Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез-газ плотность

    Очень большую роль в комплексе свойств полиуретанов играет развитое физическое внутри- и межмолекулярное взаимодействие. Поэтому окончательный уровень показателей резины из полиуретана достигается примерно после истечения двух недель после синтеза. Плотность физических поперечных связей может превосходить плотность химических узлов сетки в 3-5 раз, а энергия активации разрушения отдельных типов физических связей (рис. 53) сопоставима с энергией ковалентных связей. [c.396]


    В процессе синтеза плотность органической фазы возрастает от 0,99 до 1,04 кг/м , а разность плотностей органической фазы и водного раствора щелочи мала вначале и уменьшается далее от 40 до 10 кг/м . Вязкость же органической фазы резко возрастает — от 8 до 107 мПа-с. В баковых реакторах большого объема при перемешивании таких сред механическими мешалками не удается получить равномерную по составу эмульсию с каплями одинакового размера во всем объеме, достаточно мелкими для создания развитой поверхности, обеспечивающей интенсивный массообмен. Поэтому длительность процесса велика, и даже в реакторах небольшого объема (0,5 м ) она достигает 4—5 ч. Между тем, для предполагаемого развития производства эпоксидных смол необходимо применять именно крупные реакторы. [c.171]

    Структура латексных ВПС сложна, особенно в свете модели Вильямса оболочка — ядро, обсужденной в разд. 3.1.2.2 и 13.4. Важными переменными являются состав композиции, очередность синтеза, плотность сшивания и конечные размеры латексных частиц. Относительно последних следует отметить, что размеры фазовых доменов имеют размеры того же порядка, что и диаметры частиц. [c.230]

    Последующее восстановление при 400° в тех же условиях, в каких производилось первоначальное восстановление, дало почти что первоначальное значение удельной поверхности в восстановленном состоянии. Отношение объема хемосорбированной окиси углерода (F o) к объему физически адсорбированного азота (Fm) изменялось от 0,13 до 0,21. Это отношение возрастало с увеличением удельной поверхности образца. После применения в синтезе плотность по гелию и объем пор (объем пор с отверстиями диаметром меньше 5р см. гл. II) были намного меньше, а плотность по ртути была больше, чем для исходного восстановленного катализатора. После восстановления при 400° этим величинам были почти возвращены их первоначальные значения. Таким образом, величины удельной поверхности, плотности и объема пор катализатора, бывшего в употреблении и восстановленного при 400°, были почти равны этим величинам для исходного восстановленного катализатора. Следовательно, после 11 недель испытания катализатор не спекался и не разрушался в значительной степени. [c.442]

    Согласно опубликованным данным [51] парафин, пригодный для химического синтеза, например для окисления или производства смазочных масел, должен удовлетворять определенным, требованиям. При остаточном давлении 1 мм рт. ст. он должен перегоняться в пределах 150—300°. При разделении на 25-градусные фракции плотность и ани- [c.51]


    Определить выход азотной кислоты, если на синтез поступило аммиака массой 568 кг, из которого получено 62%-иой азотной кислоты (плотность 1,39) объемом 2,28 м3. [c.167]

    При высоких давлениях, в особенности когда плотность газа становится сравнима с плотностью жидкости, образование газовых растворов сопровождается изменением объема и тепловым эффектом. Механизм растворения веществ в сжатых газах принципиально не отличается от механизма растворения в жидкости. В сжатых газах растворение веществ достигает значительных величин. Так, при l 10 Па и 100"С азот растворяет до 10 молярных долей бензина (%), а этилен при 2,4-10 Па и 50° С — до 17 молярных долей нафталина (%). Сжатые газовые растворы используются в технике для синтеза некоторых минералов. Например, растворимость кварца при высоких температурах в сжатом водяном паре, насыщенном некоторыми солями, используется для выращивания крупных (массой до нескольких килограммов) кристаллов. [c.126]

