из окружающей среды. Как и следовало ожидать, мембраны асимметричны оба их слоя различаются по липидному и белковому составу, что отражает, по-видимому, функциональные различия их поверхностей. [c.349]


    Молекула ДНК обладает высоким отрицательным зарядом и, следовательно, в электрическом поле быстро движется к положительному электроду. При электрофорезе в полиакриламидном геле молекулы ДНК разделяются по размеру, так как меньшие молекулы легче и быстрее проходят через поры геля. Молекулы белка, связавшись с ДНК, вызывают уменьшение подвижности ее молекул в геле. Чем больше связавшийся белок, тем медленнее движется связанная с ним ДНК. Это явление лежит в основе метода, регистрирующего сдвиг подвижности в теле. С помощью этого метода удается обнаруживать даже следовые количества сайт-специфического ДНК-связывающего белка. Короткие фрагменты ДНК, длина и последовательность которых известна (полученные либо при клонировании ДНК, либо путем химического синтеза), метят радиоактивной меткой и смешивают с экстрактом клеток полученную смесь наносят на полиакриламидный гель и проводят электрофорез Если фрагмент ДНК соответствует области хромосомы, с которой связываются многие сайт-специфические белки, то при радиоавтографии выявляется серия полос, обладающих разной подвижностью. Белки, связанные с ДНК в каждой из полос геля, можно отделить, фракционируя затем клеточные экстракты (рис. 9-9). [c.102]

    В эукариотических клетках имеется особый кортикальный слой акт новых филаментов лежащий непосредственно под плазматической мембраной. В целом он представляет собой однородную трехмерную сеть обладающую благодаря поперечным сшивкам, свойствами геля Вместе с тем кортикальные актиновые филаменты образуют и ряд специализированных структур. Например, пучки актиновых филаментов, находящихся в комплексе с миозином, прикрепляются к плазматической мембране и обеспечивают клетку структурами, способными к сокращению. В других участках контролируемая полимеризация актиновых филаментов на их плюс-концах способна выпячивать плазматическую мембрану наружу, создавая подвижные выступы клеточной поверхности. Разнообразие структур кортекса и выполняемых ими функций за-висит от обширного спектра актин-связывающих белков, которые сшивают актиновые филаменты в рыхлый гель, объединяют их в жесткие пучки, движутся по актиновым филаментам, создавая механическое усилие, или прикрепляют их к плазматической мембране. Некоторые из белков, выполняющих эту последнюю функцию, прикрывают плюс-концы актиновых филаментов, контролируя тем самым их полимеризацию и деполимеризацию в клетке. Именно этим белкам, как полагают, принадлежит ключевая роль в сложных движениях клеточной поверхности, например при фагоцитозе или при перемещении клеток по субстрату. [c.292]

    Анализ различными физическими методами выделенных из клеток фосфолипидов, клеточных мембран, а также целых клеток показал, что температуры, соответствующие резкому изменению скорости трансмембранного переноса, лежат вблизи температур фазового перехода. кристалл — жидкий кр,металл для соответствующих препаратов фосфолипидов (в основном— фосфатидилэтаноламина) [422]. При температурах, меньщих температуры перехода, мембраны состоят из молекул липидов, упакованных в гексагональную кристаллическую решетку. В такие мембраны утоплены молекулы белков-переносчиков, и транспорт через пих весьма затруднителен. При температуре фазового перехода происходит резкое увеличение подвижности углеводородных цепей, мембрана становится жидкой, трансмембранная диффузия и активный перенос веществ оказываются облегченными (см. в частности [143]). [c.216]

    Помимо этих трех основных типов белковых филаментов цитоскелет включает также множество различных вспомогательных белков, которые либо связывают филаменты друг с другом или с другими клеточными структурами (например, с плазматической мембраной), либо влияют на скорость и степень полимеризации филаментов. Специфические комплексы вспомогательных белков, взаимодействуя с белковыми филаментами, обеспечивают процессы движения. Два наиболее изученных примера-мышечное сокращение, за которое ответственны актиновые филаменты, и подвижность ресничек и жгутиков, связанная с функцией микротрубочек. Хотя в этих видах движения участвуют разные наборы белков, в обоих случаях движение связано с гидролизом АТФ и основано на одном принципе-на скольжении белковых нитей относительно друг друга. [c.75]

