Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морская коррозия металлов и сплавов

    Защитный эффект в отличие от разностного находит большое практическое применение в виде так называемой электрохимической катодной защиты, т. е. уменьшении или полном прекращении электрохимической коррозии металла (например, углеродистой стали) в электролитах (например, в морской воде или грунте) присоединением к нему находящегося в том же электролите более электроотрицательного металла (например, магния, цинка или их сплавов), который при этом растворяется в качестве анода гальванической пары из двух металлов (рис. 198), или катодной поляризацией защищаемого металла от внешнего источника постоянного тока. [c.295]


    Н2О. в промышленных и морских атмосферах алюминиевые сплавы подвергаются коррозии вследствие разрушения окисных пленок. Коррозионная стойкость алюминия и его сплавов зависит от чистоты обработки металла. Наибольшей коррозионной стойкостью обладает алюминий с отшлифованной и отполированной поверхностью. Царапины, надрезы, раковины, поры усиливают процесс разрушения алюминиевых сплавов. [c.73]

    Морская коррозия металлов и сплавов [c.60]

    Наиболее опасными видами коррозии алюминиевых сплавов являются межкристаллитная коррозия и коррозионное растрескивание. Более высокой стойкостью обладают сплавы, не содержащие в своем составе медь. Промышленный алюминий марок АД и АД1, сплавы с марганцем АМц, сплавы с магнием АМг2, АМгЗ обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях. Методы производства полуфабрикатов не оказывают влияния на их коррозионную стойкость. Сварные соединения из этих сплавов по коррозионным свойствам близки к основному металлу. [c.74]

    Титан и его спчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная,. муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности. [c.158]

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ В МОРСКОЙ ВОДЕ [c.13]

    СТ СЭВ 4199—83 Защита от коррозии. Металлы, сплавы и покрытия. Метод испытаний в морской воде в естественных условиях  [c.643]

    Современная техника включает детали и конструкции из различных металлов и сплавов. Если они находятся в контакте и попадают в раствор электролитов (морская вода, растворы любых солей, кнслот и щелочей), то может образоваться гальванический элемент. Более электроотрицательный металл становится анодом, а более электроположительный — катодом. Генерирование тока будет сопровождаться растворением (коррозией) более электроотрицательного металла. Чем больше разность электрохимических потенциалов контактирующих металлов, тем больше скорость коррозии. Почти все книги, особенно популярные, по коррозии металлов описывают случай, произошедший в 20-х годах текущего столетия в США. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее дниш,е было обшито дорогим монель металлом (сплав 70 % никеля и 30 % меди), а киль, форштевень и раму руля [c.147]

    Влияние аэробных морских бактерий на коррозию металлов было изучено в экспериментах, организованных Университетом штата Майами и Управлением использования и исследования соленых вод [133]. Образцы погружали в необработанную аэрированную морскую воду пз приливного канала, а также в воду, пропущенную через миллипоровый фильтр, отсеивающий всю микрофлору и микрофауну. Скорости коррозии определяли путем измерения поляризационного сопротивления. Для углеродистой стали были получены значения 170 мкм/год в необработанной воде и 190 мкм/год в воде без бактерий. Для алюминиевого сплава 5052 эти значения лежали в пределах 5—12 мкм/год и 3—9 мкм/год, а для нержавеющей стали 316 скорости коррозии были равны [c.177]

    Один из методов борьбы с коррозией металлов при трении — повышение их коррозионной стойкости, в частности применение для работы в морской воде ряда сплавов на медной основе. Для [c.340]

    По данным Р. Мирса [76], алюминиевые сплавы в теплой и влажной чистой атмосфере стойки даже при значительном скоплении влаги. Алюминиевые сплавы в контакте с большинством металлов и сплавов являются анодами и поэтому сильно разрушаются, в особенности при соприкосновении с медью и медными сплавами. Контакт алюминиевых сплавов с обычной сталью более опасен, чем с нержавеющей. Контактная коррозия алюминиевых сплавов проявляется сильнее всего в приморской атмосфере и в морской воде. В минеральных водах Цхалтубо алюминиевые детали в контакте с обыкновенной сталью выходят из строя через 2—3 месяца [77]. [c.73]

