Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНФ-аминокислот подвижная фаза

    Свойства подвижной и неподвижной фаз. При подборе подвижной и неподвижной фаз, а также носителя необходимо учитывать их свойства. Если носителем является гидрофильное вещество, то в качестве неподвижного растворителя применяют воду, а в качестве подвижного— органический растворитель. Например, для разделения смесей полярных веществ (аминокислот, производных пиридина и других) применяют полярный неподвижный растворитель — воду, который хорошо удерживается на таких гидрофильных носителях, как силикагель, порошок целлюлозы и др. Подвижной фазой в этом случае может служить насыщенный водный раствор фенола, н-бутанол и др. Если же носитель— гидрофобное вещество, то неподвижным растворителем должно быть неполярное вещество (масло, керосин, бензол, парафин), а подвижным — полярные органические вещества и вода. Разделение происходит вследствие различной растворимости компонентов в неподвижной фазе. [c.282]


    При использовании в качестве носителя гидрофильного вещества неподвижным растворителем является вода, подвижным — органический растворитель. Например, для разделения смесей полярных веществ (аминокислот, производных пиридина и др.) применяются сорбенты, хорошо удерживающие полярный неподвижный растворитель (воду) — силикагель и порошок целлюлозы. Подвижной фазой может служить насыщенный водный раствор фенола и другие вещества. [c.73]

    В 1944 г. Мартин и др. [7] предложили заменить инертный носитель фильтровальной бумагой, заложив тем самым экспериментальные основы распределительной хроматографии. Бумага удерживает в порах молекулы воды, сорбируя их из воздуха (неподвижный растворитель). При соприкосновении подвижного растворителя с бумагой, на которую нанесены хроматографируемые вещества, последние переходят в подвижную фазу и перемещаются с различными скоростями, вследствие чего и происходит их разделение. В настоящее время распределительная хроматография на бумаге нашла широкое применение для разделения различных веществ аминокислот, белков, углеводов, антибиотиков, неорганических веществ и др. [2, 3, 4, 7—10]. [c.74]

    При разделении аминокислот и пептидов обычно пользуются трехкомпонентными системами к насыщенному водой органическому растворителю добавляют кислоты, основания, некоторые спирты, кетоны и др. Это приводит, во-первых, к повышению растворимости воды в подвижной фазе (увеличению гидрофильности системы), во-вторых, к изменению диссоциации кислых и основных групп разделяемых соединений. Вследствие этого кислоты замедляют движение оснований, а основания — кислот. [c.126]

    На практике для разделения аминокислот и пептидов основного характера используют системы, содержащие фенол и крезол, для нейтральных — смеси с бутиловым спиртом и уксусной кислотой или с амиловым спиртом, а для кислых аминокислот и пептидов — системы, содержащие соединения основного характера (обычно пиридин). Если соединение плохо растворимо в подвижной фазе и остается на стартовой линии, следует увеличить гидрофильность системы, например, добавлением муравьиной кислоты, метанола или формамида. Если же вещество хорошо растворимо в подвижной фазе и движется вместе с фронтом растворителя, следует использовать органический растворитель с более выраженными гидрофобными свойствами, например изоамиловый, бензиловый спирты и др. [c.126]


    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    В случае лигандообменной хроматографии [170 —173] применяют хи-ральные полимерные носители, которые содержат ионы переходных металлов (Си " , и др.), координационно связанные оптически активными аминокислотами так, что остаются ненасыщенные координационные связи. В ходе разделения свободные координационные связи занимаются лигандами подвижной фазы. Таким образом был разделен ряд оь-аминокислот на полистирольных смолах с ь-пролином, сульфированным фенилаланином (174], ь-гидроксипролином [175] и другими энантиомерами аминокислот в качестве фиксированных лигандов. Некоординированные энантиомеры элюировались в виде комплекса с ионом Си " , координированные энантиомеры вымывались концентрированным аммиаком. [c.63]

    Лигандообменная хроматография, впервые предложенная В. А. Даванковым [21, 107], также обычно основана на динамическом модифицировании. В настоящее время она является наиболее селективным средством разделения оптических изомеров. Основы этого метода и обзор достижений изложены в работах [7, 105, 106]. Возможны три варианта модификации в лигандообменных системах. Один из них предусматривает ковалентное связывание оптически активного агента, чаще всего аминокислоты, с матрицей сорбента. В систему с подвижной фазой вводят ионы металла-комплексообразователя, связывающиеся с оптически активным сорбентом. Металл выбирают таким образом, чтобы после связывания с сорбатом оставались еще две вакантные позиции для связывания с ионами сорбатов. В зависимости от конфигурации сорбатов при этом возможно образование двух диастереомерных комплексов. Например, если сорбент содержит Ь-аминокислоту, он может с рацемическим сорбатом образовать Ь,Ь- и Ь,В-комплексы. Поскольку устойчивость этих комплексов различна, средняя скорость миграции энантиомеров тоже различна. [c.176]

