Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физический анализ по плотности

    Определение физических характеристик. Насыпная плотность определяется путем измерения массы экструдатов катализатора в единице объема при нормированном уплотнении. Измерение массы приводится к массе вещества, прокаленного при 550 °С. За результат анализа принимается среднее арифметическое двух параллельных определений, допускаемое расхождение между которыми не должно превышать 2% отн. [c.77]


    Это трудно осуществить в большинстве заводских и даже специальных лабораторий. Поэтому Р. Оболенцев и А. Бочаров [242] разработали метод так называемых оловянных точек для анализа бинарных смесей парафиновых углеводородов с близкими температурами кипения и почти совпадающими другими физическими константами (плотность, показатель преломления и т. д.). [c.499]

    Эталоны должны быть по возможности идентичны анализируемым веществам не только по химическому составу, но и по физическому состоянию и физическим свойствам (плотности, летучести, тепло- и электропроводности и т. д.). При анализе этилированного бензина на свинец нет необходимости применять эталоны, содержащие другие компоненты кроме определяемого элемента и внутреннего стандарта. Более того, это отрицательно скажется на точности анализа. В то же время для определения большого числа примесей, например продуктов износа в работавшем масле, целесообразно применять эталоны, содержащие не только все интересующие элементы, но и основные третьи элементы. При этом следует учитывать продукты износа, компоненты присадок к топливу и маслу, а также пыль, воду и т. д. Такой подход к определению состава эталонов обеспечивает наиболее правильные результаты анализа. [c.66]

    Контроль производства осуществляется заводскими и цеховыми лабораториями на всех стадиях переработки сырья и готовой продукции. В контроле производства применяют различные методы качественного и количественного химического анализа (весовой, объемный), электрохимические методы (потенциометрию, кондуктометрию, полярографию, кулонометрию) оптические методы (колориметрию, фотометрию, нефелометрию, рефрактометрию) методы определения физических свойств (плотности, вязкости, температуры плавления, кипения, поверхностного натяжения, механической прочности и др.). [c.141]

    В-оашЕ . 1шаико-химического анализа лежит изучение зависимости состава системы (или других 1Га 7аме1 рив СОО ГоЯнИЯ температуры, давления) от ее физических свойств (плотности, вязкости, электропроводности и др.). Найденные из опыта зависимости изображаются в виде диаграмм состояния состав — свойство. Для двухкомпонентных систем свойства откладываются обычно на оси ординат, а состав — на оси абсцисс. [c.181]

    Как известно, определение плотности и показателей преломления веществ в некоторых зарубежных странах, главным образом в США, производят при 25°, а в СССР при 20°. В соответствии с этим в таблице значения плотности и показателей преломления, определенные при температурах, незначительно отличающихся от 20°, приведены к температуре 20°, принимая поправки на каждый 1° для плотности 0,0008, а для показателей преломления 0,00045 [296]. Исключение сделано лишь для камфена, так как определение плотности и показателя преломления этого терпена приходится вести при температуре, превышающей его температуру плавления, а в этих условиях приведение указанных констант к 20° связано с погрешностями. Такого рода пересчет можно производить при физическом анализе смесей терпенов, содержащих в качестве одного из компонентов камфен, в случае, если не требуется слишком высокая точность. Тогда для камфена можно принимать й [c.203]


    Наибольшее распространение получили приборы, анализирующие газовую смесь путем измерения величины или интенсивности чисто физических параметров плотности, теплопроводности, массового числа, магнитной восприимчивости, оптических, акустических и иных свойств. Так как в отличие от химических и физикохимических методов анализа измерение этих параметров не связано с переводом пробы из одной части прибора в другую, то анализ протекает быстро и может быть осуществлен в потоке газа. Это позволяет резко уменьшить запаздывание реакции прибора на изменение состава анализируемого технологического потока 246 [c.246]

    Интенсивность аналитической линии существенно зависит от физико-химических свойств образца (его физического состояния, плотности и структуры). Шероховатая поверхность образца, как правило, понижает интенсивность флуоресценции, так как неровности могут затенять излучающую поверхность. Для порошков крупность частиц также оказывает влияние на интенсивность флуоресценции и фона 12, 22]. Обычно образец измельчают до размера зерен 0,04 или 0,074 мм. Требования к подготовке образцов повышаются при анализе легких элементов ввиду малой глубины выхода их флуоресценции. [c.27]

