Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки аминокислотный очистки

    Данные химического анализа. Для обнаружения примесей в препаратах белка можно использовать данные по аминокислотному составу. Допустим, например, что аминокислотный анализ обнаруживает присутствие 0,3 моль гистидина на 1 моль белка. Естественно предположить, что гистидин содержится в загрязняющем веществе, а не в белке, подвергающемся очистке. [c.83]

    Сегодня в тех случаях, когда исследуемый белок может быть очищен лишь в следовых количествах, главным ограничением для получения данных об аминокислотном составе и последовательности аминокислот является качество выделенного образца. Во многих случаях, когда выход белка после очистки составляет 10—100 пмоль, существует большое расхождение между количеством материала, определенным по данным аминокислотного анализа, и количеством белка, оцененным по выходу первого ФТГ-производного аминокислоты. Такого различия в оценке содержания анализируемого объекта не наблюдается, когда имеют дело со следовыми количествами белка, взя- [c.478]


    Однако для белков такое соотношение не обязательно выполняется, поскольку они могут связывать и другие, помимо протонов, ионы, которые вносят вклад в общий баланс зарядов (при условии нейтральности молекулы белка). Можно ожидать, что белки в изоэлектрической точке обладают меньшей растворимостью, чем при меньших или больших значениях pH, и это действительно имеет место. Поскольку в изоэлектрической точке молекула белка не обладает избыточным зарядом, в этих условиях белок легче агрегирует и осаждается. Далее, поскольку аминокислотный состав разных белков различен, для каждого белка существует характеристическое значение р/е. Это свойство является основой метода очистки белков путем изоэлектрического осаждения (осаждения в изоэлектрических условиях) pH смеси белков доводится до значения, равного значению р/ искомого белка, так что последний осаждается из смеси. Значение р/г аминокислот с нейтральной боковой цепью равно 5,6 0,5 для аминокислот, содержащих кислые группы, р/ ниже, а для аминокислот с основными группами в боковых цепях — выше. В то же время для белков р/ может меняться от О до И. Вывод формул для расчета р/ аминокислот имеется в большинстве учебников биохимии. [c.32]

    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]

    Очистка и разделение белков (наряду с аминокислотным анализом) — основные области применения ионообменной хроматографии. Верно и обратное — в очистке любого белка этот вид хроматографии почти всегда занимает центральное положение. Поэтому при изложении общих соображений о выборе параметров хроматографического процесса в предыдущих разделах этой главы мы имели в виду прежде всего хроматографию белков. Был приведен соответствующий справочный и методический материал, отмечены аспекты, связанные с сохранением биологической активности и возможностью появления артефактов кажущейся утраты ферментативной активности и [c.301]


    Идеальный реагент для селективного расщепления белков должен отвечать следующим требованиям 1) вызывать расщепление в условиях, исключающих расщепление связей между другими аминокислотами, и по возможности не приводить к рацемизации 2) расщепление должно протекать с хорошим выходом каждого из искомых аминокислотных остатков 3) полученные в результате расщепления осколки должны быть пригодны к фракционированию и очистке. [c.165]

    Первая часть этой задачи решается с помощью процессов гидролиза, происходящих под влиянием энзимов или сильных щелочей и кислот. Особенно хорошие результаты получаются при использовании в качестве гидролизующего агента 6 н. НС1. В этом случае для полного расщепления белковых молекул на аминокис-, лоты необходима обработка белка 6 н. НС1 при температуре 100° С в течение 10—15 ч. Вторая часть этой задачи — анализ образующихся весьма сложных смесей аминокислот — сопряжена с более серьезными трудностями. Обычные методы анализа подобных смесей, связанные с необходимостью количественного выделения всех компонентов смеси, очень трудоемки и приводят к большим погрешностям. Этим объясняются сильные расхождения — в несколько десятков процентов, — при анализе аминокислотного состава различных белков. Метод изотопного разбавления позволяет достигать точности до нескольких десятых долей процента. В этом случае к гидролизату добавляется одна из входящих в его состав аминокислот, меченная углеродом-14. После этого из раствора осаждается некоторое количество определяемой аминокислоты и проводится тщательная очистка ее от примесей. Зная [c.115]