    МОНЕЛЬ-МЕТАЛЛ — сплав на основе никеля, содержит до 30% меди, 2—3% железа, марганец, иногда алюминий. Очень устойчив против коррозии в морской и пресной водах, в щелочах, органических кислотах и красителях. Обладает хорошими механическими и термическими свойствами. М.-м. широко применяется в электротехнике, судостроительной, электровакуумной, текстильной, химической и других промышленностях, в медицине, а также в аппаратостроении. [c.164]

    Зависимость скорости коррозии алюминиевых сплавов от времени практически для всех сплавов имеет один и тот же характер. Первое время контакт металла с морской водой вызывает интенсивную коррозию, затем скорость коррозии постепенно уменьшается. Так, алюминиевый сплав 5052 интенсивно корродирует первые 15 17 сут, а затем наступает уменьшение скорости коррозии в связи с образованием на поверхности защитной пленки сложного состава, включающей прод>т<ты жизнедеятельности бактерий. [c.25]

    Ввиду того что атмосферная коррозия металлов протекает в тонких пленках электролита, представляет интерес изучить процесс поляризуемости сплавов в тонких слоях морской воды. Первые работы в этой области были выполнены И. Л. Розенфельдом с сотрудниками [80]. На специально сконструированном приборе проводили опыты в тонких слоях электролитов (толщина пленки 100 мкм). Полученные поляризационные кривые для стали и чугуна (рис. 111. 12) показывают, что с наибольшей поляризацией катодный процесс протекает на чугуне, наименьшей — на Ст. 3. [c.55]

    Коррозия алюминиевых сплавов в морской воде — обычно питтинговая или щелевая. Образование питтингов начинается с пробоя защитной пленки в ее слабых местах или на неоднородностях, затем образуется электролитическая ячейка анодом в ней является небольшая по площади поверхность активного металла, а катодом — большая поверхность пассивного металла. Большая разность потенциалов этого активно-пассивного элемента вызывает существенный ток с сопровождающим его быстрым развитием коррозии на маленьком аноде (питтинге). [c.356]

    Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят > приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен- [c.83]


    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]

    В химической промышленности находят применение медноникелевые сплавы, содержащие 10, 30 и 63—70% Ni, а также другие металлы, в частности Fe и Мп. При скорости движения морской воды 0,30 м/с и менее коррозия таких сплавов имеет в основном равномерный характер со слабой тенденцией к питтингообразованию. Наименее подвержены коррозии сплавы Си (90), Ni (10) и Си (70), Ni (30). При больших скоростях движения морской воды стойкость медно-никелевых сплавов несколько повышается вследствие снижения коррозионного действия различного рода загрязнений воды и отложений на поверхности металла. В частности, при скоростях 1,5—4 м/с, соответствующих движению морской воды в насосах и теплообменниках, сплавы Си (70), Ni (30) и Си (90), Ni (10) подвержены лишь незначительной коррозии в зонах с турбулентным режимом движения. Противокоррозионные свойства этих сплавов могут быть улучшены введением в их состав 1—3% Fe. Однако присутствие в сплаве Си (70) и Ni(30) более 1% Fe увеличивает вероятность питтингообразования. Достаточно эффективно введение в состав сплава Си (70), Ni (30) добавок алюминия. Склонность к коррозии в зонах турбулентности в большей степени присуща никельсодержащим сплавам, чем чистому никелю. При очень высоких скоростях движения среды (от 4 до 40—50 м/с) скорость коррозии медно-никелевых сплавов выше, чем при более умеренных скоростях. [c.31]