    Для того чтобы идентифицировать белки, расположенные рядом друг с другом в клеточной мембране, часто используется метод сшивания. Однако из-за большой латеральной подвижности некоторые мембранные белки, первоначально расположенные далеко друг от друга, могут случайно оказаться рядом, что может привести к образованию между ними поперечных сшивок. Как бы вы выявили такие случаи или предотвратили их в эксперименте по сшиванию  [c.235]

    Физиологическое значение расщепления белков прн прорастании семени заключается в том, что они долл<ны перейти п. легкоподвижную форму и переместиться из эндосперма илн семядоли к растущим частям зародыша. Запасные белки малорастворимы или совсем нерастворимы в воде даже в растворенном виде благодаря малой дисперсности они не способны пройти через клеточные оболочки. Таким образом, белки прн гидролизе расщепляются до аминокислот и становятся более подвижными. [c.359]

    Поскольку контакты соединительного комплекса между подвижными эмбриональными клетками не видны (за исключением, возможно, небольших щелевых контактов), формирование межклеточных соединений может быть важным механизмом иммобилизации клеток внутри организованной ткани, когда она уже сформировалась Разумная гипотеза состоит в том, что временная адгезия белков клеточной поверхности приводит к тканеспецифической межклеточной адгезии, которая затем стабилизируется в результате образования межклеточных соединений. Поскольку многие из трансмембранных гликопротеинов, участвующих в этом процессе, способны диффундировать в плоскости плазматической мембраны, они могут накапливаться в местах межклеточного контакта и. таким образом, использоваться как для временной адгезии, так и для формирования специализированных соединительных структур. Так, некоторые белки межклеточной адгезии, например Е-кадгерииы (разд. 14.3.7), могут способствовать инициации межклеточной адгезии, а позднее становиться составной частью межклеточных соединений. [c.525]

    Цитоплазматические актины, обеспечивающие клеточную подвижность, сходны по структуре у всех эукариот к этому же классу относятся и все актины беспозвоночных и растений. У Drosophila и больщинства других беспозвоночных основная функция цитоплазматических актинов состоит в обеспечении мышечных сокращений у позвоночных эту функцию выполняет особая группа а-актинов. У птиц и млекопитающих обнаружено шесть актиновых белков. Два а-актина скелетных и сердечной мышц участвуют в мышечном сокращении. Актины а и у присутствуют в гладких мышцах. В цитоплазме практически всех клеток млекопитающих и птиц содержатся Р- и у-актины. [c.172]

    Цитохалазин В-антибиотик, который часто используют как ингибитор клеточной подвижности, обеспечиваемой актином,-служит также мошным конкурентным ингибитором поглощения О-глюко-зы клетками млекопитающих. Когда тени эритроцитов инкубируют с цитохалазином В, меченным Н, а затем облучают ультрафиолетовым светом, происходит связывание цитохалазина с переносчиком глюкозы за счет поперечных сшивок. Если в среде имеется избыток О-глюкозы, то меченый цитохалазин не взаимодействует с переносчиком. Однако избыток в среде Ь-глюкозы (которая не переносится через мембрану) не влияет на связывание. Если мембранные белки из меченых теней разделить при помощи гель-электрофореза в полиакриламидном геле с ДСН, то переносчик выявляется в виде размытой радиоактивной полосы в диапазоне молекулярных масс от 45000 до 70000 Да. Если меченые тени до проведения электрофореза обработать ферментом, отщепляющим связанные сахара, то эта размытая полоса исчезает и вместо [c.56]

    Гели играют важную роль в практической деятельности человека и в биологических процессах. В частности, значение гелей велико в процессах почвообразования и жизни почвы, так как в почве коллоиды находятся преимущественно в состоянии геля. К гелям относятся различные пористые и ионообменные адсорбенты, ультрафильтры, искусстэенные мембраны, волокна мышечных тканей, хрящи, клеточные оболочки, оболочки эритроцитов и различные мембраны в организмах. Основным содержанием любой живой клетки является протоплазма, которую можно рассматривать как весьма подвижный студень, построенный в основном из молекул белка. [c.371]