    Как и при разделении на ранее описанных полимерных ХНФ, механизм хирального распознавания в данной системе является сложным и до конца не выяснен. Однако основные причины удерживания сорбата были выявлены в ходе систематических исследований влияния его структуры и состава подвижной фазы на коэффициент емкости. Во многих отношениях альбумин-силикагелевый сорбент ведет себя подобно обращенно-фазовым материалам на основе алкилированного силикагеля. Спирты, преимущественно пропанол-1, помогают регулировать время удерживания, поскольку вызывают его быстрое уменьшение вследствие ослабления гидрофобных взаимодействий с сорбентом. Оптимизировать состав подвижной фазы можно, варьируя тремя основными параметрами, а именно pH, ионной силой и органическим растворителем-модификатором [90]. Вероятно, в любой хроматографической системе одновременно наблюдается влияние диполь-ионных и гидрофобных взаимодействий. Кроме того, возможно образование водородных связей и комплексов с переносом заряда. Большое влияние свойств подвижной фазы на значения к разделяемых энантиомеров можно объяснить зависимостью свойств белков от распределения заряда и его конформации. БСА состоит как минимум из 581 остатка аминокислот, связанных в единую цепь (мол. масса 6,6-10 ), и его надмолекулярная структура в значительной мере определяется присутствием в молекуле 17 дисульфидных мостиков. При рН7,0 полный заряд молекулы равен - 18, а изоэлектрическая точка равна 4,7. Как это хорошо известно из химии ферментов, смена растворителя способна вызывать изменения в структуре связывающего центра белка в результате изменения его заряда и конформации. [c.133]


    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    После первых успешных синтезов оптически активных краун-эфиров [104, 105] Крам и сотр. [106] приступили к изучению их способности разделять оптические изомеры. Разработанные ими принципы разделения были применены ими в ЖХ, хиральные краун-эфиры при этом или вводились в подвижную фазу, или ковалентно связывались с силикагелевой подложкой [107]. Хиральный хозяин подобного типа способен различать энантиомеры производных аммония, таких как эфиры о. i-аминокислот, поскольку образование водородных связей между аммонийной группой и кислородными атомами эфира по стерическим причинам приводит к тому, что у одного из таких комплексов стабильность меньше. [c.141]

    Адсорбционная хроматография используется главным образом для разделения веществ липофильного характера. Хроматографическое разделение гидрофильных соединений, прежде всего аминокислот, стало возможным после открытия Мартином и Синджем [15] в 1941 г. распределительной хроматографии. Эти авторы использовали в своей работе столбик силикагеля, насыщенного водой. На верхний конец столбика наносили смесь веществ, предназначенную для разделения, и промывали соответствующими органическими растворителями. Подвижной фазой, таким образом, служил органический растворитель, а неподвижной — вода, удерживаемая силикагелем. Разделение аминокислот в этих условиях было возможно лишь после их ацетилирования.. Кроме того, получить силикагель со стандартными свойствами было очень трудно. В связи с этим в качестве материала, способного удерживать на своей поверхности воду, авторы предложили использовать целлюлозу [16]. Целлюлоза оказалась пригодной для разделения свободных аминокислот. От использования целлюлозы как носителя неподвижной фазы оставался всего один шаг к замене порошкообразного носителя полосками бумаги. Так была открыта хроматография на бумаге. В 1944 г. английские авторы опубликовали сообщение [3] об использовании в качестве носителя водной фазы целлюлозы в виде фильтровальной бумаги, в качестве подвижной фазы был испробован ряд растворителей. В 1952 г. Мартин и Синдж были удостоены Нобелевской премии за открытие распределительной хроматографии типа жидкость — жидкость. В том же году Джеймс и Мартин [10], исходя из теоретических положений адсорбционной хроматографии [6], разработали теорию распределительной хроматографии типа жидкость — газ. [c.12]

    Высокоэффективное разделение веществ достигается при использовании газовой подвижной фазы. ГЖХ — универсальный метод разделения смесей разнообразных веществ, испаряющихся без разложения. Для увеличения летучести многие природные Соединения превращают в производные а-аминокислоты в метиловые или этиловые эфиры (см. 11.1.4), моносахариды в их триметилсилиловые эфиры (см. 12.1.5) и др. [c.498]