    Из приведенного примера можно сделать вывод о том, что при проектировании заводов многотоннажного органического синтеза не следует допускать большой плотности застройки, так как в конечном счете это приводит к удорожанию проекта и строительно-монтажных работ при реконструкции в стесненных условиях действующего производства. При этом усугубляются и без того высокие [c.24]

    Сообщается , что для кристаллизации дифенилолпропана (в виде аддукта с фенолом) из реакционной массы, полученной на стадии синтеза и содержащей фенол, аддукт и побочные продукты, аппараты с циркулирующим раствором неприменимы. Вследствие того что различия в скорости осаждения кристаллов разного размера малы и плотность маточного раствора н кристаллов отличается незначительно, заметного осаждения кристаллов не происходит. Поэтому предложено использовать аппараты с циркуляцией суспензии. Для удаления из смеси избытка зародышей и мелких кристаллов часть раствора приходится выводить в так называемый нагревательный контур, где зародыши и кристаллы растворяются затем раствор снова поступает на охлаждение. [c.174]

    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]

    Метод синтеза этилового спирта, предложенный в 1932 г. В. Ф. Герром с сотрудниками, заключается в следующем. Пирогенный газ пропускают через активированный уголь с целью поглощения последним гомологов этилена очищенный газ содержит водород, метан, этан и этилен (до 22 % по объему). В таком составе газ (так называемая этиленовая фракция) при нормальном давлении и температуре около 100 °С поступает в железные скрубберы с насадкой из мелких кусков кварца, орошаемых — навстречу газовому потоку — концентрированной серной кислотой (плотность при 15 °С — 1,84) В указанных условиях максимальные выходы этилового спирта колебались по лабораторным данным в пределах 7—8 % на газ (30% потенциала этилена в газе) при расходе кислоты в 14—16 кг/кг абсолютного спирта, по данным работы полузаводской спиртовой установки — не выше 6,5 % на газ нри расходе кислоты до 18 кг/кг абсолютного спирта. [c.26]

    Основные достоинства плазменного способа синтеза мембран заключаются в следующем образование сухих мембран (таким образом, хранение и транспортирование их не требуют специальных предосторожностей), возможность регулирования толщины полимеризационного (т. е. активного) слоя мембраны, высокая адгезия полимерной пленки к подложке, высокая селективность при очень тонком полимеризаци-онном слое (от 1 мкм и менее), низкое давление осаждения полимера из плазмы, возможность осаждения на различных по форме и материалу подложках, минимальное сжатие мембраны в процессе работы (так как плотность осажденной на подложке пленки велика), сравнительно малое время образования мембраны (от 10 до 15 мин), возможность получения мембран на основе широкого ряда полимеров. [c.81]


    Указанные обстоятельства обусловливают третий подход к синтезу операторов ФХС, основанный на модельных представлениях о внутренней структуре процессов, происходящих в технологических аппаратах. Основу этого подхода составляет набор идеальных типовых операторов, отражающих простейшие физико-хими-ческие явления (модель идеального смешения, модель идеального вытеснения, диффузионная модель, ячеечная модель, комбинированные модели и т. п.). Математическое описание технологического процесса сводится к подбору такой комбинации простейших операторов, чтобы результирующая модель достаточно точно отражала структуру реального процесса [1 ]. Такой подход позволяет сравнительно просто учесть влияние важнейших гидродинамических факторов в системе на макроуровне (зон неидеальности смешения, циркуляционных токов, байпасных потоков и других гидродинамических неоднородностей в аппарате), а также стохастических свойств ФХС (распределения элементов потока по времени пребывания в аппарате, коалесценции и дробления частиц дисперсной фазы, распределения частиц по размерам, вязкости, плотности, поверхностному натяжению и т. д.). [c.14]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]