    После появления секвенатора время анализа аминокислотной последовательности белка стало определяться стадией очистки [c.128]

    В пятидесятых годах, в период бурного развития БХ, был опубликован ряд статей с описанием методик и систем растворителей, предназначенных для разделения белковых гидролизатов или аминокислот, полученных из различных физиологических жидкостей (см. [51, 77]). Эти системы использовались для разделения сложных смесей аминокислот и пептидов и смесей аминокислот, с трудом поддающихся идентификации, например лейцин, изолейцин. С появлением автоматических аминокислотных анализаторов [120], а также новых ионообменников (см. гл. 5) БХ все реже и реже используют для анализа аминокислот и пептидов. В настоящее время в лабораториях, ведущих исследование белков, методом БХ проводят главным образом окончательную очистку простых смесей пептидов, полученных с помощью других методов разделения, кроме того, БХ служит одним из критериев однородности вещества (часто в сочетании с электрофорезом на бумаге), и только в считанных случаях ее применяют для идентификации отдельных аминокислот. [c.121]

    Книга составлена на основе лекций, читаемых в Ленинградском университете. В ней рассматриваются методы получения и очистки белков, определения их аминокислотного состава и последовательности аминокислот, а также оценки величины и формы белковой молекулы. Наряду с этим в книге излагаются основные химические и физико-химические свойства аминокислот и белков, а также современные представления об уровнях организации макромолекулы белка (первичная, вторичная, третичная и четвертичная структуры). [c.2]

    Большинство классических методов, которые использовались в аналитической химии белков до середины 40-х годов, были весовыми и требовали выделения аминокислоты или одного из ее производных. Нечего и говорить о тех громадных трудностях, которые вставали на пути исследователя, целью работы которого было выяснение аминокислотного состава белков. Кроме того, применение весовых методов было сильно ограничено необходимостью использовать для анализа значительные количества белка, что было не всегда возможно из-за недостаточно высокой степени очистки белковых препаратов. Отсутствие надежных методов оценки чистоты таких препаратов нередко сводило на нет усилия исследователя. Отсутствие количественных методов разделения аминокислот в гидролизатах делало невозможным получение точных данных об аминокислотном составе белков при помощи колориметрических методов. [c.131]

    Перед проблемой химической модификации белков с целью определения природы и числа аминокислотных групп, обусловливающих биологическое действие, открылись новые перспективы в связи с усовершенствованием способов очистки белков и появлением новых методов их идентификации. Результаты, полученные благодаря развитию способов такой модификации белков, [c.269]

    С развитием методов выделения, очистки и анализа белков в течение первых трех десятилетий этого века выяснилось два существенных факта. Оказалось, что каждый белок состоит из полипептидной цепи определенной длины, причем у разных белков длина цепи меняется от нескольких десятков до нескольких сотен аминокислотных остатков. Выяснилось также, что в каждом белке содержатся характерные для него относительные количества двадцати стандартных аминокислот. Когда эти факты были установлены, то было сделано следующее предположение индивидуальная особенность каждого типа белка зависит от того, сколько аминокислот и какие именно аминокислоты составляют его полипептидную цепь. [c.41]


    Фракционный анализ белков может быть использован не только для количественного учета их, но и для определения аминокислотного состава каждой фракции. Для этого необходимо белки из растворов осадить, выделить и очистить. Осаждение белков проводится в кислой среде при нагревании для выделения используют теплые щелочные растворы, в которых большинство белков хорошо растворяется. Очистку белков проводят последовательно ацетоном, спиртом, эфиром, высушивают и используют для последующих определений на содержание аминокислот. [c.370]

    Обратная трансляция. Выбрать последовательность зонда и праймеров для ПЦР к неизвестному гену иногда оказывается возможным путем очистки небольшого количества белка, кодируемого клонируемым геном, и определения последовательности его нескольких Н-концевых или С-концевых аминокислотных остатков [237, 238]. На основании этих данных с учетом вырожден- [c.164]