    Введение флуоресцентной 5-диметиламинонафталин-1-сульфонильной группы в белки мембран и последующий анализ флуоресцентных спектров указывает [63] на высокую степень неподвижности информирующей группы и приводит к выводу, что клеточные мембраны не столь похожи на жидкость, как это ранее считалось. Растворение некоторых мембранных белков, достигаемое действием детергента, сопровождается возрастанием подвижности меченой группы (см. также главу 25.3). [c.442]

    Общей чертой всех П1)иведенных фосфолипидов является наличие в составе одной молекулы одновременно больших алифатических радикалов, стремящи.хся избежать контакта с водой, и гидрофильной заряженной или цвиттерионной группой. В результате в водных растворах такие молекулы образуют двойной слой с обращенными в водную фазу гидрофильными фрагментами и обращенными друг к другу объемистыми гидрофобными радикалами. Они имеют тенденцию к самопроизвольному сворачиванию в сферические микрочастицы, так называемые липосоми. Внутренняя область мембраны, находящаяся между двумя гидрофильными слоями, представляет собой гидрофобную микрофазу, способную растворять неполярные молекулы, например молекулы холестерина. Именно такие двойные фосфолипидные слои образуют структурную основу клеточной мембраны, однако в нее, как в некий подвижный каркас, вмонтированы разнообразные мембранные белки. [c.57]

Рис. 2-16. Микротрубочки. Эти длинные полые структуры вьшолняют множество функций в клетке. Они придают клеткам форму, участвуют в клеточном делении (рис. 2-9) и транспорте веществ, щ-рают роль подвижных структурных компонентов ресничек и жгутиков (рис, 2-18) в эукариотических клетках и образуют часть цитоскеяета (рис. 2-17). А. Строение микротрубочки. Она собрана из комплексов двух белков-а- и Р-тубулина. Эти белки образуют 13 вертикальных нитей, расположенных в виде спирали вокруг полой сердцевины. Диаметр и шаг спирали несколько варьируют у разных клеток. Б. Поперечное сечение микротрубочки, на котором 13 вертикальных нитей видны с торца. Рис. 2-16. Микротрубочки. Эти <a href="/info/16631">длинные полые</a> структуры вьшолняют <a href="/info/768857">множество функций</a> в клетке. Они придают <a href="/info/327816">клеткам форму</a>, участвуют в <a href="/info/103762">клеточном делении</a> (рис. 2-9) и <a href="/info/100703">транспорте веществ</a>, щ-рают <a href="/info/168475">роль подвижных</a> <a href="/info/26229">структурных компонентов</a> ресничек и жгутиков (рис, 2-18) в <a href="/info/104367">эукариотических клетках</a> и образуют часть цитоскеяета (рис. 2-17). А. Строение микротрубочки. Она собрана из комплексов <a href="/info/1696521">двух</a> белков-а- и Р-тубулина. Эти <a href="/info/1435566">белки образуют</a> 13 вертикальных нитей, расположенных в виде спирали <a href="/info/473123">вокруг полой</a> сердцевины. Диаметр и шаг спирали несколько варьируют у разных клеток. Б. <a href="/info/3798">Поперечное сечение</a> микротрубочки, на котором 13 вертикальных нитей видны с торца.
    Если один из сравниваемых белков обладает какими-то отличиями в аминокислотной последовательности определенного участка первичной цепи, то пептидные фрагменты этого участка будут передвигаться по электрохроматографическому полю с иными скоростями (а часто и в ином направлении) по сравнению с фрагментами такого же участка другого белка. В результате первые пептиды займут особое положение на пептидных картах, тогда как фрагменты цз идентичных участков полипептидных цепей займут аналогичные места. Отличия в последовательности, таким образом, будут обнаружены в пятнах, имеющихся на одной электрохроматограмме и не появляющихся на другой. Элюция и количественный аминокислотный анализ лишних пептидных пятен позволяет далее установить наличие специфических для данного белка аминокислот, характеризующих эти фрагменты. В частности, методом пептидных карт для триптического гидролизата удалось выявить особенности структуры различных гемоглобинов. Гемоглобин 5 отличается от нормального гемоглобина А по электрофоретической подвижности и частично замещает последний у больных серповидно-клеточной анемией. Исследования методом пептидных карт позволили локализовать различие в первичной структуре между гемоглобинами А и 5 в одной точке полипептидной цепи  [c.82]

