Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение редкоземельных элементов от других элементов

    Отделение редкоземельных элементов друг от друга. Это очень трудная задача, которая решается в настоящее время с помощью ионитов. , [c.953]

    Редкоземельные металлы в разной степени проявляют склонность к образованию амальгам. Наиболее легко можно получить амальгамы самария, европия и иттербия амальгамы лантана, церия, празеодима и неодима получают с большими трудностями у гадолиния и диспрозия способность к образованию амальгам выражена слабо. Эта особенность редких земель дала возможность разработать эффективные способы отделения редкоземельных элементов друг от друга. [c.114]


    Редкоземельные элементы обладают весьма близкими химическими свойствами и при отделении их от других элементов практически всегда выделяются в виде суммы соединений всех редкоземельных элементов (например, оксалатов или фторидов). Для разделения и выделения отдельных элементов этой группы используют различные химические и физико-химические методы. Для определения отдельных редкоземельных элементов в их смеси наряду с некоторыми физическими методами используют спектрофотометрические методы. [c.200]

    История поведения редкоземельных элементов в земной коре еще очень мало изучена. На основании геохимических исследований [1014] считают, что эти элементы при первом фазовом отделении жидкой магмы оказались в составе силикатного плава и являются, следовательно, литофильными элементами. Во второй стадии магматического затвердевания рзэ собираются вместе с другими редкими элементами (торий, иттрий, скандий и др.) преимущественно в конечных продуктах кристаллизации магмы. Именно поэтому они встречаются в местах, где происходит значительное выветривание гранитных или сиенитовых пород или их метаморфических эквивалентов, кристаллизующихся на большой глубине. [c.8]

    Об отделении Се (IV) экстракцией от редкоземельных и других элементов см. также в работах (286, 395, 396, 1280, 1454, 18 ].) [c.131]

    Анализ 7г и его сплавов. Анализ 2г представляет собой довольно сложную задачу, поскольку в нем присутствует значительное количество трудно отделяющихся от рзэ примесей. В ходе концентрирования рзэ для спектрального эмиссионного анализа [166, 167, 1097, 2053] неизбежно приходится применять сложные схемы очистки от мешающих элементов. Для этого образцы растворяют в НР с добавлением редкоземельного носителя — УзОз, служащего спектроскопическим стандартом. Кроме того, для контроля за возможными потерями при очистке редкоземельной группы вводится радиоактивный У [1097]. Отделение основной массы происходит уже в стадии растворения образца, однако выделение осадка фторидов при сравнительно небольших количествах носителя наступает только при определенных условиях. При хроматографическом варианте выделения рзэ из фторидного раствора это затруднение исключается [1097]. Далее следует эфирно-роданидная экстракция для отделения Ре и Со и повторные осаждения карбонатов и фторидов для отделения от ряда других элементов, после чего анализ завершает спектральное определение с чувствительностью от [c.253]


    Отделение урана от редкоземельных и других элементов в сернокислой среде с помощью анионитов [1961]. [c.320]

    Редкоземельные элементы отделяют от других продуктов деления осаждением и экстракцией. От технеция и цезия отделение проводится осаждением гидроокисей, от бария и стронция — осаждением гидроокисей аммиаком, не содержащим СОз , от рутения, ниобия и циркония — осаждением оксалатов редкоземельных элементов. Ряд других элементов отделяется от лантаноидов осаждением сульфидов. Экстракционное разделение проводится 1,5М раствором ди-(2-этилгексил)-фосфорной кислоты в толуоле из 0,01 н. НС1 и последующей реэкстракцией редкоземельных элементов 8М НС1. [c.285]

    Цементация амальгамой натрия применяется также для разложения редкоземельных элементов друг от друга. Удалось, например, произвести отделение иттербия от соседних элементов. Разделение этих элементов основано на том, что лютеций и туллий при обработке их ацетатных растворов амальгамой натрия не дают амальгам, тогда как иттербий [c.171]

    Морские пески и пегматиты, содержащие значительные количества тория, разлагают сплавлением с едким кали и торий выделяют осаждением в виде нерастворимых фторидов. После отделения от редкоземельных и других элементов торий осаждают в виде оксалата, прокаливают и взвешивают как ТЬОг. Этот весовой метод применим к обычным силикатным породам лишь при условии работы очень большими навесками, поэтому он был заменен фотометрическими методами. [c.402]