    В I томе содержатся сведения, относящиеся к свойствам элементов и строению материи (таблицы данных из атомной и ядерной физики, материалов о структуре кристаллических тел и др.) сюда же включены таблицы по рентгено-химическому и спектральному анализу. Значительное место отведено физическим свойствам — плотности, сжимаемости, термическим и энергетическим свойствам, вязкости и т. д. — важнейших веществ. [c.915]

    Сепарационной характеристикой разделительного процесса, в частности флотации, называется зависимость извлечения материала в один из продуктов обогащения от значения критерия разделения. Сепарационные характеристики (кривые распределения) щироко используют для анализа процессов и аппаратов гравитационного обогащения, где критерием разделения является плотность минеральных фракций. Во флотационном процессе невозможно выделить единственный экспериментально определяемый физический параметр, определяющий показатели разделения. В связи с этим за меру флотируемости принимают параметр, определяемый по результатам флотационного опыта, а не физическую величину (плотность, крупность, магнитную восприимчивость или диэлектрическую проницаемость), которая не зависит от вида процесса. Поскольку флотируемость вычисляется по результатам опыта, ее значение может изменяться в зависимости от типоразмера аппарата н параметров процесса (реагентного режима, уровня пульпы, аэрации и др.). Следовательно, при масштабном переходе изменяется не только сепарационная характеристика, но и распределение материала по флотируемости (фракционный состав). Увеличение времени флотации, как правило, обусловливает ухудшение качества продуктов вследствие уменьшения крутизны сепарационной характеристики, тогда как в большинстве других методов с увеличением времени процесса повышается точность разделения. [c.184]

    Применяя спектральный метод анализа функций реализации х (), можно определить необходимую частоту дискретных измерений с заданной точностью. Физически спектральная плотность показывает, какая доля мощности случайного процесса приходится на определенную частоту. Спектральная плотность стационарного случайного процесса подсчитывается по формуле  [c.46]

    К наиболее важным физическим свойствам катализаторов относятся размер частиц, плотность, механическая прочность, удельная поверхность и внутренняя по-ровая структура. Процесс исследования катализаторов обычно начинают с подготовки проб. Эту операцию следует считать одной из важнейших при определении физических, химических и каталитических свойств. От тщательности подготовки проб зависят, в конечном счете, их представительность и достоверность результатов анализа. [c.9]

    Для анализа физических свойств потоков на входе в систему очистки и выходе из нее по литературным данным составляют таблицу физических свойств жидкого водорода и твердого кислорода. На частицу твердого кислорода радиусом а и плотностью р могут действовать следующие силы  [c.136]

    Все этиленовые углеводороды обладают, как это видно из их формулы, одним и тем же процентным составом они содержат 85,7% углерода и 14,3% водорода. Поэтому для того чтобы различить два или более олефинов, недостаточно одного лишь анализа. Необходимо еще и определение молекулярного веса, которое может быть осуществлено известными физическими или физико-химическими методами (измерение плотности пара, криоскопическое или эбуллиоскопическое определение молекулярного веса). Имеется и другой способ решения вопроса [c.42]


    Анализ влияния физических свойств жидкости на величину критерия Пекле показал, что числа Пекле в жидкости возрастают с увеличением плотности жидкости р и уменьшаются с возрастанием вязкости жидкости f . [c.362]