    При решении задачи разделения аминокислот и их производных Мартин и Синдж [32] ряд лет шли другим пуч ем. Используя распределительную-аппаратуру, они разработали распределительную хроматографию. Для этого они закрепляли одну из фаз (неподвижную фазу) на носителе, например порошкообразном силикагеле, и затем заполняли им колонку. В качестве растворителя , называемого в данном случае подвижной фазой, использовали, например, хлороформ. [c.12]

    Хроматография на бумаге. —Этот метод, введенный Мартином и Синджем2 в 1944 г., используемый теперь во всех областях химии, применим, а частности, для идентификации компонентов смеси аминокислот с дн- и трипептидами, получаемой при частичном гидролизе белков и полипептидов. Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподзижной фазой, и органическим растворителем, подвижной фазой (например, водный этиловый спирт, бутиловый спирт, фенол), которая дви кется вдоль листа вверх или вниз, — восходящий или ни- [c.650]

Рис. 3.4. Хроматограмма рацематов аминокислот, полученная на колонке размером 100X1 мм (стекло) с асимметрическим полистирольным анионитом (7,5 мкм), подвижная фаза — 0,25 М ацетат натрия и 1,5X10- М ацетат меди, рН=5,2, детектор—УФ (260 нм) Рис. 3.4. Хроматограмма <a href="/info/143857">рацематов аминокислот</a>, полученная на <a href="/info/140462">колонке размером</a> 100X1 мм (стекло) с асимметрическим полистирольным анионитом (7,5 мкм), <a href="/info/5672">подвижная фаза</a> — 0,25 М <a href="/info/8169">ацетат натрия</a> и 1,5X10- М <a href="/info/225454">ацетат меди</a>, рН=5,2, детектор—УФ (260 нм)
    Принцип распределительной хроматографии основан на различии в коэффициентах распределения аминокислот между водой и органическим растворителем. Особенность метода распределительной хроматографии на бумаге по сравнению с обычной экстракцией ам.инокислот из водного раствора органическим растворителем заключается в том, что одну из фаз, чаще всего водную, помещают на какой-нибудь инертный твердый носитель, а органический растворитель — подвижная фаза,— проходя через первую, извлекает и распределяет аминокислоты на бумаге в соответствии с их коэффициентами распределения. Положение аминокислот на бумаге определяют по отношению скорости движения аминокислоты скорости движения фронта растворителя и обозначают Rf. Величина за висит в первую очередь от строения аминокислоты, затем от системы растворителей, pH среды и сорта бумаги, Чем полярнее аминокислота, тем меньше она растворяется в органических растворителях и тем меньше ее R . Увеличение длины углеродной цепи повышает . Введение в молекулу полярных групп, например, гидроксильной, аминной или карбоксильной понижает Rf Так, Rf фенилаланина в системе фенол/вода = 0,85, а тирозиит 0,51. Другие примеры изменения в зависимости от строения аминокислоты представлены на рис. 3 и 4. Подбирая соответствующие смеси растворителей, можно провести достаточно тонкое разделение аминокислот. Наиболее часто пользуются для такого разделения системами вода — фенол — аммиа вода — бутапол — уксусная кислота бутанол — аммиак — коллидин и т. д. Разделение можно проводить на одномерной или двумерной хроматограммах. Можно пользоваться также различными типами распределительной хроматографии на бумаге — нисходящей, восходящей и радиальной. Величины Rt для каждой из систем растворителей оказываются постоянными при соблюдении [c.479]

    Методом тонкослойной хроматографии (ТХ) можно быстро разделить аминокислоты метод требует несложного оборудования и малых исходных количеств. Для изготовления слоев толщиной 0,1 — 0,3 мм применяют стандартные носители, такие, как сипикагепь, оксид алюминия, поро-щок целлюлозы, ионообменники на основе целлюлозы, попиамиды, а также полиакриламидный и декстрановый гепи. В зависимости от материала носителя ТХ бывает адсорбционной (например, разделение на силикагеле и оксиде алюминия) или распределительной (например, разделение на слоях целлюлозы). В качестве подвижной фазы применяют те же системы, что и для бумажной хроматографии. [c.58]

    В отличие от ряда других методов, основанных на распределении компонентов между фазами, qx>мaтoгpaфия — это динамический метод, обеспе-чиваюпщй многократность актов сорбции—десорбции разделяемых компонентов, так как разделение происходит в потоке подвижной фазы. Этим обусловлена большая эффективность хроматографического метода по сравнению с методами сорбции и экстракции в статических условиях, поэтому хроматографическими методами возможно быстрое разделение сложных смесей, например аминокислот или редкоземельных элементов (рис. 8.1). [c.266]

