Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие сернистых соединений с металлами

    Коррозионное воздействие сернистых соединений на металлы проявляется вследствие непосредственного взаимодействия сернистых соединений с металлами и в результате воздействия на металлы продуктов окисления сернистых соединений. [c.24]

    ВЗАИМОДЕЙСТВИЕ СЕРНИСТЫХ СОЕДИНЕНИЙ С МЕТАЛЛАМИ 499 [c.499]

    Коррозионная активность сернистых соединений зависит от их строения. Наиболее агрессивны сероводород, сера и меркаптаны. Сероводород корродирует цинк, железо, медь, латунь и алюминий. Сера, если она имеется в свободном состоянии в топливе, почти мгновенно взаимодействует с медью и ее сплавами, образуя сульфиды, вследствие чего наряду с коррозией металла, приводящей к потере его массы, наблюдается образование отложений на металле. Коррозия металлов меркаптанами определяется их концентрацией в топливе и строением. Ароматические меркаптаны более коррозионно-агрессивны, чем алифатические, при этом бициклические меркаптаны агрессивнее моноциклических. [c.104]


    В технических условиях на бензины предусмотрена оценка коррозионной агрессивности пробой на медную пластинку (коррозию медной пластинки вызывают в основном сернистые соединения). Все сернистые соединения, содержащиеся в топливах, по коррозионному воздействию на металлы при обычных температурах принято делить на соединения активной серы и соединения неактивной серы . К первой группе относят сероводород, свободную серу и меркаптаны, т. е. те соединения, которые могут вступать в химическое взаимодействие с металлами при обычных температурах хранения и применения. Остальные сернистые соединения относят ко второй группе. [c.31]

    Если в масле имеется вода, содержащиеся в нем коррозионно-активные вещества (органические кислоты, сернистые соединения и т. п.) диссоциируют в водном растворе на ионы, и тогда коррозия носит электрохимический характер. Электрохимическая коррозия, в отличие от химической, протекает в виде двух одновременных самостоятельных процессов — анодного и катодного, каждый 3 которых локализуется на определенных участках металла, контактирующего с маслом. Электрохимическая коррозия особенно интенсивна, когда обводненное масло контактирует с металлами, имеющими разный электрохимический потенциал, однако даже у одного металла всегда имеются химически неодно родные участки с различными потенциалами между ними при взаимодействии с электролитом и возникает гальванический ток. Разрушение металла при электрохимической коррозии происходит только на анодных участках, причем количество прокорродировавшего металла (Зм (в г) можйо определить из выражения [8]  [c.15]

    В качестве присадок, улучшающих эксплуатационные свойства масел, особый интерес представляют органические соединения, содержащие серу. Эффективность таких соединений как антиокислителей зависит от их способности реагировать с пероксидами углеводородов и образовывать сульфоксиды, вследствие чего происходит обрыв цепи и прекращаются реакции автоокисления. Те сернистые соединения, которые используются как противокоррозионные (и противозадирные) присадки, практически не обладают антиокислительными свойствами и действие их основано на создании на поверхности металла защитной пленки, которая препятствует взаимодействию продуктов кислотного характера, образовавшихся при окислении масел, с металлом. [c.31]

    Граничная пленка образуется в результате адсорбции (прилипания) молекул смазочного масла к поверхности трения или химического взаимодействия активных элементов масла с,поверхностью металла. По мере увеличения вязкости масла повышается его способность к образованию граничной пленки, т. е. улучшаются его смазывающие свойства. Прочную граничную пленку образуют также смолы, сернистые соединения и другие вещества. [c.46]


    По влиянию на эксплуатационные свойства бензинов все сернистые соединения условно можно разделить на соединения активной и неактивной серы. К соединениям активной серы относят элементарную серу, сероводород и меркаптаны. Все остальные — к соединениям неактивной серы. Соединения активной серы способны корродировать материалы стенок резервуаров, трубопроводов, детали системы питания, т.е. все металлы, с которыми бензины контактируют при хранении и применении. Соединения неактивной серы не взаимодействуют с металлами, но они также не желательны для двигателей, так как все сернистые соединения, сгорая, вызывают повышенный [c.75]

    Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей и другие изделия, работающие при повышенных температурах в среде сухих газов. Газовая коррозия имеет место при горячей обработке металла (прокатка, отжиг, ковка, сварка) на металлургических и трубопрокатных заводах. При взаимодействии металла с кислородом,содержащимся в газах, происходит его окисление, продуктами коррозии являются окисные соединения. В отдельных случаях, например при воздействии на металл паров серы или сернистых соединений, на металле возможно образование сернистых соединений. [c.20]

    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Сущность химической коррозии сводится к химическому взаимодействию металлов с окружающей средой. Такие среды называют агрессивными. К ним, например, относятся воздух, топочные газы, загрязненный сернистыми соединениями бензин, керосин, смазочные масла, загрязненная различными примесями вода и др. [c.175]

    Сероводород НзЗ является типичным восстановителем. В своих кислородных соединениях элементы этой подгруппы проявляют степень окисления +4 и +6, что соответствует оксидам КОз и КОз. Сернистый газ проявляет как окислительные, так и восстановительные свойства. Эти же свойства характерны и для сернистой кислоты. В производстве серной кислоты оксид серы (VI) 80 3 получают контактным методом, поэтому этот метод называется контактным. Серная кислота двухосновна и образует два типа солей — сульфаты и гидросульфаты. Концентрированная серная кислота при нагревании взаимодействует со многими металлами, расположенными в электрохимическом ряду напряжений металлов после водорода. Разбавленная серная кислота взаимодействует с металлами, стоящими в этом ряду перед водородом. [c.214]

    Степень коррозионной активности нефти зависит от содержания в ней различных сернистых соединений и водных растворов минеральных солей, способных вступать в химическое взаимодействие с металлом, вызывая его разрушение. [c.314]

    Все сернистые соединения, которые могут находиться в атмосфере, при взаимодействии с металлом, влагой и кислородом воздуха превращаются в сернистую и серную кислоты, сульфаты и сульфиды  [c.11]

    Тиолы (меркаптаны)—сернистые соединения с общей формулой R—SH, где R — радикал (СНз) п. Тиолы — жидкости с резким неприятным запахом, не растворимы в воде, но растворяются в органических растворителях. При попадании в химические реакторы тиолы отравляют катализаторы, а взаимодействуя с металлами, образуют меркаптиды, вызывая разрушение оборудования. [c.28]

    При восстановлении нитросоединений газами, содержащими окись углерода, возникает опасность отравляющего действия газа на катализатор, еслн даже омывающие катализатор газы тщательно освобождены от сернистых соединений. Ядовитой примесью оказываются карбонилы металлов, особенно железа (от взаимодействия СО и мелкораздробленных металлов). От них предложено освобождаться пропусканием газа через активный уголь. В последующем затем проходе газа необходимо устранять возможность соприкосновения его с железом (в газопроводах, контактном пространстве) м). [c.489]


    Свинцовые покрытия применяют для защиты металлических изделий от воздействия серной кислоты, сернистых газов и других сернистых соединений. При взаимодействии свинцовых покрытий с серной кислотой или ее солями на поверхности деталей образуется пленка сернокислого свинца, которая защищает металл от дальнейшего разрушения. Другие кислоты (органические и неорганические) реагируют со свинцовыми покрытиями, а в присутствии щелочей покрытия разрушаются. [c.209]

    Активирующее действие щелочей повышают путем введения в их состав свободной серы. При взаимодействии элементарной серы с водными растворами гидроокисей щелочных металлов образуется смесь сернистых соединений. При этом протекают реакции, которые в общем виде можно записать следующим образом  [c.538]

    В качестве горючих веществ применяются некоторые металлы, сернистые соединения, органические соединения и др. В качестве окислителей применяются соли хлорноватой, азотной и других кислот, некоторые окислы металлов и пр. При взаимодействии горючего и окислителя, применяя различные компоненты, т. е. составные части смеси, и меняя их количественные соотношения, можно изменять течение реакции в соответствии с теми требованиями, которые предъявляются к изделию. [c.7]