    Цель аналитической ректификации состоит в том, чтобы из двух или многокомпонентной смеси извлечь отдельные компоненты с возможно более высокой степенью чистоты. Степень чистоты устанавливают путем определения физических констант вещества, например коэффициента преломления, плотности, точки затвердевания или плавления, а также молекулярной массы. Так как обычно не известно, какие компоненты и в каких количествах содержатся в разделяемой смеси, то анализ с применением ректификации следует проводить периодическим способом. Для аналитической ректификации применяют колонны с достаточным числом теоретических ступеней разделения (в разд. 4.7—4.12) головка колонны должна обеспечивать точное регулирование нагрузки и флегмового числа. Чтобы получить точное представление о количественном соотношении разделяемых компонентов необходимо, чтобы промежуточная фракция была как можно меньше. Промежуточной фракцией является количество дистиллята, которое отбирают между фракциями сравнительно чистых (или весьма чистых) компонентов. По мере отбора промежуточной фракции в ней постепенно уменьшается содержание легколетучего компонента (см. рис. 56). Количество загрузки выбирают исходя из содержания того компонента, который необходимо выделить и который находится в исходной смеси в минимальном количестве. Далее необходимо стремиться к тому, чтобы отношение [c.202]

    Для анализа оставшейся нафтено-нарафиновой смеси применяют комбинированные физико-химические константы, к которым относятся удельная рефракция, удельная дисперсия, удельный парахор, вязкостно-весовая константа и т. д. Эти константы в соединении с молекулярным весом или средней температурой кипения характеризуют природу нефтепродукта полнее, чем простые физические константы, как, например, показатель преломления, плотность, вязкость и т. д. [c.523]

    Стабильность является одним из основных свойств эмульсий, однако недостаточным для полной характеристики, так как необходимо знать геометрические и концентрационные параметры системы, т. е. размер капель и концентрацию их. Эти параметры зависят от метода получения и физических свойств гетерогенной системы (поверхностного натяжения, вязкости, плотности фаз и т. д.). Результаты дисперсного анализа и соотношение объемов непрерывной и дисперсной фаз наиболее полно характеризуют эти параметры. Зная объем дисперсной фазы Уф и общее число капель эмульсии п легко получить средний объем капли, входящий в уравнение (2)  [c.421]

    Для полного анализа тройных систем требуется определение двух независимых параметров, характеризующих их состав одним из таких параметров может служить показатель преломления, а вторым -какое-либо легко определяемое физическое свойство плотность, поверхностное натяжение, вязкость, диэлектрическая постоянная, температура плавления или кипения, - либо химическая характеристика системы (концентрация одного из компонентов, кислотность, непре-дельность и т.п.). Чаще всего используется рефрактоденситгшетри-ческий метод, заключающийся в измерении показателя преломления и плотности. Для этого готовят тройные смеси точно известного состава, планомерно расположенные в треугольнике составов, затем измеряют показатели преломления и плотности эталонных смесей. Для каждой из исследованных смесей строят вспомогательные графики п-состав р - состав, интерполируют их через равные интервалы, после чего проводят линии равного уровня - соответственно изорефракты и изоденсы. В результате получают калибровочную треугольную диаграмму с сеткой изорефракт и изоденс. [c.201]

    В современных химических исследованиях используют два основных метода познания природы вещества. Предположим, нам надо решить такой вопрос могут ли вещества Л и 5 реагировать одно с другим, образуя соединение АВ Решая эту задачу более старым препаративным методом, химик смеши-, вает вещества Л и В и разнообразными способами старается вызвать реакцию нагревает их, растворяет в чем-либо, действует на них катализатором и т. д. После этого он пытается выделить из смеси вещество, образовавшееся в результате химической реакции. Для этого он применяет кристаллизацию, экстракцию, перегонку и т. д. Полученное таким образом соединение он подвергает исследопанию анализирует его, определяет его физические свойства и изучает реакции, в которые это вещество вступает. Таким путем он устанавливает его состав, а иногда и строение. Но можно решать эту задачу методом физико-химического анализа, возникшим во второй половине XIX столетия, хотя этот термин был введен значительно позже Н. С. Курнаковым. При этом исследование взаимодействия веществ А и В ведут совершенно иным путем. Работая по этому методу, химик, прежде всего, готовит смеси веществ Л и В в разнообразных отношениях и старается уже указанными выше способами (нагревание и т. д.) вызвать в этих смесях реакцию. Когда реакция закончится или, как говорят, система придет в состояние равновесия, он измеряет у всех смесей некоторое подходящее физическое свойство (плотность, вязкость, температуру плавления, давление пара и т. д.), после чего строит так называемую диаграмму состав — свойство. Для этого он по одной оси прямоугольной системы координат откладывает в определенном масштабе концентрацию одного из веществ Л нли В, а по другой — числовое значение измеренного свойства. По виду полученной таким образом кривой часто можно сказать, образуется ли в данной смеси химическое соединение (и даже определить его состав), осталось ли каждое вещество неизменным или, наконец, получился раствор (твердый или жидкий). [c.5]