    Ступенчатое наращивание пептида с применением второй фазы впервые проведено Меррифилдом на примере твердофазного пептидного синтеза (разд. 2.2.7.1). При реакциях в гетерогенной фазе вероятность встречи реагирующих партнеров гораздо ниже, чем в гомогенном растворе. Для получения высокой степени превращения требуется значительный избыток ацилирующего средства. Преимуществом этой стратегии является простота технических операций и связанная с этим возможность автоматизации. Трудные операции очистки промежуточных веществ традиционного синтеза заменяются простыми процессами фильтрования и промывания. Однако на этом пути однородный продукт синтеза получается только в том случае, если каждая реакция в гетерогенной фазе протекает практически количественно. Несмотря на большие избытки карбоксикомпонента, использование которых чревато опасностью N-ацилирования пептидной связи, полное превращение на каждой стадии в настоящее время недостижимо. На практике средний выход на одну стадию 95—99%, что недостаточно для синтеза длинных пептидов или белков. Средние выходы на одну стадию и полные выходы (в зависимости от длины цепи) приведены в табл. 2-10. Как показывает практика, короткоцепочечные пептиды или их аналоги длиной до -15 аминокислотных остатков могут быть получены твердофазным методом. Трудности при синтезе небольших белков наглядно демонстрируются данными табл. 2-10. Еще хуже сказывается накопление не- [c.214]

    Другими важными методами разделения и очистки белков являются злектрофо-рез и ионообменная хроматография. Оба метода основаны на различных свойствах частиц, несущих неодинаковый заряд. Величина и знак заряда для каждого белка характеризуются числом ионизируемых боковых групп аминокислотных остатков и, как в случае аминокислот (разд. 1.4.2), могут быть установлены из кривой титрования. Выше ИЭТ находится зона pH с отрицательным, а ниже. ИЭТ — зона pH с избыточным положительным зарядом молекулы. [c.350]

    Еще одной важной проблемой в стереохимии природных соединений является установление строения полипептидных антибиотиков, продуцируемых бактериями и грибами. Такие полипептиды часто содержат в своей структуре неприродные аминокислоты, т. е. имеющие в-конфигурацию или обладающие структурой, не обнаруженной в белках. Очистка и установление структуры таких сложных соединений, часто вьщеляемых в очень небольших количествах, требует квалифицированного разделения и точных аналитических методов. В этом отнощении исключительно важным является непосредственное определение конфигурации аминокислот методом хиральной хроматографии. Особенно большое значение имеет применение хиральной ГХ для хирального аминокислотного анализа и создания аминокислотных карт гидролизатов. Приведенный ниже пример [24] должен проиллюстрировать сказанное. [c.182]

    В качестве последнего примера белков, связывающих малые молекулы, уместно рассмотреть лектины. Эти белки, чаще всего встречающиеся в растениях (но не только в них), связывают производные углеводов со значительной степенью стереоспецифичности. Впервые лектины привлекли внимание исследователей своей способностью агглютинировать эритроциты посредством связывания гликопротеинов мембран. Некоторые лектины специфичны к индивидуальным групповым веществам крови. Интерес к ним увеличился после того, как было обнаружено, что некоторые из лек-тинов агглютинируют преимущественно злокачественные клетки. Посредством иммобилизации на нерастворимом носителе типа агарозы лектины могут быть использованы для очистки гликопротеинов методом афинной хроматографии. Наиболее изученным лек-тином является конкавалин А для этого белка определены аминокислотная последовательность из 238 остатков и трехмерная структура. Конформация конкавалина А весьма примечательна. Семь участков его единственной полипептидной цепи формируют антипараллельную складчатую структуру, а шесть последующих участков образуют другую антипараллельную структуру, перпендикулярную первой. Ион Mn + координирован с двумя молекулами воды и боковыми радикалами Н18-24, 01и-8, Азр-Ш и Азр-14, образуя октаэдр. Ион Са +, расположенный на расстоянии 0,5 нм от Мп +, делит с ним два последних лиганда, а также связан с карбонильным кислородом Туг-12, боковым радикалом Айп-14 и двумя молекулами воды и также образует октаэдрическую конфигурацию. Остатки глюкозы и маннозы связываются в глубоком кармане размером 0,6 X 0,75 X 1,8 нм, образованным, как это ни удивительно, гидрофобными остатками. [c.562]

    Расщепление химерных белков В зависимости от предназначения белкового продукта клонированного гена он может использоваться как таковой или в составе химерного белка, причем последний вариант встречается нечасто. Например, из-за присутствия фрагмента хозяйского белка большинство химерных белков оказываются непригодными для применения в клинике, а сам продукт клонированного гена-мишени может оказаться неактивным. Кроме того, для химерных белков предусмотрена более сложная процедура тестирования, которую они должны пройти, чтобы получить разрешение к применению у соответствующих организаций. Все это заставляет искать способы удаления лишних аминокислотных последовательностей из молекулы получаемого продукта. Один из таких способов основан на присоединении белка, кодируемого геном-мишенью, к белку клетки-хозяина, содержащему короткий пептид, распознаваемый специфической протеазой небактериального происхождения. Такое присоединение тоже программируется на уровне ДНК. Олигонуклеотидные линкеры, несущие сайты для протеаз, можно пришить к клонированному гену до того, как такая конструкция будет введена в экспрессирующую векторную систему слияния. Линкером может служить, например, олигонуктеотид, кодирующий пептид Пе-01и-01у-Аг . После синтеза и очистки химерного белка для отделения белкового продукта, кодируемого клонированным геном, можно использовать фактор свертывания крови Х , который является специфической протеиназой, разрывающей пептидные связи исключительно на С-конце последовательности Ile-Glu-Gly-Arg (рис. 6.6). Более того, поскольку такой пептид [c.112]

    Полусинтез как способ получения соединений пептидно-белко-вой природы можно проиллюстрировать на примере инсулина. В 1972 г. впервые было осуществлено превращение инсулина свиньи в инсулин человека (М. Руттенберг), Молекулы этих гормонов отличаются лишь одним аминокислотным остатком в положении В 30 в инсулине свиньи находится Ala, а в инсулине человека—Thr. Предложенная схема (рис. 80) включала синтез гексаметилового эфира инсулина свиньи (обработкой диазометаном), расщепление В-цепи трипсином по остатку Arg-22, блокирование Вос-группой N-концевых остатков А- и В-цепей полученного укороченного инсулина, затем конденсацию продукта с синтетическим фрагментом В 23 — 30 инсулина человека (D /HOSu методом) и, наконец, удаление всех защитных групп. После интенсивной очистки удалось выделить инсулин человека с выходом около 10%. [c.151]

    Основные научные работы Мура, которые он проводил совместно с У. X. Стайном, посвящены исследованию строения белков. Они разрабатывали точные аналитические методы для определения аминокислотного состава белков. Развили (1951) метод ионообменной хроматографии, который применили для выделения и очистки рибонуклеазы. Благодаря сочетанию хроматографических методов анализа, разработанных Муром и Стайном, с предложенным ими фотометрическим нингидринным методом и их же автоматическим коллектором фракций они создали методику, позволяющую анализировать белковый гидролизат в течение двух недель. Применение синтетических ионообменных смол (сульфокатионитов) позволило им сократить (1950-е) это время до недели. Затем (1958) процесс ими был автоматизирован, а время анализа уменьшено до нескольких часов. Мур и Стайн установили [c.347]

    В Киевском институте физико-органической химии и угле-химии (АН УССР была изучена технология получения аминокислотной смеси из сухого активного ила (влажность 10%), взятого на Бортнической станции биологической очистки сточных вод [8]. В этом иле с количеством протеина 38,2% содержались основные аминокислоты (% к массе абсолютно сухого белка) лизин — 7 аргинин —7,15 гистидин — 2,47 фенилаланин — 4,93 валин—5,46 лейцин —6,15 изолейцин — 5. [c.180]