    Стабилизированные нанесенные металлы. Хотя металлы, по-видимому, непригодны для непосредственного применения в качестве катализаторов прямого ожижения угля из-за их сульфидирования, ожидается, что в стабилизированной форме они могут иметь важное значение в реакциях синтеза на основе оксида углерода и водорода и как полиметаллические системы — для обеспечения заданного распределения продуктов реакции и увеличения устойчивости катализатора к действию серы. В этой области и в процессах переработки и очистки жидких продуктов гидрогенизации каменного угля могут быть очень полезны новые методы стабилизации использование биметаллических [54, 55, 67] и триметаллических [70] систем. Предполагается, что методы стабилизации посредством взаимодействий металл — носитель, разработанные для катализаторов очистки выхлопных газов автомобилей [68, 69], будут важны для приготовления катализаторов, термически стабильных и стойких к сернистым соединениям (см. разд. 3). [c.61]

    В процессе РКГ руды восстанавливаются до металла газами — водо- родом и главным образом непредельными углеводородами, которые более активны, чем предельные. Кроме того, происходит сульфидизация при взаимодействии восстановленных металлов с сероводородом и сернистыми соединениями нефтяного сырья. [c.19]

    При подаче сырья активные компоненты катализатора, взаимодействуя с сернистыми соединениями, переходят в сульфиды металлов. В такой форме катализатор обладает повышенной обессеривающей и гидрирующей способностью. [c.47]

    Кроме активных сернистых соединений — сероводорода, серы и меркаптанов — в топливах присутствуют и неактивные, такие, как сульфиды, дисульфиды, тиофены, тиофаны, которые при обычных температурах не взаимодействуют с металлами. Подобное деление соединений серы справедливо только для периода хранения и транспортирования топлива. В процессе сгорания топливо-воздушной смеси в двигателе все сернистые соединения образуют коррозионноактивные оксиды серы —502 и 50з. Именно поэтому общее содержание серы в топливах обязательно ограничивается. [c.72]

    Из возможных в топливе сернистых соединений наиболее реакционноспособны меркаптаны, особенно ароматические (тиофенолы). Они могут служить инициаторами окислительных процессов в топливах, содержащих только предельные углеводороды, давая начало окислительным цепям. Продукты окисления меркаптанов склонны к дальнейшим превращениям, приводящим к конденсации и уплотнению молекул. Вследствие легкой окисляемости меркаптаны даже при умеренных условиях образуют сульфоновые кислоты [33—36], являющиеся сильными коррозионными агентами. Коррозия металлов меркаптанами происходит и при непосредственном их взаимодействии с образованием меркаптидов, что также приводит к накоплению в топливе продуктов, чаще всего нерастворимых в топливе. [c.65]

    Скорость образования защитной пленки превышала скорость взаимодействия меркаптанов с медью. Защитная пленка предотвращала каталитическое влияние меди на окисление сернистых соединений, что объясняет пятикратное снижение количества образующихся смол, прилипающих к металлу, и в 7—8 раз—осадка 1331. [c.59]

    В топливе могут присутствовать металлы (продукты износа механизмов), окислы металлов (продукты окислительной коррозии), сульфиды металлов (продукты взаимодействия с сернистыми соединениями вторичного происхождения элементарной серой и сероводородом), почвенная пыль, содержащая неорганические соли и окислы металлов, а также кремний и его соединения. [c.50]

    Весьма активно реагируют с металлами расплавленная сера, жидкий бром. Углеродистая сталь подвергается химической коррозии при контакте с четыреххлористым углеродом и другими хлорзамеш,енными растворителями. При взаимодействии сернистых соединений и серы с углеродистыми сталями на их поверхности образуются сульфиды (от пирита РеЗг до пирротита Ре5). При концентрации сероводорода более 0,05% скорость коррозии стали может достигнуть 5 мм/год. Стойкими к воздействию сероводорода и других сернистых соединений являются алюминий, стали с добавкой хрома, кремния и алюминия, а также хромоникелевые стали. [c.27]