    В качестве восстановления используют синтез-газ, водород, азотоводородную смесь. Имеет место образование цинк-хромовой шпинели вследствие диффузии более подвижного компонента — СгзОз — на поверхность менее подвижного — ZnO. В результате такой диффузии ZnO покрывается мономолекулярным слоем СггОз, дальнейшая диффузия молекул СггОз в кристаллическую решетку ZnO приводит к образованию каталитически активной шпинели [152, 153]. Восстановление проводят либо в самой колонне синтеза при очень медленном нагреве, либо в специальном аппарате. В процессе восстановления изменяется физико-химическая характеристика контактной массы. Восстановленная масса имеет насыпную плотность 1,28 г/см пористость 36%, удельную поверхность -150 м2/г. [c.154]

    Конверсию с паром можно проводить также в реакторах с кипящим слоем катализатора. Тепло, необходимое для проведения процесса, подводится при помощи циркулирующего инертного твердого теплоносителя [70]. Сепарация катализатора и теплоносителя в этих условиях происходит благодаря разнице их плотностей. Такой процесс разрабатывается в Институте нефтехимического синтеза АН СССР (температура 800—850° С, давление до 15 ат). Теплоноситель нагревается в специальном аппарате путем сжигания газовоздушной смеси. [c.120]

    Следует отметить также возможность использования жидкого водорода как источника газообразного водорода высокой чистоты на различных химических предприятиях, где он необходим для процессов синтеза. Этот способ может оказаться выгодным, так как сжиженный водород имеет высокую плотность, соответствующую плотности газообразного водорода, сжатого до 800— [c.6]

    Процесс синтеза нефтеполимеров проводился в реакторе периодического действия при режимах температура 200-275 С продолжительность 6-8 час. Пробы отбирались с интервалом 1 час. Контролировались следующие параметры системы температура размягчения (Т ), среднечисловая молекулярная масса (ММ), коксуемость (К), относительная плотность (р). По электронным спектрам поглощения определялись эффективный потенциал ионизации (ПИ), эффективное сродство к электрону (СЭ), энергия активации вязкого течения (Е ), концентрация парамагнитных центров (С ) [3]. Свойства битум-стирольных композиций представлены в табл. 1. [c.110]

    В качестве исходного сырья, используемого для получения синтез-газа посредством парового риформинга, могут применяться природный газ (в основном метан с несколькими процентами высококипящих углеводородов), легкий бензин (в основном бутан с некоторым количеством бутена и высококипящих углеводородов) и, наконец, легкие нефтяные дистиллаты. которые содержат различные углеводороды, кипящие при 40—170 С (например, 65 объемн. % парафинов, 25% нафтенов, 10% ароматических углеводородов и 1% олефинов). В последнем случае средний молекулярный вес близок к 100, а плотность составляет 0,68—0,72 г см , — величины, сходные с молекулярным весом и плотностью гептана С,Нхв. [c.63]

    Разделительные трубные тарелки предохраняют от свободного падения со слишком большой высоты, но они также затрудняют введение загрузочных труб. Катализатор необходимо сбрасывать равномерно по окружности верхней части патрона, чтобы предотвратить образование куч и сегрегацию в слое. Некоторые виды предварительно восстановленного катализатора синтеза более хрупки, чем обычный тип катализатора, и загружаются они поэтому с помощью трубы и загрузочной воронки. Труба и загрузочная воронка требуются также для загрузки полочных реактивов с холодными байпасами. Трубы должны изготовляться из металла, так как катализатор обладает большой плотностью и абразивностью. [c.201]

    Большинство типов катализатора синтеза аммиака представляют собой неоднородные дробленые частицы, поэтому насыпная плотность может изменяться в зависимости от метода загрузки. По мере заполнения реактора необходимо контролировать насыпную плотность, чтобы иметь уверенность в достижении правильного веса и объема загрузки. [c.201]