    В работе [90] методом ВЭЖХ изучено поведение ряда биологически важных производных фенилэтиламина и аминокислот и найдены инкременты удерживания, отвечающие окси-, мето-кси- и метильной группам в различных положениях. Показано, что данные, полученные на одном сорбенте, могут быть перенесены на другой, если состав подвижной фазы в обоих случаях одинаков. [c.71]

    В первь х работах по применению систем ЖХ низкого давления с изократическим элюированием фосфатными и боратными буферами на колонках с БСА, связанным с сефарозой, показали, что хиральное разделение заряженных сорбатов, подобных немодифицированным аминокислотам триптофану, кинуренину [3-(2-амино-бензоил)аланин], и их 5- и 3-оксипроизводным соответственно чрезвычайно сильно зависит от pH подвижной фазы [87]. В дальнейшем [c.132]

    Разработаны и подробно исследованы методы нековалентной иммобилизации комплексов аминокислот с металлами, обусловленной гидрофобными взаимодействиями с обращенно-фазовым сили-кагелевым сорбентом (алкилсиликагелем). И хотя некоторые из этих методов не требуют добавления хирального селектора в подвижную фазу [130], их следует рассматривать как пограничные по причине их сходства с другими методами, основанными на сочетании обращенно-фазовых нехиральных колонок и подвижных фаз, содержащих хиральные добавки, и мы их рассмотрим в разд. 7.3. [c.146]

    Как указывалось ранее (см. разд. 7.2.2), относительная стабильность гетеролигандных сорбционных комплексов, образующихся в ХЛОХ, в значительной степени зависит от метода их иммобилизации. В данном случае, когда хиральный лиганд физически сорбирован вследствие гидрофобных взаимодействий, для всех аминокислот / (ь) < (о). Если исходить из результатов экспериментов, то с учетом влияния подвижной фазы механизм энантиоселективного распознавания должен соответствовать представленному на рис. 7.17. М-Алкильные цепи хирального лиганда, по-видимому, должны ориентироваться параллельно цепям неподвижной фазы. При координации с Си(П) фиксированный лиганд принимает такую конформацию, что оксипирролидиновое кольцо и его Н-алкильный заместитель располагаются по разные стороны от основной координационной плоскости хелатного комплекса. Таким образом, в ге-теролигандном сорбционном комплексе, образованном о-энан-тиомером разделяемого соединения, а-заместитель в молекуле энантиомера должен быть направлен в сторону гидрофобной (С1 ) поверхности сорбента. Это приведет к стабилизации такой структуры вследствие гидрофобных взаимодействий. В то же время ъ-энан-тиомер лишен подобной возможности, так как его а-алкильный радикал направлен в сторону подвижной фазы и он элюируется быстрее, чем о-энантиомер. [c.159]

    Важным этапом стало открытие Н. А. Измайловым и М С. Шрайбер метода хроматографии в тонком слое в 1938 г. в Харьковском. химико-фармацевтическом институте. Далее существенным в развитии хроматографии стало открытие Мартином и Сингом в 1940 г. варианта жидкостной распределительной хроматографии на примере разделения ацетильных производных аминокислот на колонке, заполненной силикагелем, насыщенным водой, с использованием хлороформа в качестве растворителя. Тогд же было отмечено, что в качестве подвижной фазы может быть использована не только жидкость, но и газ. Далее эти ученые предложили осуществлять разделение производнцх аминокислот на смоченной водой бумаге с бутанолом в качестве подвижной фазы. Они же осуществили первую двумерную систему разделения. [c.15]

    Согласно второму подходу, распознавание оптических изомеров происходит непосредственно в хроматографической колонке за счет образования ими лабильных комплексных соединений с расщепляющим агентом — оптически активной аминокислотой (лигандообменная хроматография). Этот метод получил применение в анализе аминокислот и, в меньшей степени,— других аминов. Существуют различные варианты реализации метода. Например, в качестве сорбента можно использовать алкилсиликагель, а ионы комплексообразователя и расщепляющий агент вводить в подвижную фазу. Согласно другому варианту расщепляющий агент химически связывается с поверхностью силикагелевой либо полистирольной матрицы. Ионы комплексообразователя являются компонентом подвижной фазы и служат в качестве связующего звена между сорбентом и сорбатом. [c.331]