    Распространившееся в литературе мнение о повышенной серастой-кости металлического палладия, применяемого в процессах гидрирования [363, 375], по-видимо.му, неверно. Оно не подтверждается опытами по гидрированию нетоксичного для металла вещества, к которому добавлены соединения двухвалентной серы. В работе [376] изучено влияние на палладий тиоэфиров, сероводорода, меркаптана, тиофена. В качестве гидрируемого вещества избран 2,5-дигидротиофеисульфон (сульфолен-3). Это соединение, хотя и является серусодержащим, не отравляет катализатор, так как сера находится в экранированной форме. В принятых условиях испытания катализаторов (7 =20°, Р —50 атм, т=0,5—1 мин, растворитель — смесь изопропилового опирта с сульфоланом) сульфолен-3 не оказывает влияния на палладий и другие металлические катализаторы. Все измерения по определению каталитической активности проведены в отсутствие диффузионных осложнений. Па строгий контроль за протеканием реакции в области химической кинетики обращено внимание потому, что из-за наложения на процесс диффузионных ограничений картина взаимодействия сернистых соединений с металлом может сильно искажаться, что приводит к неверным заключениям. [c.62]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Модель противоизносного действия сернистых соединений, в частности дисульфидов, предполагает адсорбцию присадки на поверхности металла и последующую диссоциацию молекул по связям 5—5 с образованием достаточно прочных соединений с металлом. Эффективность противозадирного действия характеризуется образованием сульфидов и дисульфидов металлов. Органические сульфиды имеют худшие противозадирные свойства по сравнению с соответствующими дисульфидами. Сульфиды, как и другие соединения с прочно связанными атомами серы, образуют с металлами комплексы донор но-акцепторного типа за счет участия неподеленной Зр -пары электронов атома серы. Образование таких комплексов облегчает воздействие кислорода (ПО месту присоединения углеводородных радикалов к сере. Для сульфидов предполагается также постадий-ное взаимодействие серы с железом с образованием сульфидов железа. [c.263]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    По своему влиянию на эксплуатационные свойства бензина все сернистые соединения условно делят на соединения активной и неактивной серы. К соединениям активной серы относят элементарную серу, сероводород и меркаптаны. Все остальные — к соединениям неактивной серы. Такое деление основано на том, что элементарная сера, сероводород и меркаптаны вступают во взаимодействие с металлами и сплавами уже при обычной температуре. Соединения активной серы способны корродировать материалы стен емкостей трубопроводов, детали системы питания, т. е. все те металлы (как правило), с которыми бензины контактируют при хранении и применении. [c.23]

    Катализаторы АКМ и АНМС в процессе гидроочистки (а в некоторых случаях и при подготовке катализаторе к работе) активизируются водородом, в результате М0О3 восстанавливается до М0О2, а затем частично до металлического состояния. При подаче сырья активные компоненты катализаторов взаимодействуют с сернистыми соединениями и переходят в сульфиды металлов. В этой форме катализаторы проявляют оптимальную активность. Характеристика катализаторов АКМ и АНМС  [c.28]

    Смолистые вещества нефтп образуют также комплексы с хлоридами металлов, фосфорной кислотой и другими реагентами. На способности к взаимодействию сернистых и азотистых соединений смол с тетрахлоридом титана основан метод их аналитического определения. [c.209]

    Для очистки от сероокиси углерода, сероводорода и окиси углерода эти примеси каталитическими процессами превращают в соединения, менее вредные или легче удаляемые из газового потока. В качестве катализатора для гидрирования сернистых соединений в сероводород на промышленных установках применяют сульфид никеля [13], сульфат магния и окись цинка [22, 25], тиомолибдаты металлов [12] и окислы металлов [44]. Окись углерода превращают в двуокись, пропуская газ через один или несколько конверторов, в которых окись углерода, взаимодействуя на стационарном катализаторе с водяным паром, образует двуокись углерода и водород [5]. Образующуюся двуокись углерода удаляют из газового потока одним из рассмотренных выше процессов. Иногда небольшие количества окиси и двуокиси углерода удаляют превращением в метан реакцией гидрирования. Ацетиленовые углеводороды удаляют из алкенсодержащих газовых потоков процессом избирательного гидрирования [35, 68]. [c.99]