    Высшие жирные спирты (ВЖС) — техническое название смесей одноатомных насыщенных спиртов алифатического ряда с числом углеродных атомов в молекуле от 6 до 20. ВЖС получают методами органического синтеза, почему называются также синтетическими жирными спиртами (СЖС). В дальнейшем, как и в случае кислот, под термином ВЖС понимаются СЖС. Физические свойства ВЖС зависят от их молярной массы, ВЖС с числом атомов углерода в цепи от 6 до 11 представляют жидкости с температурами кипения 157—286°С, с большим числом углеродных атомов — твердые легкоплавкие вещества светло-желтого цвета с температурами плавления от -5 до 65°С. Все ВЖС легче воды (плотность 0,6—0,7 т/м ). Растворимы в этаноле и диэтиловом эфире. Растворимость в воде падает с увеличением молярной массы и спирты, начиная с g в воде практически нерастворимы. ВЖС огнеопасны. Взрывоопасность паров ВЖС в смеси с воздухом увеличивается с уменьшением молярной массы. ПДК для ВЖС равна 10 мг/м . [c.283]

    В табл. 61 приведены результаты экстракции продуктов синтеза (кроме газоля и бензина, адсорбированных углем), полученных при 1000 ат над рутениевым катализатором. Молекулярные веса отдельных парафиновых фракций определялись по Рихе (Rie he) с использованием толуола как растворителя [84]. Плотности определялись при 20° методом взвеси . [c.132]

    Для подтверждения возможности органического синтеза нефти были проведены прямые лабораторные экспериментальные исследования (технологический аргумент). Так, еще в 1888 г. немецкий химик К. Энглер впервые в мире произвел перегонку рыбьего жира при давлении 1 МПа и температуре 42 °С и гюлучил 61 % масс, масла плотностью 0,8105, состоящего на 90 % из углеводородов, преимущественно парафиновых от и выше. В тот же период им были получены углеводороды из растительных масел репейного, оливкового и др. В 1919 г. акад. Н.Ф. Зелинский произвел перегонку сапропелита оз. Балхаш и получил 63,2 % смолы, 16 % кокса и 20,8 % газа. Газ состоял из метана, окиси углерода, водорода и сероводорода. После вторичной перегонки смолы были получены бензин, керосин и тяжелые масла, в состав которых входили парафиновые, нафтеновые и ароматические углеводороды. В 1921 г. японский ученый Кобаяси получил искуственную нефть при перегонке рыбьего жира бе дав.ления, но в присутствии катализатора — гидросиликата алюминия. Подобные опыты были проведены затем и другими исследователями. Было установлено, что природные алюмосиликаты [c.53]

    Оксиэтилированные жирные кислоты ЮЖК). Аля синтеза ОЖК исиол1,зу — ется кубовый остаток синтетических жирных кислот (СЖК) с числом углеродных атомов более 20 (С >20) или 25 (С >25). Деэмульгирующая активность и физические свс йства (температура застывания, вязкость, плотность и др.) образцов ОЖК зависят от числа групп ОЭ (в пределах 14 — 25 на одну молекулу ОЖК) вязкость и температура засгывания ПАВ снижаются, а плотность и деэмульгнрующая его способность [c.149]

    Большое значение имеет порядок подачи реагентов на синтез Обычно к серной или соляной кислоте приливают фенол и ацето (предварительно смешанные или раздельно). При использованш концентрированной серной кислоты (плотность 1,84 г/см ) рекомен дуется постепенно добавлять ее к охлажденной до 15 °С смеси фено л а с ацетоном . Наиболее эффективным оказалось постепенное дс бавленне ацетона к смеси фенола с кислотой . Как отмечалос выше, избыток фенола способствует подавлению побочных реакци и получению более чистого продукта. В случае постепенного добав [c.68]

    В производстве БНК используется бутадиен того же качества, что и в производстве бутадиен-стирольных каучуков. Акрилонитрил применяется с концешрацией выше 99%. Он получается различными способами, из которых важное значение приобрел синтез его из пропилена, аммиака и кислорода. Акрилонитрил характе-рпзуется следующими свойствами т. кип. 77,3 °С, растворимость в воде 7,3%, растворимость воды в акрилонитриле 3,17о- Не содержащий посторонних примесей акрилонитрил устойчив к окислению на воздухе и нагреванию. Как технический продукт хранится в присутствии гидрохинона, р-нафтола и др. Двойная связь акрилонитрила обладает высокой реакционной способностью, обусловленной ее поляризацией цианогруппой, атом азота которой смещает я-электроны двойной связи и понижает ее электронную плотность. Благодаря поляризующему влиянию цианогруппы акрилонитрил обладает способностью к полимеризации и сополимеризации [7, 8]. [c.358]