    Алюминиевые сплавы, находящиеся в контакте с другими металлами, как было показано выше, являются часто анодами и подвергаются разрушению. Степень усиления коррозии зависит при этом от характера атмосферы. Электрохимическое действие контактов проявляется сильнее в морской и прибрежной атмосферах, нежели в промышленной и сельской Так, например, в сельских и промышленных районах контакт алюминиевых сплавов, содержащих медь, с обычной сталью не приводит к сильной коррозии алюминиевых сплавов. Однако в приморском районе коррозия может заметно усилиться [48, 49]. [c.132]

    Заслуживает внимания вывод авторов [5Г] относительно того, что в сравнительно разбавленных электролитах (0,01%-ный раствор хлористого натрия) неплакированный дюралюминий под влиянием контакта с катодными металлами может подвергаться разрушению в значительно большей степени, чем в концентрированных электролитах (морская вода). Последнее объясняется тем, что в разбавленных электролитах алюминиевая плакировка при контакте с металлом, обладающим более положительным потенциалом, не в состоянии обеспечить электрохимическую защиту сердцевины (дюралюминий). Если это так, то на морских сооружениях и конструкциях, эксплуатируемых в приморских районах, может возникнуть заметная контактная коррозия алюминиевых сплавов и в условиях атмосферной коррозии. [c.133]

Рис. 2. Сравнительная склонность некоторых часто применяемых в морских условиях металлов и сплавов к местной (щелевой и питтинговой) коррозии в морской воде [10] Рис. 2. Сравнительная склонность <a href="/info/1469432">некоторых часто</a> применяемых в <a href="/info/1920994">морских условиях металлов</a> и сплавов к местной (щелевой и питтинговой) коррозии в морской воде [10]
    Стоимость защиты стали от коррозии в морских условиях очень высока, однако нередко эти затраты бывают отчасти излищними. Можно назвать две причины подобной перезащиты . Во-первых, объемный и непривлекательный вид продуктов коррозии, создающий впечатление значительного разрушения металла, хотя действительные скорости коррозии материала при продолжительной эксплуатации известны сравнительно плохо. Скорости коррозии, приводимые в литературе, получены, как правило, в краткосрочных испытаниях и представляют средние значения за весь период экспозиции. Известно, однако, что коррозия углеродистой стали в морских условиях обычно протекает очень быстро в начальный период, а затем выходит на стационарный режим, характеризуемый линейной зависимостью. Этот линейный участок зависимости коррозионных потерь от времени и определяет стационарную скорость коррозии — наиболее важный параметр для оценки срока службы стальной конструкции в морской воде. Во-вторых, чрезмерные защитные меры связаны с плохо изученным влиянием биологической активности среды на скорости коррозии металла. Сплавы на основе железа, по-видимому, в наибольшей степени подверл<ены воздействию морских организмов среди всех металлов, однако эти биологические факторы практически игнорируются коррозионистами. В классических курсах коррозии влияние биологической активности на коррозионные процессы либо не упоминается совсем, либо считается несущественным и изолированным явлением. [c.441]

    С е й ф е р А. Л. Сплавы алюминия как материал для изготовления протекторов. Труды Всесоюзного совещания по борьбе с морской коррозией металлов. Азернешр, 1958. [c.111]

    Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % N1 (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержащие кроме того от нескольких десятых до 1,75 % Ре, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % N1 монель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо. [c.361]

    Способы защиты от коррозии металлов в морской воде заключаются в следующем а) очистке поверхности металла от окалины, ржавчины и покрытии ее лаком, этиленовыми красками, мастикой фенол-формальдегидной, каменноугольной или на битумной основе, применении фосфотирования, цинкования, оксидирования (для алюминия) б) использовании коррозионно-стойких металлов - меди и ее сплавов в) катодной и протекторной защите в комбинации с защитными покрытиями или без них г) применении ультразвуковой защиты совместно с катодной и протекторной защитой д) использовании элект-родренажной защиты. [c.43]