    В никелевом катализаторе строго регламентируется количество SiOa, которое не должно превышать 0,5%, так как при температуре выше 800 С никель взаимодействует с окисью кремния, ооразуя неактивный силикат [3]. В присутствии сернистых соединений при температурах выше 900° С силикат Ni восстанавливается до металла. [c.64]

    Зола В основном состоит нз окислов и сульфатов присадок, вводимых в масло. Температура плавления окислов (в °С) ВаО—1923, СаО—2585, а MgO—2800. Температура плавления сульфатов, образующихся в результате взаимодействия металла присадок с сернистыми соединениями, содержащимися в топливе я масле, составляет BaSOi—1580°С, aSOi—1450°С, MgSO—1115°С. Большое влияние на температуру плавления золы оказывает содерл ание в ней соединений серы, фосфора и особенно натрия и ванадия. [c.78]

    Покрытие Sn — Ni нетоксично и стойко в сухом воздухе до 320 С сухом хлоре, окислах азота, в сернистых соединениях и в кислотах НС1, H2SO4 и HNO3 (до 0,01 N). Это покрытие не взаимодействует с маслами, имеет более высокое переходное сопротивление, чем серебряное, не изменяет его при эксплуатации. Золото не диффундирует в этот сплав. Сплав Sn — Ni наносят как подслой под драгоценные металлы. [c.186]

    Антиокислительные присадки предотвращают окисление углеводородов и сернистых соединений, тем самым предотвращают образование пероксидных и кислых продуктов окисления. Действие специальных антикоррозионных присадок, снижающих коррозионную активность нефтепродуктов, может быть различно химическое взаимодействие присадки с металлом и образование на его поверхности защитной пленки (ингибиторы хе-мосорбционного действия) образование на металле защитной пленки вследствие адсорбции полярных групп поверхностноактивных веществ (ингибиторы адсорбционного действия) нейтрализация кислотных агрессивных продуктов (ингибиторы нейтрализующего действия). В качестве антикоррозионных присадок находят применение многие соединения, среди которых в промышленных масштабах производят нитрованные масла, зольные и беззольные сульфонаты, эфиры алкенилянтарных кислот, соли нитробензойных кислот, аминопроизводные и другие вещества. [c.74]

    Коррозия металлов сернистыми соединениями топлива представляет собой результат непосредственного химического взаимодействия между сераорганическим соединением и металлом с образованием соответствующего продукта реакции. По данным Я. Б. Черткова в топливах, содержавших в одном случае 0,005% элементарной серы, а в другом 0,045% а-фенипэтипмеркаптана и находившихся в контакте с бронзой, при 120° образовались осадки, состав (в %) которых приведен в табл. 48, т. е. в первом случае образовался сульфид, а во втором меркаптид меди [1]. [c.238]

    При адсорбции сернистых соединений на поверхностных атомах металла возникает избыточный положительный заряд с дальнейшей ионизацией при сульфиди-рованни в результате переноса электронов к атомам серы. Очевидно, взаимодействие металла с сернистым ядом можно ослабить, если предварительно создать на атомах металла дефицит электронной плотности. Акцепторами электронов могут выступать кислотные центры носителя, силу которых (электроноакцепторную способность) регулируют путем химического моделирования поверхности. Так, введение 0,5—15,0% Р сохраняет гидрирующую активность АПК при содержании в сырье до 1% серы (рис. 38). К такому же эффекту приводит [c.146]


Смотреть страницы где упоминается термин Взаимодействие сернистых соединений с металлами: [c.39]    [c.90]    [c.74]    [c.238]    [c.69]    [c.470]    [c.320]    [c.7]   
Смотреть главы в:

Химия углеводородов нефти и их производных том 1,2 -> Взаимодействие сернистых соединений с металлами




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

взаимодействие с металлами



© 2024 chem21.info Реклама на сайте