    В последние годы исследованию продольного перемешивания и его влияния на абсорбцию посвяш,ено значительное число работ. Влияние перемешивания на физическую абсорбцию анализировали, например, В. В. Кафаров, В. В. Шестопалов и др.67,68 и Ю. В. Аксельрод и др.5ба. в последней работе, в частности, показана существенность влияния продольного перемешивания газа на эффективность абсорбции в условиях высоких плотностей орошения, характерных для промышленных колонн водной очистки синтез-газа от двуокиси углерода. [c.220]

    Модули половолоконного типа, несмотря на высокую плотность упаковки, имеют ряд недостатков, главным из которых является высокое (0,7—1,0 МПа) гидравлическое сопротивление. Поэтому аппараты этого типа нашли промышленное при-.менение в процессах, протекающих при относительно высоких давлениях (извлечение водорода из продувочных газов синтеза аммиака, очистка природного газа). Существенным недостатком таких аппаратов является также неразъемность конструкции, поэтому их осмотр и ремонт весьма затруднительны или невозможны вообще. [c.193]

    Экстракция водным раствором метанола 1214, 217—219, 222, 225, 233, 234, 2391, известная под названием метод Метасольван, является чисто физическим процессом. В качестве растворителя применяется водный раствор метанола (70—80 вес. %). Увеличение концентрации метанола повышает растворимость, но снижает избирательность экстракции, кроме того уменьшается разность плотностей метаноловой и масляной фракций, что затрудняет разделение фаз. Кроме фенола, в растворе метанола растворяется еще и некоторое количество компонентов масла (до 20%), которые невозможно отделить путем дистилляции. Чтобы уменьшить содержание этих масел, к метанолу добавляют еще так называемые вспомогательные растворители либо ими промывают ме-таноловую фракцию. Эффективными оказались насыщенные углеводороды с низкими температурами кипения, например гексан, относительно легкие фракции (60—100 Т.), полученные из нефтяного газолина, из продуктов синтеза Фишера—Тропша и даже из жидких продуктов сухой перегонки. Так как из масел при контакте с метаиолом выделяются хлопьевидные осадки, для экстракции пользуются только механическими колоннами [233, 239] или установками типа мешалка—отстойник. [c.416]

    Примемение. Фтор используют для фторирования органических соединений, синтеза различных хладоагентов (фреонов), получения фторопластов, в частности тефлона, образующегося при-полимеризации тетрафторэтилена. Тефлон характеризуется небольшой плотностью, низкой влагопроницаемостью, большой термической и химической стойкостью, высокими электроизоляционными характеристиками. На тефлон не действуют щелочи и кислоты, даже царская водка. 3)то незаменимый материал при лабораторных исследованиях, для изготовления аппаратуры в производстве особо чистых веществ, применяется в химической, электронной и других отраслях промышленности. В технике используют также фторсодержащие смазки. [c.472]