    При исследовании фракщхй бензинов пли синтетических углеводородных смесей, получаемых при алкилировании, изомеризации и при других процессах, методом точной ректификации удается получить очень узкие фракции, выкипающие в интервале 1—3 ". В пределе такие узкие фракции представляют собой концентраты индивидуальных углеводородов или бинарные (двойные) смеси изомеров с очень близкими температурами кипения. Определение состава таких смесей возможно спектроскопическими методами по спектрам комбинационного рассеяния света или спектрам поглощения в инфракрасной области. Однако это сложно и не всегда доступно. В случае анализа бинарных смесей парафиновых углеводородов с близкими температурами кипения и почти совпадающими другими физическими константами (плотность, показатель 1феломлеиия и т. д.) новые возможности открывает весьма простои метод так называемых о л о в я н н ы х т о ч е к. [c.149]

    Ватерман (Waterman) с сотрудниками в Голландии [27] создали свой метод исследования на основании условного деления масляных фракций на структурные группы ароматические кольца, циклановые кольца, замещающие алкановые цепи и свободные алканы. Метод дает процентное содержание углерода, входящего в состав каждой группы. Анализ основан на определении соотношения физических свойств масел, таких, как плотность, молекулярный вес и коэффициент преломления (метод n-d-M), или [c.24]

    Точно такой же подход необходим и при выборе оптимальных условий анализа при изучении трехкомпонентной системы. Однако здесь знания только коэффициента преломления для однозначного вывода о составе смеси недостаточно. Дополнительные сведения обычно получают путем измерения других физических параметров плотности, вязкости, диэлектрической проницаемости, электропроводности и т. д. Чаще всего используют наиболее легко и просто измеряемую плотность. Эти данные обычно представляют в виде тройной диаграммы состав — свойство В качестве примера назовем системы метанол — этанол — вода [404] этанол — пропанол — впда [405] формальдегид — азотная кислота — вода [406]. ДМФА — бромэтан — водаиДМСО — хлорбензол — вода [407] и другие [4081. [c.175]

    Если результаты этого испытания не попадают в указанные пределы, возможно, содержимое бака многослойно. В этих обстоятельствах отбирают, если возможно, дополнительные точечные пробы в промежуточных или равноудаленных слоях, и их индивидуальные результаты усредняют. Для этой цели пробы для анализа плотности, содержания воды и осадка не смещивают физически, а математически усредняют результаты анализа отдельньк проб. [c.124]

    В 1953 г. X. Смит и X. Ролл (Н. Smith, Н. Rail, 1953) сообщили результаты анализов лигро ов из 32 нефтей, в которых были определены путем фракционирования составляющие компоненты и их физические свойства (плотность и показатель преломления). Эти [c.65]

    В дальнейшем каждая фракция детально исследовалась. Определялись физические константы плотность, показатель преломления, удельная дисперсия молекулярный вес содержание углерода, водорода и серы (элементарный анализ). По всем этим данным по методу п — й — М (гл. IV) рассчитывался структурно-групповой состав, т. е. определялось, какой процент атомов углерода от их общего числа в усредненной молекуле находится в ароматических кольцах (Са), циклопарафиновых кольцах (Сцп) и в парафиновых цепях (Сп). Также расчетным путем определялись на усредненную молекулу фракции общее число колец (Ко), число ароматических (Ка) и циклопарафиновых колец (Кцп), выводилась средняя эмпирическая формула углеводородов данной фракции и общая формула усредненного гомологического ряда. Все эти данные, конечно, не отвечают на вопросы, какие конкретно углеводороды, каких классов и в каком количестве находятся в нефти, но все же позволяют проводить сравнение нефтей и дают общее представление о структуре гибридных углеводородов и о соотношении в них основных структурных элементов. Таким путем были исследованы высокомолекулярные углеводороды восьми нефтей Советского Союза. Для иллюстрации приводим некоторые данное по ромашкинской, битковской и небиддагской нефтям [c.47]

    Геодинамический анализ гидротермальной циркуляции в осевых зонах СОХ показал, что изменение физических свойств (плотности, коэффициента расширения и др.) воды в зависимости от температуры, давления и солености оказывает существенное влияние на тип конвективных движений, продолжительность активной жизни и интенсивность гидроконвекции. Однофазовая и двухфазовая гидротермальные конвекции сменяют друг друга в зависимости от расстояний над кровлей магматической камеры и от ее боковых стенок. Интенсивность такой конвекции, и, в частности, скорость [c.270]

    Изучены пространственные закономерности изменения литолого-физических свойств (песчанистости, мощности, плотности, волнового сопротивления, коэффициентов отражения сейсмических волн) визейских отложений Волошковского газоконденсатного месторождения ДДВ. Обоснована возможность прогноза литологических ловушек Сребнянского прогиба на основе комплексной интерпретации данных фациального и литолого-физического анализов, а также использования зависимости фактора субвертикального акустического разуплотнения пород от высоты этажа продуктивности разреза. Ил. 2. Библиогр. 6 назв. [c.89]

    Аналитические зависимости между напряжениями и углом внутреннего трения для ряда сыпучих материалов приведены в работах [20—23]. Следует отметить псследования [24], где показано, что ве.т1пчипа угла внутреннего трения в диапазоне давлений 0,125—0,42 МПа изменяется незначительно, в большей степени зависит от способа загрузки частиц и в меньшей — от приложенного давления. В [25] показано, что при нагреве сыпучего материала с 20°С до 500—600°С значение коэффициента внутреннего трения практически не меняется (если при этом не происходит изменение физического состояния частиц в местах их контакта). Сонротивление сыпучих материалов при контакте с другими телами, например с вертикальной стенкой емкости, подчиняется тем же закономерностям, что и внутреннее сопротивление частиц сдвигу, В большинстве случаев угол внешнего трения всегда меньше угла внутреннего трения между частицами. Показано [18], что для ряда материалов углы внешнего трения не зависят от способов укладки частиц. В [26] приведен анализ многих результатов и сделан вывод, что угол естественного откоса всегда меньше угла внутреннего трения материала. Значения рассмотренных параметров зависят от многих факторов — гранулометрического состава, формы и размера частиц, плотности их укладки, состояния поверхностей на границах слоя и др. Эти характеристики определяются индивидуально для каждого материала по стандартной методике на приборах [27, 28], В [29] показано, что эти приборы пригодны и для определения экспериментальных характеристик катализаторов, [c.26]

    В основе физико-химического анализа лежит исследование зависимости физических свойств системы от ее состава или внешних условий. Это позволяет обнаружить и изучить происходящие в системе химические изменения. Физико-химический анализ как метод исследования был предложен М. В. Ломоносовым. Этот метод широко использовал Д. И. Менделеев при изучении плотности растворов. Основополагающие теоретические и экспериментальные работы Б области физико-химического анализа, превративище его в самостоятельную научную дисциплину, принадлежат Н. С. Курнакову. [c.135]

    Липкин, Куртц и соавторы [16, 271 в 1946 и 1947 гг. опубликовали два метода структурно-группового анализа один для исследования парафино-нафтеновых смесей (масла, не содержащие ароматических колец) и другой — для парафино-ароматических смесей (масла, не содержащие нафтеновых колец). Так как масла обычно содержат в 1есте парафиновые цепи, нафтеновые и ароматические кольца, то применение этих методов требует или предварительной обработки, или предварительного разделения. Методы основаны на определении плотности (или коэффициента преломления) и их температурной зависимости. Применяя переводные таблицы, можно определить температурный коэффициент плотности по молекулярному весу, который в свою очередь обычно определяется на основании физических свойств. [c.370]

    Денсиметрический метод. В 1944 г. Линдертсе успешно разработал метод, основанный на измерении плотности с1, удельной рефракции (по Лорентц-Лоренцу) и молекулярногс веса М. Метод основан на сопоставлении прямого метода с физическими свойствами большого числа прямо-гонных или обработанных масляных фракций. Методика определения очень похожа на методику кольцевого анализа по Уотерману. Основное различие заключается в том, что вместо анилиновой точки определяется плотность. [c.377]

    Анализ протекающих процессов затруднен, однако, тем, что свойства воды в дисперсных системах в результате ее взаимодействия с поверхностью частиц или со стенками пор отличаются от свойств объемной воды. Изучение свойств воды в дисперсных системах ведется уже давно, но лишь в последнее время благодаря развитию физико-химических методоц удалось получить существенно новые и более полные результаты. Уточнены ранее сложившиеся представления о свойствах связанной воды. Это относится прежде всего к данным об ее плотности, которые чаще всего оказывались сильно завышенными. Как сейчас становится ясным, изменения плотности не превышают нескольких процентов от плотности объемной воды. Значительно меньшими оказались и изменения вязкости, сложились иные представления о неподвижности граничных слоев воды. Многие процессы переноса оказались более сложными, чем это представлялось ранее. Это связано с выяснившейся необходимостью учета влияния образования и перекрывания в тонких порах диффузных адсорбционных слоев молекул и ионов, изменения физических свойств и структуры воды как функции расстояния от поверхности. Резко возрос в последнее время интерес к структурным силам, возникающим при перекрывании граничных слоев воды с измененной структурой. Эти силы, в добавление к молекулярным и электростатическим, играют важ- [c.4]

    Метод группового анализа основан на различии наиболее просто определяемых физических и химических свойств углеводородов различных рядов. К числу таких свойств относятся плотность, показатель преломлеиия, анилиновая точка (критическая температура растворения продукта в анилине), адсорбируемость и отношение к серной кислоте. Групповой анализ дает напбол( е точные результаты при изучении бензинов прямой neperonrai. Хорошо обезвоженный образец бензина разгоняют с пятишариковым дефлегматором или на простейшей колонке на фракции с пределами выкипания, соответствующими пределам выкипания про- [c.96]

    При исследовании химического состава и структуры нефтяных парафинов и церезинов часто пользуются также расчетными методами, используя связь между их структурно-групповым составом и некоторыми физическими свойствами. Одним из таких методов является структурный анализ по Грошу — Гродде, основанный на различии физических свойств парафиновых углеводородов нормального и изостроения и нафтеновых. При этом анализе определяют молекулярную массу М, плотность при 90 °С ( 4 ), температуру плавления и показатель преломления при 90 °С (/гд ). Используя зависимости между физическими параметрами, можно найти  [c.251]

    Одним из наиболее надежных, а также простых и быстрых по выполнению разновидностей структурно-группового анализа является метод п — в, — М [7 ]. По этому методу, разработанному Тадена, необходимо точно определить показатель преломления Пд, плотность и молекулярный вес М исходной фракции. (Для вязких масел онределяют показатель преломления и плотность при 70 "С.) Структурно-групповой состав вычисляют прямо из физических констант масла при помощи специальных уравнений или нолюграмм. [c.276]

    Третий подход основан на теоретическом анализе псевдоожиженных систем методами кинетической теории газов [55, 56]. Конечной целью, к которой стремятся исследователи, развивая это направление, является получение шестимерной плотности распределения частиц по скоростям и координатам, полностью описывающей поведение каждой частицы в слое (см. 1.5). Знание этой функции дает возможность описать осредненпые пульсационные движения в рассматриваемой ФХС. В работе [55] предложено уравнение Больцмана для твердой фазы, дифференциальная часть которого включает диффузионный член. Это уравнение содержит много экспериментально определяемых величин, что затрудняет его практическое использование. Кроме того, на уровне кинетической задачи не рассматривается взаимодействие между твердой и газовой фазами. В работе [56 ] приводится кинетическое уравнение для твердой фазы п eвдooжижeннoгoJ слоя, полученное из уравнений Лиувилля и Гамильтона. При этом физические эффекты в системе в целом рассматриваются в масштабах изменения функции распределения частиц газовой фазы. Однако не учтено, что масштабы изменения функции распределения частиц газовой фазы значительно меньше масштабов изменения функции распределения частиц твердой фазы. Для устранения этой некорректности модели требуется осреднить функцию распределения частиц газовой фазы по объему, являющемуся элементарным для твердой фазы. При этом необходимо рассматривать уже не одно, а два кинетических уравнения — для газа и твердой фазы. Кроме того, корректное использование уравнения Лиувилля для вывода уравнения, описывающего движение твердой фазы, является затруднительным из-за неконсервативности поля сил, в котором движется отдельная твердая частица. [c.161]