    Выше рассмотрены основные закономерности хроматографии на силикагеле в нормально-фазовом режиме. Такой способ использования силикагеля — исторически первый, и с помощью его решено множество практически важных задач. Впоследствии силикагель в значительной степени был вытеснен обращенно-фазовыми сорбентами. Однако данные самого последнего периода свидетельствуют о том, что возможности силикагеля далеко не исчерпываются классической нормальнофазовой Хроматографией. Помимо относительно малополярных элюентов при хроматографии на силикагеле могут использоваться различные нетрадиционные подвижные фазы. При этом возможно получение хороших практических результатов даже для таких сорбатов, которые, как правило, рекомендуют разделять в обращенно-фазовом режиме. Механизм сорбции в таких случаях довольно сложен и изучен еще недостаточно. Обычно принято считать, что поверхность силикагеля слабокислая, и это иногда является причиной затруднений при нормальнофазовой хроматографии оснований. Установлено, однако, что современные марки силикагеля для ВЭЖХ, имеющие сферическую форму частиц, могут быть как кислыми, так и щелочными [128]. Это обстоятельство следует иметь в виду при разработке методик, так как высокое значение pH силикагеля может положительно сказаться на форме пиков оснований и селективности разделений. Аналогичен результат при применении буферированного силикагеля [343, 344]. Для получения этого материала силикагель пропитывали 0,1 М раствором соли или кислоты, после чего высушивали в вакууме и затем заполняли колонку суспензионным способом. В качестве подвижных фаз использовали обычные для нормально-фазовой хроматографии системы например, смеси гексана с диэтиловым эфиром в различных соотношениях. Пропитка силикагеля гидросульфатом натрия либо щавелевой, лимонной, винной кислотами способствовала существенному улучшению формы пиков изомеров гераниевой кислоты. Аналогичного эффекта для сорбатов основного характера — производных антраниловой кислоты — удалось добиться пропиткой фосфатно-цитратным буфером. Последний прием позволил также получить вполне симметричные пики ФТГ-производных аминокислот. [c.157]

    Сравнительно недавно стали применять лигандный обмен в подвижной фазе, перемещающейся по колонке. В этом случае неподвижная фаза не обязательно должна быть ионообменником, она может быть и неполярной, как, например, силикагель с привитыми октадецильными группами, являющийся самой распространенной насадкой в обращенно-фазовой хроматографии. Ионы металла добавляют в подвижную фазу, и если при этом лиганды образуют незаряженные комплексы, то последние распределяются между неподвижной и подвижной фазами. Аминокислоты относятся именно к таким лигандам, и поэтому метод лигандного обмена в подвижной фазе в настоящее время щироко используется для анализа смесей энантиомеров аминокислот, т.е. Ь- и Б- оптических изомеров. [c.211]

    В предварительных опытах, проведенных с алоксом для тонкослойной хроматографии фирмы Fluka при приготовлении обычным способом суспензии ие 20 г алокса и 60 л л воды, найдена меньшая скорость движения смеси н-бутиловый спирт — ледяная уксусная кислота— вода (80+20+20), применявшейся в качестве подвижной фазы. На 10 сл растворитель перемещался за 4 час. Разделение аминокислот, однако, было сравнимо с разделением на силикагеле. [c.394]

    Разделение аминокислот основано на их различной растворимости в двух несмешиваюшихся жидкостях. Одной из жидкостей служит вода, другой — насыщенный водой органический растворитель. Водная фаза неподвижна, так как фиксирована на бумаге (специально изготовляемая хроматографическая, фильтровальная бумага, будучи помещенной во влажную камеру, удерживает до 20—22% воды). Подвижной фазой могут служить различные органические растворители, насыщенные водой, например изопропиловый, изобутиловый или бутиловый спирты, фенол и др. Каплю смеси аминокислот или гидролизата белка наносят на полоску фильтровальной бумаги, конец которой опускают в подходящий органический растворитель. Растворитель поднимается по полоске бумаги, растворяет нанесенные на бумагу аминокислоты и увлекает их за собой. Скорость перемещения аминокислот по бумаге зависит от степени их раст- [c.15]

    При первоначальной разработке метода Мартин и Синдж разделили смесь ацетилированных аминокислот на носителе — силикагеле — с водой в качестве стационарной фазы. Подвижная фаза представляла собой смесь хлороформа, бутанола и воды. Метод был использован для определения состава аминокислот различных нротеинов 5 . Свободные аминокислоты были разделены на крахмале, в качестве неподвижной фазы использовалась вода, подвижной — смешанный органический растворитель, насыщенный водой [c.541]


Смотреть страницы где упоминается термин ДНФ-аминокислот подвижная фаза: [c.70]    [c.128]    [c.213]    [c.248]    [c.157]    [c.153]    [c.158]    [c.233]    [c.29]    [c.165]    [c.421]    [c.99]    [c.100]    [c.289]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.343 , c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Фаза подвижная



© 2025 chem21.info Реклама на сайте