    Аналитический синтез оптимального регулятора. Часто в таких процессах, как водная очистка синтез—газа от двуокиси углерода, очистка газов от аммиака, улавливание хвостовых газов и т. п., основное требование к промышленному абсорберу состоит в том, чтобы концентрация абсорбируемого компонента в газовой фазе на выходе из аппарата не превышала заданной величины у г/,д. Если входные возмущения по составу фаз таковы, что концентрация абсорбируемого компонента не выходит за допустимые границы на выходе из аппарата (что можно наблюдать особенно при больших плотностях орошения), а наиболее опасными являются возмущения по расходу газовой фазы, то сформулированный выше вывод относительно управляемости каналов насадочного абсорбера находит эффективную практическую реализацию. Действительно, сведем задачу регулирования выходной концентрации по каналу массообмена к эквивалентной задаче по каналу гидродинамики. При заданных нагрузках на аппарат и фиксированном диапазоне допустимых концентраций на выходе всегда можно рассчитать соответствующий этим условиям перепад давления на колонне ДРзд [55]. Пусть система регулирования выходной концентрации предусматривает функциональный блок, в задачу которого входит вычисление с каждым новым скачком по расходу газа того перепада давления, который соответствует новой нагрузке по газу и заданной концентрации на выходе. При этом задача регулирования состава газа на выходе из аппарата сводится к поиску такого управляющего воздействия по расходу жидкости Ь, которое после каждого нового скачка по расходу газа С приводило бы фактический перепад давления ДР к рассчитанному для новых условий перепаду давления ДРзд. [c.428]

    Синтезы, проведенные с дейтерием, позволили получить в чистом виде соответствующие соединения его ( тяжелую воду ОаО, дейтероаммиак МОэ, дейтеробензол СбОб и др.) и изучить их. Эти соединения обнаружили хотя и незначительные, но вполне заметные отличия в свойствах от соответствующих соединений легкого изотопа. Так, тяжелая вода обладает плотностью 1,10 (т. е. несколько большей, чем обычная вода), температура кипения ее при [c.48]

    Анализ научных публикаций последних лет показал, что основное направление работ в области синтетических масел для турбореактивных самолетов — синтез и применение смешанных или комплексных эфиров и диэфиров. Комплексные эфиры диорто-кремниевой кислоты [пат. США 3444081] предложены в качестве основ масел, пригодных для работы в высокотемпературных условиях. Эти эфиры могут содержать радикалы ортокремниевой кислоты, пентаэритрита, двухосновных карбоновых кислот, трехосновных карбоновых кислот, полигликолевого. эфира и некоторые другие. Эфиры этого типа характеризуются значительной молекулярной массой (более 1400), высокой плотностью и вязкостью (126 мм /с при 100°С) и низкой температурой застывания (—50 °С). В качестве высокотемпературных смазочных масел предложен ряд диарилдиалкоксисиланов с алкильными радикалами Сз—С12 [англ. пат. 971598]. [c.165]

    Пример 18 [19, с. 293—311J . Выполнить ориентировочный расчет колонны синтеза аммиака по следующим исходным данным. Синтез аммиака производится в полочном реакторе (колонне) со взвещенными слоями железного мелкопористого катализатора. промотированного добавками АЬОз. К2О, СаО, SiOa. Выбранный катализатор устойчиво эксплуатируется в следующих пределах рабочих температур /макс 540 °С, НИН = 475°С. Плотность частиц катализатора рт = 3500 кг/м . Для проведения синтеза при температурном режиме, близком к оптимальному, число полок (слоев катализатора) принято i = 5. [c.145]

    Сс г — количество молей синтез-газа п — количество атомов водорода обобщенного углерода в сырье для производства синтез-газа у — отношение азота к водороду в синтез-газе V — общий объемный расход р — плотность общего потока  [c.367]

    После выделения углеводородов в чистом виде следующим, эта-ис1у нсследования является их идентификация. Идентификация. моятет быть химической (установление строения углеводорода путем синтеза и изучен1 я свойств его производных), физико-химиче-ско , которая основана либо на определении физико-химических кои-ста> т углеводорода — плотности, показателя преломления, рефрак-ци) . дисперсии — либо на определении его различных спектрог,. [c.26]


Смотреть страницы где упоминается термин Синтез-газ плотность: [c.218]    [c.43]    [c.452]    [c.150]    [c.15]    [c.220]    [c.427]    [c.272]    [c.225]    [c.10]    [c.213]    [c.150]   
Справочник азотчика Том 1 (1967) -- [ c.421 ]

Справочник азотчика Т 1 (1967) -- [ c.421 ]




ПОИСК







© 2025 chem21.info Реклама на сайте