    В расчетах на прочность технологической аппаратуры конструктору часто приходится учитывать общую равномерную по поверхности коррозию металлов и сплавов, для чего необходимо знать проницаемость материала в мм/год при заданных рабочих условиях агрессивной среды (концентрация, температура, давление). Она учитывается при выборе величины прибавки на коррозию к рассчитанной толщине стенки аппарата. В ряде случаев при конструировании технологической аппаратуры необходимо учитывать также и другие виды коррозионного разрушения материалов. Например, в химических аппаратах, выполненных из кислотостойкой стали и находящихся под постоянным повышенным давлением, при совместном действии коррозионной среды и растягивающих напряжений в ряде случаев наблюдается коррозионное растрескивание металла, происходящее обычно внезапно без видимых изменений материала, Это явление не имеет места при наличии в металле напряжений сжатия. Кроме того, коррозионное растрескивание происходит в небольшом количестве агрессивных сред и зависит от величины давления и температуры, Известно, что ускоренное растрескивание аппаратуры из кислостойких сталей, находящейся под постоянно действующей нафузкой, имеет место в растворах Na I, Mg l,, 7,т)С , Ь1С1, Н 8, морской воде и т,д. Латуни обнаруживают склонность к коррозионному растрескиванию в среде аммиака. [c.9]

    Если металл (сплав) находится в активном состоянии, СОСТОЯНИЙ пробоя или перепассивации, то снизить скорость коррозии можно смещением его потенциала в область более отрицательных (меньших) потенциалов. С этой цепью применяется метод катодной защиты [41, 42] или протекторная защита. Методы катодной и протекторной защиты, в частности, эффективно применяются при защиге морских соорулсений. [c.47]

    Рассмотрены асе факторы, вызывающие разрушение в различных морских условиях сталей, меди, никеля, алюминия, титана, а также неметаллических материалов, включая полимеры и композиционные материалы на их основе, керамику, изделия из бумаги, текстиль, магнитную ленту. Показано поведение деталей радиоэлектронной аппаратуры, ракетного топлива и взрывчатых веществ. Приведены сведения о скорости коррозии металлов и их сплавов на различных глубинах. Представлен экспериментальный материал, полученный при изучении свыше 20000 образцов сплавов 475 марок при их выдержке в натурных условиях от трех месяцев до трех лет. Описана также коррозия, контролируемая биофакторами, в применении к различным географическим районам. [c.4]

    Латуни с высоким содержанием цинка (морская и марганцовистая латуни, мунц-металл) демонстрируют сравнительно низкие скорости коррозии, рассчитанные по потерям массы, однако относительные потери прочности у них гораздо выше, чем у других сплавов этой группы (см. табл. 34). При экспозиции в морских средах названные сплавы испытывают обесцинкование. Вообще говоря, обесцинкованию в морских атмосферах подвержены сплавы меди, содержащие 15 % 2п и более. В случае однофазных латуней склонность к этому виду избирательной коррозии можно регулировать, вводя в сплав небольшие добавки сурьмы, мышьяка или фосфора. Очень хороший эффект дает введение 0,02 % Аз. Мунц-металл, имеющий в своем составе 0,19 % Аз, показывает существенную потерю прочности вследствие обесцинкова-ния. Наличие мышьяка не предотвращает обесцинкование в этом двухфазном сплаве. [c.96]

    Загрязненная морская вода часто содержит сероводород или другие сульфиды. Пленка сульфида меди, образующаяся на поверхности металла в морской воде, содержащей такие загрязнения, является более катодной, чем коррозионная пленка, сформированная в чистой воде. Из-за большой площади поверхности активного катода в местах разрыва сульфидной пленки может происходить быстрая -локальная коррозия. Некоторые сплавы, например купроникель или Си—А1, менее склонны к образованию сульфидной пленки и обладают большей стойкостью в загрязненной морской воде, чем медь и обычная латунь (табл. 37). [c.98]