    Запасные белки, находящиеся в эндосперме или семядолях, малорастворимы (или вовсе не растворимы) в воде, не проходят через клеточные оболочки, не используются непосредственно развивающимся зародышем. При прорастании семян они претерпевают глубокий распад с образованием растворимых и подвижных аминокислот. Гидролизуются белки под действием протеолитичВ ских ферментов. В прорастающих зернах пшеницы активность протеиназы усиливается приблизительно в 40 раз и гидролиз белков протекает с большой скоростью. Из получившихся аминокислот синтезируются новые белки, идущие на питание развивающегося зародыша и построение тканей растения. Но часть аминокислот расщепляется дальше, до аммиака и безазотистых соединений (при участии фермента дезаминазы), а ядовитый аммиак связывается углеродными цепями с образованием безвредных аспарагина С0(КН2)—СНз—СН(КН2)С00Н иглютамина O(NH2)- H2- H2- H—КНа-СООН. [c.403]

    Многие молекулы органических веществ, например жирные и нуклеиновые кислоты, белки, содержат неполярные участки (рис. 23, г), которые не способны взаимодействовать с водой (гидрофобные), и полярные участки, которые стремятся к образованию водных оболочек (гидрофильные). Гидрофильные молекулы в водных растворах образуют структуры, у которых неполярные гидрофобные участки находятся внутри структуры, а гидрофильные расположены на поверхности и взаимодействуют с молекулой воды. Образованные структуры называются мицеллами (рис. 23, д). Мицеллообразование играет большую роль в построении надмолекулярных структур и клеточных мембран. В таких структурах наблюдается высокая подвижность ионов, что обусловливает электровозбудимость мембран. [c.66]

    Динамические свойства внутриклеточной воды в значительной степени отражают состояние клеточных структур. Существует также ряд данных, указывающих на непосредственное участие небольших количеств воды в изменении конформации глобулярных белков. В следующей главе будут описаны подробно характеристики и модели динамической подвижности биомакромолекул. Сейчас лишь необходимо отметить, что функционирование белков тесно связано не только с характером их конформации, но, главное, с их конформационной подвижностью, зависящей от присутствия воды. Так, при низкой степени гидратации препаратов а-химотрипсина возникающие дополнительные контакты между поверхностными дегидратированными полярными группами приводят к увеличению жесткости глобулы а-химотрипсина и потере им ферментативной активности в диметилсульфоксиде. В сильно высушенных препаратах, вплоть до некоторого критического значения гидратации, вообще не наблюдается никакой активности. Восстановление последней при увеличении степени гидратации образца происходит резко в узком диапазоне увеличения числа молекул Н2О от 170 до 180 на одну молекулу белка. Очевидно, в этой области происходит растормаживание определенных степеней свободы, функционально важных для ферментативного акта. Существенно, что необходимое для этого процесса количество воды намного меньше, чем было бы нужно для завершения образования гидратной оболочки (Ю. И. Хургин). [c.237]

    Слабые нековалентные связи определяют, как различные участки одной молекулы располагаются друг относительно друга, кроме того, они определяют, как такая макромолекула взаимодействует с другими молекулами. Однако, как можно видеть в верхней части схемы 3-1, атомы ведут себя как твердые шары определенного радиуса ( вандерваальсов радиус ). Невозможность взаимного перекрывания двух атомов ограничивает число пространственных расположений атомов (или конформаций), которые возможны для каждой полипептидной цепи. В принципе длинная подвижная цепь, такая, как молекула белка, может складываться огромным числом способов, при которых каждая кон-формапия будет иметь разный набор слабых взаимодействий между цепями. Однако на деле большинство клеточных белков стабильно складывается только одним способом в ходе эволюции была отобрана такая последовательность аминокислотных субъединиц, одна конформация которой способна образовывать значительно более благоприятные взаимодействия между цепями, чем любая другая. [c.115]

    Актиновые филаменты, микротрубочки, промежуточные филаменты и связанные с ними белки способны к самопроизвольной сборке в сложную сеть белковых нитей, структурирующих цитоплазму. Цитоскелет играет ведущую роль в определении формы и полярности клеток, а также в их подвижности. Когда. животная клетка движется, пучок актиновых филаментов периодически выталкивает наружу ламеллоподии и микрошипы на одной из сторон клетки (переднем крае) и растягивает клеточный кортекс, поляризуя клетку, что помогает ей продвигаться вперед. Эта полярность поодерживается с помощью микротрубочек или актиновых филаментов, которые направляют поток материала плазматической мембраны к переднему краю клетки. [c.332]