    Марголиаш и его сотрудники провели сравнение аминокислотных последовательностей цитохрома с, выделенного из 35 различных организмов. Небольшие отличия в последовательностях аминокислот наблюдаются на поверхностных участках белка. Некоторые же последовательности аминокислот характерны для всех образцов цитохрома с. Это показывает, что мутации, затрагивающие эти участки, всегда легальны. Цитохром с, выделенный ,из одного источника, после очистки можно применять для проведения экспериментов т с цитохромными ферментами, цолученнэши из совершенно другого, источника (например, один из-Дрож кей, другой от лошади). Это показывает, что в основном функция цй-тохрома с осталась практически неизменной в процессе эволюции, продолжавшейся миллиарды лет..  [c.265]

    Количественное или полуколичественное определение белков — задача, постоянно возникающая при работе с белками, в частности при их очистке (см. пиже). Для этой цели были предложены различные цветные тесты, основанные на реакции одной или нескольких аминокислотных боковых цепей с соответствующим реактивом (см. табл. 10). Негидролизоваиные белки [c.55]

    Аминокислотный состав точно установлен сейчас для многих десятков ферментных белков, так как с развитием методов препаративной энзимологии (кристаллизации и иных способов очистки) их можно получать весьма чистыми и в больших количествах. Анализы показали, что ферменты по составу не отличаются от других белков и состоят только из аминокислот, если не включают в себя еще простетической группы. Каких-либо особых компонентов в них нет. Расшифровка же последовательности аминокислот в цепях — задача более сложная и пока разрешена для небольшого числа ферментов рибонуклеазы, цитохрома С, лизо-цима (мурамидазы), трипсина, химотрипсина, папаина и ряда других. В настоящее время заканчивается исследование еще ряда белков. Молекула рибонуклеазы, например, оказалась состоящей из одной полипептидной цепи, содержащей 124 аминокислотных остатка молекула химотрипсиногена, предшественника химотрипсина,— также из одной цепи с 246 остатками трипсиногена— с 229 остатками аминокислот. Тем не менее в молекуле а-химотрипсина найдены три цепи. У большинства изученных [c.72]

    Метод прост для выполнения, но требует тщательной очистки фермента малейшая примесь в нем каких-либо протеиназ (например, трипсина или хи.мотрипсина) резко искажает результаты. Поэтому в инкубационную среду обычно добавляют специфический ингибитор этих ферментов—диизопропилфторфосфат, не оказывающий какого-либо действия на карбоксипептидазу. Белок инкубируют в течение различных сроков с карбоксипептида-зой, фермент инактивируют, белки осаждают, а в безбелковом фильтрате количественно определяют отщепившиеся аминокислоты. Для каждой аминокислоты строят график увеличения ее содержания в безбелковом фильтрате во времени. Очевидно, что наибольшая интенсивность накопления должна быть для концевой аминокислоты, несколько меньшая для следующей и т. д. Таким образом, удается установить последовательность расположения в полипептидной цепи нескольких аминокислотных остатков (7—10) с С-конца. Метод был предложен Ленсом в 1949 г. [c.76]

    В настоящее время мы должны отмести все предрассудки о якобы множественности и непдентичности белковых молекул, о якобы невозможности полного разделения и очистки белков и т. д. Все это опровергнуто опытом. Строение каждого белка полностью во всех деталях генетически детерминпровано, и, следовательно, только мутация, клетки приводит к изменению какого-либо белка. Мы увидим в дальнейшем, что простейшие точечные мутации имеют своим конечным результатом химическое изменение белка в одном единственном аминокислотном звене цепи. [c.111]