    Физико-химический анализ широко использует диаграммы состояния, которые показывают зависимости физических сво11ств от состава систем в состоянии равновесия. Физико-химический анализ такл<е широко использует сопоставление одно1 о с другим различных физико-химических свойств сложных систем. Физико-химический анализ как отрасль химической науки зародился в России во второй половине XIX в. и связан с работами Д. И. Менделеева по изучению зависимости плотности от состава различных вОлТ-иых растворов. Построенные Менделеевым диаграммы зависимости плотности от состава для различных водных растворов показали, что производная плотности по составу на определенных участках концентраций непрерывно изменяется с изменением состава раствора и претерпевает разрыв в точках, соответствующих составу образующихся в растворе определенных химических соедииений. Анализ этих диаграмм дал Менделееву основание для развития химической (сольватной) теории растворов, предусматривающей образование в растворах определенных химических соеди-нени . [c.166]

    Методы отбора проб для постоянного контроля за ходом реакции применимы и для анализов, необходимых для разработки газоочистительного оборудования. Основой анализа я1вляется определение плотности, теплопроводности, ИК-опектроскопия, дифференциальная абсорбция в растворителях, изменение электропроводности растворителей и специфических физических свойств, таких как парамагнитные овойсттва кислорода или радиоактивность некоторых газов от радиоактивных источникш. [c.75]

    Определение содержания нафтеновых углеводородов. После удаления из смеси непредельных и ароматических соединений в так называемом предельном остатке можно определить содержание нафтеновых и парафиновых углеводородов. Для этого используют различие их физических констант. Примерно с одинаковым успехом, с точки зрения точности анализа, применяют данные по плотностям, анилиновым точкам, показателям преломления и удельным рефракциям. Так как все эти величины для нафтенопарафиновых смесей подчиняются правилу аддитивности, то содержание нафтеновых углеводородов Ни в %(об.), в предельном остатке легко подсчитать по общей формуле  [c.64]

    Сопоставляя полученные данные, можно прийти к следующим выводам. Прежде всего, молекулярная формула уксусной кислоты не может быть меньше, чем С2Н4О2, а молекулярная формула молочной кислоты — меньше, чем СзНеОз, так как совершенно ясно, что в любой молекуле соли не может содержаться меньше одного атома серебра. Однако это соображение еще не указывает верхнего предела для величины молекул обеих кислот уксуснокислое серебро, например, могло бы иметь молекулярную формулу С4Нб04Ад2, а молочнокислое серебро— СбНюОбАдг, что точно так же соответствовало бы результатам анализа. Таким образом, посредством подобного определения молекулярного веса химическим путем мы можем, следовательно, точно установить только наименьшие размеры молекулы, но не определить ее максимальную величину. Последнюю задачу можно разрешить, лишь определив величину молекулярного веса с помощью физических методов — по плотности паров или по величине осмотического давления. Однако эти результаты, в свою очередь, тоже не вполне однозначны, так как устанавливают для величины молекул исследуемого вещества лишь верхние границы, не исключая возможности существования также молекул меньших размеров. Так, например, для веществ, молекулы ко- [c.12]


Смотреть страницы где упоминается термин Физический анализ по плотности: [c.11]    [c.186]    [c.67]    [c.269]    [c.62]    [c.548]    [c.166]    [c.39]   
Химия травляющих веществ Том 2 (1973) -- [ c.189 , c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ физические

Плотность в анализе



© 2025 chem21.info Реклама на сайте