    Использование электронной микроскопии с высоким разрешением позволило понять ультраструктурную основу этого взаимодействия на толстых филаментах удалось увидеть множество боковых отростков, образующих поперечные мостики между толстыми филаментами и расположенными на расстоянии 13 нм от них тонкими филаментами (рис. 10-6). В настоящее время известно, что при сокращении мышцы толстые и тонкие нити перемещаются относительно друг друга именно с помошью этих поперечных мостиков, которые работают циклично, подобно рядам миниатюрных весел. Взаимодействующие белки тонких и толстых филаментов были вьщелены и охарактеризованы, получив соответственно названия актин (этот белок содержится в цитоскелетных структурах в наибольших количествах) и миозин (он обычно встречается в ассоциации с актином в клеточных структурах, ответственных за подвижность). Практически все, что мы знаем сейчас об этих двух важных белках, имеющихся почти во всех эукариотических клетках, является результатом изучения актина и миозина, экстрагированных из мышечной ткани. [c.78]

    Актин входит в состав многих клеточных структур и может связываться с целым рядом специфических белков. Жесткие пучки параллельно расположенных актиновых филаментов, скрепленных белковыми сшивками (например, фимбриновыми), имеются в микроворсинках и стереоцилиях, где они выполняют главным образом структурную роль. Пучки актиновых нитей, связанные с короткими биполярными агрегатами молекул немышечного. миозина, встречаются в определенных участках клетки, где нужна сократительная активность, например в сократимом кольце делящейся клетки, в опоясывающих десмосомах у апикальной поверхности эпителиальных клеток, а также в напряженных нитях, характерных для клеток, растущих в монослойной культуре. Менее упорядоченные системы актиновых филаментов содержатся во всей цитоплазме и могут придавать ей свойства геля. Густая сеть таких филаментов образует непосредственно под плазматической мембраной так называемый кортикальный слой. Эта сеть формируется с помощью гибких сшивающих белков, таких как филамин она способна обратимо изменять свои механические свойства в зависи.ности от концентрации ионов Са , что сопровождается повышением или понижение.ы вязкости цитоплазмы эти изменения происходят при участии актин-фрагментирующих белков, таких как гельзолин. Предполагается, что актиновые сети, прикрепленные с помощью специальных белков к плазматической мембране, взаимодействуют с немышечным миозином, обеспечивая подвижность клеточной поверхности, и играют ключевую роль в сложном процессе передвижения всей клетки. [c.120]

    Сборка гликолитического метаболона на внутренней поверхности мембраны эритроцитов происходит на гексамерах (триме-рах димеров) белка полосы 3, имеющих ось симметрии третьего порядка, перпендикулярно к плоскости мембраны. Первым этапом сборки комплекса гликолитических ферментов является адсорбция б-фосфофруктокиназы (ей принадлежит ключевая роль) на олигомерах белка полосы 3 (Б. И. Курганов, А. Е. Любарев, 1988). Метаболой содержит тройной набор ферментов, его молекулярная масса составляет 4,510 Да (рис. 22). Метаболой является мобильной структурой и находится в подвижном равновесии со свободными ферментами, которое контролируется клеточными метаболитами (Б. И. Курганов и соавт., 1986). Микроком- [c.86]

    С увеличением подвижности рецепторов, находящихся во взаимодействии с лигандом, существенно возрастет вероятность встречи рецептора и антг1рецептора (имитатора лиганда) непосредственно на клеточной поверхности. Результатом их взаимодействия окажется неизвестная пока по смыслу команда для прекращения биосинтеза белка, распознаваемого указанным рецептором. В более общем виде взаимодействие определенного рецептора и антирецептора будет сопровождаться выключением из работы той метаболической системы клеток, функция которой регулируется соответствующим лигандом через его рецептор. [c.95]


Смотреть страницы где упоминается термин Белки и клеточная подвижность: [c.245]    [c.373]    [c.373]    [c.213]    [c.280]    [c.292]    [c.283]    [c.20]    [c.283]    [c.189]    [c.74]    [c.133]    [c.97]    [c.133]    [c.84]    [c.272]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.198 , c.199 , c.200 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Белки подвижность

Клеточная подвижность



© 2025 chem21.info Реклама на сайте