    Первый вопрос решался с помощью радиоактивно меченных аминокислот. Существенно то, что нам известно концевое звено цепи гемоглобина, содержащее КН2-группу, — это валин. Опыт ставился следующим образом препарат отмытых рибосом (большая часть, свьппе 80%, имеет константу седиментации 70 э) подвергался инкубации на среде с набором аминокислот и меченным С валином. Синтез шел сравнительно короткое время, что доказывает кинетический характер эксперимента. После извлечения синтезированного рибосомами белка у последнего определялась общая радиоактивность и активность N-кoнцeвoй аминокислоты путем реакции концевой аминогруппы с динитро-фторбензолом или фенилизотиоцианатом, отщепления меченой концевой группы и ее хроматографической очистки. Молекула гемоглобина (кролика) состоит из 670 аминокислотных звеньев, из которых 46 являются валинами, в том числе 4 валина — КНа-концевой группы (в молекуле гемоглобина содержится [c.453]

    Существуют различные методы выделения брадикинина из продуктов расщепления белков плазмы трипсином или змеиным ядом и его очистки, разработанные в различных лабораториях. Методика, применявшаяся Эллиоттом и сотр. [661, 666, 668, 669], заключалась в обработке фракционированной смеси белков из сыворотки быка 0,1 и. соляной кислотой при 37° (для инактивации ферментов, разрушающих брадикинин) и в последующей их инкубации с трипсином в течение 6 час. Полученную смесь осаждали спиртом, а из фракции, растворимой в 74%-ном спирте, чистый брадикинин удалось выделить с помощью противоточного распределения, хроматографии на, карбоксиметилцеллюлозе (ацетатно-аммониевый буферный раствор pH 6,5 и 5) и электрофореза. Сначала на основании неточных данных аминокислотного анализа считали, что брадикинин имеет следующий аминокислотный состав Ser Gly Pro Phe Arg= 1 1 2 2 2. Результаты кислотного гидролиза, расщепления химотрипсином и разложения по методу Эдмана позволили приписать бради-кинину следующую структуру  [c.105]

    Параллельно с исследованиями Эллиотта были проведены работы по выделению и очистке брадикинина, образующегося из бычьей плазмы при действии змеиного яда. С этой целью Прадо и сотр. [1764], а также Андраде и сотр. [54] использовали хроматографию на колонке с окисью алюминия и целлюлозой, а Андраде и Роша э Сильва [55] — ионообменную хроматографию на колонке с амберлитом ЩС-50 (ХЕ-64). Наибольшего успеха достигли Хамберг и сотр. [921, 926, 927], применявшие хроматографию на колонке с амберлитом ШС-50 (pH 5), препаративный электрофорез и хроматографию на бумаге. Аминокислотный анализ выделенного таким образом чистого полипептида показал, что последний содержит те же аминокислоты и в таких же соотношениях, что и трипсиновый брадикинин. Тщательное сравнение фармакологических свойств показало, что оба брадикинина, образующиеся при гидролизе белков как змеиным ядом, так и трипсином, идентичны синтетическому бради-кинину. Сообщение о выделении брадикинина из продуктов инкубации бычьей плазмы со змеиным ядом было опубликовано также Зубером и Жаком [2680]. [c.106]

    Ионный обмен нашел широкое применение для очистки не-ионнзовапных или с-табоионизованных органических соединений от неорганических ионов, а также от ионов органических (например, очистка синтетических спиртов от низкомолекулярных карбоновых кислот). Весьма часто аниониты используют для снижения кислотности или нейтрализации растворов органических веществ (кислые гидролизаты белков при их аминокислотном анализе, гидролизаты казеина в пищевой промышленности и др-)-Сорбция ряда неионогенных органических веществ достигается путем их химического взаимодействия с поглощенными ионитом компонентами кетонов и альдегидов — на анионитах в бисуль-фитной форме, углеводов — па анионитах в боратной форме и проч. [c.12]

    Изучение белков начинают с выделения и очистки единственного лишенного основной группы пептида, который получают в результате ферментативного расщепления ацилированного белка непсином, химотрипсином или термолизином (но не трипсином) — см. фиг. 9. Из всех пептидов только этот концевой пептид не садится на колонку дауэкс-50 при кислых значениях pH (см. ниже). Его состав, включая и природу концевой ацильной группы, определяют, сочетая аминокислотный анализ, гидразинолиз и фтординитробензольный метод. [c.69]

    Выделение и очистку мономеров с целью определения аминокислотного состава, получения пептидных карт или секвениро-ваиия осуществляют с помощью препаративных методов химии белка. [c.37]

    Создание эффективного метода отщепления остатка нироглу-таминовой кислоты решило проблему секвенирования белков, блокированных вследствие циклизации N-концевых Gin и Glu [136]. Поскольку благодаря реакции деблокирования , протекающей с высоким выходом, становится доступной а-амино-группа последующего аминокислотного остатка, реакцию циклизации следует рассматривать как удобный способ создания защитной группы на стадиях очистки белка. Снятие защиты осуществляют путем двукратной инкубации с пироглутамат-аминопептидазой печени крупного рогатого скота. Метод был впервые использован при анализе легких и тяжелых цепей иммуноглобулинов, а затем при анализе тяжелой цепи гемаг-глютинина вируса гриппа [181]. [c.72]

    Поскольку остаток пролина в структурном отношении принципиально отличается от других аминокислотных остатков и вместе с тем относится к природным аминокислотам и входит в состав многих белков, можно было рассчитывать, что в природе существует фермент, расщепляющий соответствующие пептидные связи. Подобный фермент представлял бы несомненный интерес, поскольку пролин — редкая аминокислота и его присутствие ограничивает возможность атаки соседних пептидных связей другими протеолитическими ферментами. До настоящего времени выделен только один постпролинспецифичный фермент [54]. Выделение и очистку этого фермента из почек ягненка проводили методом аффинной хроматографии. По предварительным данным фермент относится к классу сериновых протеаз [123 " тах [c.155]

    Схема разделения и очистки пептидов, описываемая ниже (включающая гельфильтрацию, хроматографию на ДЭАЭ-целлюлозе или дауэксе-50, высоковольтный электрофорез и хроматографию на бумаге), применима к белкам средней молекуляр-1ЮЙ массы (до 40 000). Крупные фрагмеггты, плохо разделяющиеся на бумаге и элюирующиеся с нее, первоначально отделяют гель-фильтрацией, а основную часть пептидов после фракцио- шрования на ионообменнике очищают окончательно хроматографией на бумаге. Однако эта схема применима далеко ие ко всем типам гидролизатов белков. Например, мембран11ые белки плохо расщепляются ферментами с высокой специфичностью, такими, как трипсин или стафилококковая протеаза гидрофобные пептиды склонны к образованию агрегатов при гель-фильтрации, осаждаются на ионообменных колонках и экстрагируются в охлаждающую среду при высоковольтном электрофорезе на бумаге и в органическую фазу при промывках в реакции Эдмана. Оптимальная схема анализа структуры мембранных белков включает их фрагментацию с помощью химических методов на небольшое число крупных пептидов, разделение в денатурирующих условиях на полиакриламидных гелях и определение аминокислотной последовательности автоматическим методом после присоединения пептида к твердой матрице. Альтернативный вариант основан на использовании протеаз с низкой специфичностью (таких, как пепсин или эластаза). При этом образуется значительное число коротких пептидов, которые [c.352]

    Если субъединицы состоят из полипептидных цепей нескольких типов, то после их разделения возникает вопрос какую из цепей приписать той или иной субъединице Обычно оказывается необходимым вернуться к нативной структуре и попытаться, используя более мягкие условия денатурации, разделить ее на субъединицы, сохраняющие нативную третичную структуру. Затем после очистки субъединиц определяют молекулярную массу и аминокислотный состав субъединиц каждого типа. Например, при добавлении сильного денатурирующего агента гемоглобин распадается на две а- и две 8-цепочки. В условиях мягкой денатурации образуются главным образом о/З-димеры свободные а- и 13-субъединицы встречаются очень редко. Основываясь на аминокислотном составе цепей, гемоглобин можно было бы назвать четырехсубьединичным белком, но в реакциях он ведет себя как белок, состоящий из двух субъединиц, каждая из которых представляет собой двухцепочечный а/З-димер. Весьма удобный химический метод анализа четвертичной структуры — сщивание субъединиц. В случае простых олигомеров, у которых все субъединицы тождественны, белок обрабатывают раствором с избытком молекул диметилсу-беримидата  [c.131]