    На практике встретился необычный тип коррозии алюминиевого сплава. Это произошло с буями из алюминиевого сплава 7178-Т6, которые применялись для укрепления установки для коррозионных испытаний. Во время подъема конструкции УКИ-3 после 123 дней экспозиции оказалось, что буй, находившийся на глубине 90 м под морской поверхностью, прокорродировал. Белые продукты коррозии на нижней полусфере буя покрывали места, где плакирующий сплав прокорродировал до основного металла. Верхняя полусфера была покрыта пузырями, которые достигали 5 см в диаметре и около 2 см по высоте с дыркой на верхушке каждого пузыря. Дырка на верхушке пузыря указывает на происхождение повреждения вначале в плакирующем сплаве существовало точечное отверстие, через которое морская вода получила доступ к поверхности раздела менсду плакирующим и основ- [c.381]

    Известно, что изменением состава малоуглеродистых сталей, если только не доводить их до высоколегированных сплавов, не удается повысить коррозионную стойкость этих сталей в морской или речной воде. Последнее объясняется тем, что скорость коррозии сталей в нейтральных электролитах определяется скоростью протекания катодной реакции восстановления кислорода, которая в свою очередь лимитируется доставкой кислорода к катоду (концентрационной поляризацией по кислороду). Если это так, то изменить скорость процесса можно, изменив лишь условия диффузии. В то же время известно, что при коррозии металлов с водородной деполяризацией, когда скорость процесса определяется, благодаря отсутствию концентрационной поляризации (подвижность и концентрация ионов водорода высокие), скоростью протекания самой электрохимической реакции (перенапряжением), можно изменением состава металла путем введения элементов с высоким пгренапряжением водорода резко изменить коррозионную стойкость сплава. [c.232]

    Е. В. Сивакова, А. С. Строев. ЖАРОСТОЙКИЕ СПЛАВЫ - сплавы, отличающиеся жаростойкостью. К Ж. с. относятся никель-хромистые и железохромоникелевые сплавы (табл., рис.), обладаю-шде высоким сопротивлением газовой коррозии (см. Коррозия металлов) при высокой т-ре (800—1100° С) в среде воздуха и в др. газовых средах. Стойкость против газовой коррозии зависит от хим. состава сплава, т-ры, состава газовой среды, срока эксплуатации, величины мех. напряжений и цикличности нагрузки. Газовая среда, образующаяся при сгорании грубого нефтяного топлива или особо тяжелых топлив (мазута и т. п.), содержащих повышенное количество серы, ванадия, солей щелочных и щелочноземельных метал лов и др., резко ухудшает коррозионную стойкость сплавов, уменьшая срок эксплуатации изделий из них. В очищенном топливе (напр., керосине, бензине) коррозия проявляется в меньшей степени. Однако с повышением рабочей т-ры или увеличением содержания примеси солей морской атмосферы она может быть катастрофической. Сплавы с большим содержанием хрома или сплавы, подвергнутые спец. легированию, а также изделия с диффузионными покрытиями, созданными в процессе алитирования, хромоалитирова-ния или алюмосилицирования, отличаются более высокой стойкостью против газовой коррозии. Жаростой [c.427]

    Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды. [c.171]

    Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью, и потери напряжения, (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии сравнительно невелики. Катодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника (катодная защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы). Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называется жертвенным анодом . [c.480]

    Питтинговая точечная) коррозия — коррозия металла в виде отдельных точечных поражений, когда остальная поверхность металла находится в пассивном состоянии. Питтинговой коррозии подвержены углеродистые и нержавеющие стали, сплавы на основе алюминия, никеля, титана и других легкопассивирую-щихся металлов и сплавов в морской воде, рассолах холодильных машин, смесях соляной и азотной кислот и т. д. [c.39]


Смотреть страницы где упоминается термин Морская коррозия металлов и сплавов: [c.30]    [c.402]    [c.13]    [c.850]    [c.741]    [c.9]   
Смотреть главы в:

Новый справочник химика и технолога Электродные процессы Химическая кинетика и диффузия Коллоидная химия -> Морская коррозия металлов и сплавов




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов морская

Металлы сплавы

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте