Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стандартное сродство образования

    При написании уравнений образования веществ соблюдается условие, согласно которому простые вещества берутся в состояниях, устойчивых при данных условиях температуры и давления. Величины стандартного сродства таких реакций, как (V) — (VHI), носят название стандартного сродства образования. Таблицы величин стандартного сродства образования (или стандартных свободных энергий образования, равных —Л ) позволяют, таким образом, рассчитать константу равновесия любой реакции с участием соединений, содержащихся в таблицах. По определению, величина стандартного сродства образования простого вещества в его нормальном состоянии равна нулю. Действительно, уравнение реакции образования в этом случае представляет собой тождество например, для водорода H2(g)=H2(g), и сродство должно равняться нулю. Стандартные свободные энергии, использованные в примерах 7.2, являются стандартными свободными энергиями образования или свободными энергиями по отнощению к простым веществам, взятым в качестве стандартного состояния. [c.141]


    Она зависит только от парциального давления хлора у платинового электрода и не зависит от состава раствора. Злая величину —электродвижущую силу при давлении хлора, равном единице, можно вычислить стандартное сродство образования хлорида серебра из элементов. [c.173]

    Стандартное сродство образования твердого А 28 из твердого Ag и газообразной серы 5г дается уравнением [c.286]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]

    Стандартное химическое сродство, как и изменение любой другой функции состояния (см. закон Гесса, разд. 11.14), может быть найдено из стандартных потенциалов образования компонентов реагирующей системы (подробнее см, в разд. 11.48). [c.136]


    Определите стандартную теплоту образования газообразного иона С1 , если известны энергия диссоциации молекулы СЬ и сродство атома С1 к электрону. [c.20]

    Предлагаемый справочник представляет данные по стандартным энтальпиям образования атомов (табл. 4), стандартным энтальпиям образования радикалов (табл. 5, 6), энергиям диссоциации химических связей (табл. 1—3), потенциалам ионизации (табл. 7—9), сродству к электрону (табл. 10, 11) и протону (табл. 12).  [c.5]

    По табличным значениям энергий связей в молекулах водорода и хлора, ионизационному потенциалу водорода (314 ккал/моль) и сродству хлора к электрону (87 ккал/моль) вычислить стандартную энтальпию образования газообразных ионов водорода и хлора. [c.55]

    Вычислить значение энергий кристаллической решетки хлорида бария по известным значениям стандартной энтальпии образования кристаллического хлорида бария (—205,6 ккал/моль), энтальпии диссоциации молекул хлора (57 ккал/моль), энтальпии атомизации бария (46 ккал/моль), первого ионизационного потенциала бария (119,8 ккал/моль), второго ионизационного потенциала бария (230 ккал/моль), сродства к электрону атома хлора (87 ккал/моль). [c.55]

    Стандартные энтальпии образования газообразного аммиака и кристаллического хлорида аммония —11 и —75 ккал/моль. Энергия решетки хлорида аммония равна 163 ккал/моль. Вычислить сродство аммиака к протону. Стандартная энтальпия образования газообразного иона водорода 366 ккал/моль, газообразного попа хлора —58 ккал/моль. [c.56]

    СТАНДАРТНОЕ ХИМИЧЕСКОЕ СРОДСТВО ОБРАЗОВАНИЯ [c.172]

    Гидриды неметаллов. Соединения неметаллических элементов с водородом, в которых степень окисления водорода -f-I, называют гидридами неметаллов. Гидриды многих неметаллов газообразны, имеют ковалентный тип связей в молекулах. В подгруппах периодической системы с увеличением порядкового номера элемента стандартная энергия Гиббс-а образования гидридов неметаллов возрастает (рис. 79). Следовательно, уменьшаются химическое сродство между водородом и неметаллическими элементами и устойчивость молекул гидридов. Из гидридов галогенов — галогеноводородов — наиболее устойчивы молекулы HF, заметная диссоциация которых на атомы не наблюда- [c.236]

    Поскольку стандартные потенциалы восстановления измеряют для водных растворов, их использование для предсказания способности элементов к образованию простых анионов несколько ограниченно. Как указывалось в гл. 16, измеряемый электрохимическим способом потенциал восстановления по существу представляет собой характеристику трехстадийного процесса. Например, стандартный потенциал восстановления фтора, равный 2,65 В, может быть представлен в виде суммы сродства к электрону, соответствующего процессу [c.324]

    Вычислить энергию кристаллической решетки фторида и иодида серебра, если известно, что стандартные энтальпии их образования соответственно равны —48,5 и —14,9 ккал/моль энергия химической связи в молекулах Рг и 1г составляет 37 и 35,6 ккал/моль сродство к электрону атомов фтора н иода равно 83,5 и 74,7 ккал/ моль энтальпия сублимации иода 15 ккал/моль, энтальпия атомизации и первый потенциал ионизации для серебра соответственно равны 66 и 174 ккал/моль. [c.232]

    Многие считали, что появление ААС решит все проблемы в анализе следовых количеств металлов, поскольку здесь не должно быть помех в определении. Фактически же все методы, применяемые в ААС, чувствительны к помехам, имеющим различное происхождение [72, 74], хотя связанные непосредственно со спектральными линиями относительно редки [26]. Чем сложнее среда, тем возможнее помехи, которые могут либо ослаблять, либо усиливать поглощение. Если мы назовем помехой любой фактор, вызывающий отличие наблюдаемой величины сигнала от той, которую дает та же самая концентрация исследуемого элемента в стандартных условиях при оптимальных параметрах, список будет очень длинным. Некоторые изменения в параметрах прибора можно учесть путем осуществляемой до и после исследования проб тщательной калибровки по стандартам в той же среде. Если состав среды, в которой заключена проба, неизвестен или ее невозможно воспроизвести, то для компенсации химических помех применяют метод добавления стандарта. Этот метод не устраняет помехи, связанные с молекулярным поглощением или рассеянием из-за высокой концентрации солей. Если нет дейтериевой лампы, то для учета неспецифического поглощения следует проводить измерения как на резонансной линии, так и вне ее, но вблизи (неспецифическое поглощение). Разность этих двух сигналов пропорциональна действительной концентрации металла. Некоторые металлы, обладающие низкими энергиями ионизации, очень чувствительны ко всем изменениям концентраций ионов в образце. Обычно это нежелательное явление легко устраняется путем добавления к раствору металла с еще более низкой энергией ионизации. Анионы (например, РО ) могут подавлять сигнал, так как способствуют образованию молекул и затрудняют образование свободных атомов в пламени. Для преодоления этого затруднения добавляют избыток другого металла, который обладает большим сродством к мешающему аниону (например, для РОГ это La). Сигнал металла будет различным для различных растворителей или различных концентраций кислоты. Как правило, [c.553]


    Выражение для изменения свободной энтальпии реакции (стандартное химическое сродство) через свободные энтальпии образования веществ, принимающих участие в реакции, по аналогии с соответствующим выражением для теплового эффекта, запишем в виде [c.173]

    В таблицах обычно даются следующие величины при стандартных условиях (Г = 298 К, р = 1,01 бар) изменения энтальпий образования (тепловые эффекты образования) 1 кмоля вещества (АЛ ) изменения свободных энтальпий образования (химическое сродство) [c.195]

    На рис. 6 и 7 иллюстрируются зависимости между концентрацией и коэффициентом активности для различных неорганических ионов 1228]. Установлено, что обменное сродство, измеряемое величиной стандартной свободной энергии образования (—Д/ °мн) для [c.27]

    Численное решение (5) проводили методом Ньютона. При расчете текущих значений энтропии смеси и химического сродства реакций (2) и (3) система рассматривалась как смесь идеальных газов. Температурные зависимости термодинамических переменных вычисляли из аппроксимащюн-ных формул для приведенных энергий Гиббса и стандартных энтальпий образования веществ, взятых из справочника [3]. [c.26]

    Здесь АО Л , — энергия образования хлорида натрия из элементарных натрия и хлора, взятых в их стандартных состояниях (твердый кристаллический натрий и газообразный моле кулярный хлор), равная 384 кДж.моль- ЛОсуб = 78 кДж-моль — энергия сублимации натрия АО оп=496 кДж-моль —энергия его ионизации А0дие=203 кДж-моль — энергия диссоциации молекулярного хлора Л(5ср=387 кДж-моль —эне )гия, характеризующая сродство электрона к газообразному атомарному хлору. Если цикл проведен обратимо и изотермически, то полное изменение энергии равно нулю, что приводит к уравнению, позволяющему найти энергию решетки  [c.45]

    При изучении химических взаимодействий очень важно оценить возможность или невозможность их самопроизвольного протекания при заданных условиях, выяснить химическое сродство веществ. Должен быть критерий, при помощи которого можно было бы установить принципиальную осуществимость, направление и пределы самопроизвольного течения реакции при тех или иных температурах и давлениях. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония ЫН4ЫОз (к) в воде, хотя тепловой эффект этого процесса положителен А/Йэв > О (процесс эндотермический), и в то же время невозможно осуществить при Т = 298,16 К и р = = 101 кПа синтез к-гептана С,Н1в (ж), несмотря на то, что стандартная теплота его образования отрицательна АЯгэа обр <0 (процесс экзотермический). [c.104]

    Чтобы составить уравнение окислительно-восстановительной реакции, необходимо знать, от каких участвующих в реакции атомов, молекул или ионов и к каким атомам, молекулам или ионам перелоЛят электроны и в каком количестве. Это можно установить на основе периодической системы Д. И. Менделеева, зная строение атомов и молекул, величины ионизационных потенциалов, сродства к электрону, электроотрицательности атомов, окислительно-восста-новцтельные потенциалы и стандартные изменения энергии Гиббса образования веществ. [c.64]

    При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель или окислитель и число отдаваемых и принимаемых ими электронов. Для этого необходимо знать окислительно-восстановительную характеристику реагирующих веществ, что можно установить, руководствуясь периодическим законом Д. И. Менделеева, зная строение атомов- и молекул,, зная величины потенциалов ионизации, сродство к электрону," электроотрицательность элементов, окислптельно-восстано-вительные потенциалы и стандартные изменения энергии Гиббса образования веществ. [c.116]

    В других случаях решающее влияние на значение энтальпии может оказать энергия гидратации. Большие значения потенциала ионизации и теплоты сублимации при сравнительно малой теплоте гидратации характерны для малоактивных — благородных— металлов. У элементов, образующих отрицательные ионы, окислительный потенциал тем больше, чем выше энергия гидратации и сродство к электрону и чем меньше энергия образования одноатомного газа из вещества, взятого в стандартном состоянии. Латимер отметил, что, например, большая окислительная активность фтора сравнительно с иодом в основном обусловлена большей теплотой гидратации иона фтора (—514,14 кДж у фтора и —300,96 кДж у иода) различие в значениях сродства к электрону не слишком велико (—384,56 кДж у фтора и —313,5кДж у иода) .  [c.88]

    Окислительное действие кислорода. Молекулярный кислород— сильный окислитель, под действием которого окисляются многие органические и неорганические соединения. В результате присоединения электронов к Оа образуются ионы парамагнитный надпероксид-ион Ог (называемый также гипероксо-ионом, супероксо-ионом и т. п.) и диамагнитный пероксид-ион ОГ (пероксо-ион, пероксогруппа, кислородный мостик) при этом следует учесть, что достоверную величину сродства к электрону для Ог в вакууме получить не удалось (табл. 3.2). В водном растворе в зависимости от условий в той или иной форме протекают реакции с образованием различных соединений. В табл. 3.3 приведены значения электродных потенциалов для ряда реакций окисления и связанных с ними систем. Стандартный электродный потенциал о связан с изменением гиббсовской энергии реакции с другой стороны, его можно связать также с константой равновесия реакции /С  [c.95]

    В химии — энергия хим. связи. Оценивается часто по энтальпии р-ции энтальпии образования в-ва, энтальпии сгорания, а также через КР энергию, ионизации потенциал, сродство к эл-ну. Стандартные величины энергий относят обычно к р = 101325 Па и Т = 298,15 К. Ед. измерения э.с. в СИ — кДж/моль, в нек-рых случаях во внесистемной ед. — электрон-вольт (эВ). binding energy (2) [c.255]

    Здесь киУ/ — теплота образования кристаллического хлористого калия из] калия и хлора в их стандартных состояниях, 5к — теплота сублимации калия саДв — энергия диссоциации молекулы хлора — энергия ионизации калия сГ/ — сродство хлора к электрону. Остальные величины имеют прежние значения. Из цикла следует, что [c.61]

    Стандартный окислительно-восстановительный потенциал фтора (2,85 В) свидетельствует, что фтор — сильнейший окислитель. Энергия ионизации у фтора высокая, но по величине сродства к электрону 350,7 кДж/г-атом он занимает промежуточное положение хмежду хлором (370 кДж/г-атом) и бромом (345 кДж/г-атом). Это является следствием относительно легкой диссоциации молекулы фтора. Чтобы заставить молекулу Рг распадаться на атомы, достаточно затратить всего 158,4 кДж/моль. Относительная легкость диссоциации объясняется взаимным отталкиванием 16 электронов (по 8 у каждого атома), которые не принимают участия в образовании химической связи и могут занимать только разрыхляющие орбитали. Атомы Р небольшие, расстояние между ними невелико, внутренних свободных d-орбиталей (которые могли бы служить, как у хлора, для образования дативных связей) у фтора нет все это обусловливает легкую диссоциацию и необычно высокую активность фтора. [c.236]

    Метиленовый голубой, поступающий в продажу в виде двойной соли с хлористым цинком, применяется для крашения, а в виде солянокислой соли, не содержащей цинка, — для ситцепечатания. Солянокислая соль 99,7%-ной концентрации может быть получена обработкой карбонатом натрия продажной двойной соли с хлористым цинком, кристаллизацией из разбавленной соляной кислоты и перекристаллизацией из спирта. Благодаря яркости и чистоте оттенка Метиленовый голубой широко применяется для крашения и печати хлопка по таннину или по протраве типа Катанола и в меньшей степени для крашения шелка, несмотря на малую прочность к свету, характерную для класса основных красителей. Лаки из Метиленового голубого ценятся не только в текстильной, но и в других отраслях промышленности. Краситель не обладает сродством к непротравленному хлопку, но оксицеллюлоза и целлюлоза, содержащая минеральные вещества или связанную кислоту, окрашиваются этим красителем, и абсорбция Метиленового голубого в стандартных условиях может быть использована для качественного и количественного определения изменений в молекуле целлюлозы. Из многочисленных основных красителей, обладающих подобным свойством. Метиленовый голубой выбран для этой цели именно потому, что он может быть легко получен в аналитически чистом виде. Метиленовый голубой является окислительно-восстановительным индикатором и может быть использован, например, при титрованиях хлористым титаном и в иодометрии вместо крахмала. Концентрация Метиленового голубого может быть определена прямым титрованием хлористым титаном. Другой метод основан на образовании нерастворимого бихромата Метиленового голубого, который может быть взвешен. Можно определить Метиленовый голубой также и объемным методом обработкой его избытком бихромата калия и определением этого избытка с помощью иодистого калия [c.908]

    Алюминий имеет очень большое сродство к цислороду. Стандартная энергия Гиббса образования АЬ0зД0298 =.— 1582 кДж/моль. На этом свойстве основано его применение в алюмотермии. [c.138]

    Определим химическое сродство реакции СН4 + 2Нг01 СО2 + + 4Нг (в стандартных условиях), используя табличные значения величин изобарных потенциалов образования всех участвующих в реакции веществ. [c.156]


Смотреть страницы где упоминается термин Стандартное сродство образования: [c.120]    [c.287]    [c.183]    [c.303]    [c.56]    [c.18]    [c.18]    [c.315]    [c.138]    [c.257]    [c.265]    [c.257]    [c.386]    [c.206]    [c.46]   
Смотреть главы в:

Химическая термодинамика -> Стандартное сродство образования




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2025 chem21.info Реклама на сайте