    Быстрое, и даже бурное развитие протеомики в последние несколько лет определяет интенсивное использование в исследовательской работе рекомбинантных белков. Естественно, работа с индивидуальными белками требует их эффективной очистки. Как всегда, любая задача может быть решена разными способами. Использование для быстрого выделения индивидуальных белков аффинной метки (affinity tag) в виде специфической аминокислотной последовательности, присоединенной к одному из концов исследуемого полипептида, позволяет просто и эффективно решать эту задачу [156]. Присоединение аффинных последовательностей проводят методами генной инженерии, объединяя в составе экспрессируюш,его вектора кодируюш,ую часть исследуемого гена с последовательностью нуклеотидов того или иного пептида или полипептида, обладаюш,его избирательным сродством к лиганду (табл. 5). В целом, системы очистки рекомбинантных белков, основанные на аффинных аминокислотных последовательностях, обладают целым рядом уникальных свойств. Так, они позволяют проводить выделение любого гибридного белка в один этап путем его адсорбции на соответствующем носителе. Сама аффинная метка оказывает минимальное влияние на третичную структуру основного белка и может быть легко удалена из гибридного полипептида. Кроме того, она допускает проведение быстрой и точной количественной оценки содержания белка в искусственных системах экспрессии рекомбинантных генов. Тем не менее использование каждой аффинной метки требует соблюдения конкретных условий, которые не являются универсальными и могут оказывать сильное влияние на биохимические свойства выделяемого белка. [c.124]

    Системы на основе с-тус-последовательностей. Мышиные моноклональные антитела 9Е10 к белку с-тус широко использу-К)тся в качестве иммунохимического реагента в клеточной биологии и белковой инженерии [165]. Эпитоп, распознаваемый антителами, который представляет собой последовательность из 11 аминокислотных остатков, может быть экспрессирован в составе различных белков и остается распознаваемым антителами. Эта аффинная метка используется в Западном блоттинге, для иммунопреципитации белков, в проточной цитометрии, а также для мониторинга экспрессии генов на уровне трансляции в бактериальных и эукариотических системах, в том числе, и для быстрой очистки рекомбинантных белков, которые могут быть закристаллизованы 166, 167]. Система часто используется для обнаружения рекомбинантных белков, но редко - для их выделения в чистом виде. [c.129]

    В целом, введение аффинных меток в виде обсуждавшихся выше пептидных и полипептидных последовательностей существенно облегчает очистку меченых таким образом рекомбинантных белков, а также предоставляет дополнительные возможности наблюдать за эффективностью экспрессии рекомбинантных генов. Выбор для этих целей системы очистки зависит от конкретного белка, который предстоит получать в очищенном состоянии, а также от целей его дальнейшего использования. В ряде современных систем в рекомбинантные белки вводится двойная аффинная метка, одна из которых служит для очистки белка, а другая - для мониторинга за его биосинтезом. Также с помощью двойной метки может быть достигнута большая степень очистки рекомбинантных белков. Разработаны множественные аффинные аминокислотные последовательности, которые включают в себя кальмодулин-связывающий пептид, специфический сайт расщепления протеиназой и белок А для иммобилизации всей рекомбинантной конструкции. С помощью этих систем удается изучать белок-белковые взаимодействия путем выделения соответствующих белковых комплексов при исследованиях протеома [183, 184]. Методы иммобилизации белков с помощью аффинных последовательностей используются при создании пептидных и белковых микрочипов, клонотек на их основе, для адресной доставки белков и во многих других приложениях. О некоторых из них будет дополнительно рассказано в разделе П.3.2. [c.132]


Смотреть страницы где упоминается термин Белки аминокислотный очистки: [c.209]    [c.62]    [c.221]    [c.403]    [c.131]    [c.464]    [c.389]    [c.128]    [c.128]   
Основы биологической химии (1970) -- [ c.79 , c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные белках

Белки очистка



© 2025 chem21.info Реклама на сайте