    Поскольку речь идет о хроматографическом разделении природных смесей редкоземельных элементов, в первую очередь возникает вопрос об извлечении их суммы из минералов. В зависимости от химического состава минералов последние или разлагают серной кислотой (фосфаты, карбонаты), или сплавляют со щелочью (титано- и танталониобаты) редкоземельные элементы выщелачивают затем водой (в случае сульфатов — холодной) и из раствора путем повторных осаждений щавелевой кислотой и аммиаком выделяют сумму редкоземельных элементов, более или менее свободную от посторонних примесей. В дальнейшем можно всю выделенную сумму непосредственно использовать для хроматографического разделения при этом осадок гидроокисей или окисей, полученных после прокаливания оксалатов, растворяют в азотной или соляной кислоте, упаривают раствор досуха для удаления избытка кислоты и полученный раствор вносят в колонку сорбента. С другой стороны, в ряде случаев (например, при крупногабаритном производстве чистых препаратов индивидуальных элементов, концентратов и технических смесей) целесообразнее сочетать известные химические методы переработки (деление суммы редкоземельных элементов на цериевую и иттриевую подгруппы, а также отделение церия, самария, европия и иттербия на основе их аномальной валентности) с хро- [c.168]

    Все редкоземельные металлы образуют оксалаты, нерастворимые в щавелевой кислоте и разбавленных минеральных кислотах, и фториды, нерастворимые в разбавленной фтористоводородной кислоте. На использовании свойств этих солей основаны методы группового отделения редкоземельных элементов от большинства других элементов. Редкоземельные элементы количественно осаждаются аммиаком, что дает возможность отделять их от щелочных и щелочноземельных металлов и магния. Их гидроокиси нерастворимы в едком натре и едком кали, свойство, которое также может быть использовано в анализе. [c.565]

    Б. Отделение европия от других редкоземельных элементов [c.69]

    Купферон оказался пригодным также и для отделения урана осаждением его в виде купфероната уранила [863]. Количественное осаждение имеет место при pH 4—9. Вследствие более высоких значений pH осаждения мешающее влияние других элементов в этом случае значительно больше, чем при осаждении урана (IV). Для повышения избирательности осаждения рядом автором [373, 728] предложено применение комплексона III для удержания в растворе других элементов. В этом случае отделяются щелочные и щелочноземельные элементы, Mg, N1, Со, 2п, Мп, Сс1, Си, РЬ, Ag, Hg, В1, Те, Сг, 5п, ТЬ, Ьа, Се и редкоземельные элементы. Прибавлением винной кислоты удерживаются в растворе А1, 5Ь, 5п, ЫЬ и Та. Титан и цирконий в небольших количествах также не мешают отделению урана. Присутствие нитратов, хлоридов, сульфатов, хроматов, молибдатов, вольфраматов, а также ацетатов, оксалатов и цитратов влияния не оказывает. [c.275]

    Кроме отделения от тория, циркония и редкоземельных элементов осаждение урана (VI) при помощи 8-оксихинолина из уксуснокислых растворов (pH--5,3) в присутствии комплексона III позволяет количественно отделять уран также и от Fe (III), Al, Си, Со, Ni, Zn, d, Pb, Bi, Мп и ряда других элементов. При проведении осаждения в аммиачно-щелочной среде (рН 8,4) уран (VI) может быть количественно отделен от молибдена, вольфрама и ванадия [898]. [c.276]


    Из предварительно восстановленных растворов уран (IV) количественно может быть отделен от умеренных количеств других элементов осаждением щавелевой кислотой. Исключением являются только торий и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с ураном (IV). Полноте осаждения урана (IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества (молочная кислота и т. п.). После отделения осадка содержание урана в нем определяют весовым или другим удобным методом. Методика осаждения подробно описана в разделе Весовые методы определения . [c.277]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]

    Методы экстракции кальция и других щелочноземельных металлов из кислых растворов имеют большое значение для отделения кальция от больших количеств железа, никеля, хрома, редкоземельных элементов и др. Экстрагируют роданидные комплексы кальция трибутилфосфатом [131, 138, 320[. Равновесие в системе раствор кальция — роданид — ТБФ наступает за несколько секунд. Из раствора 0,liV по НС1 и 2 М по роданиду экстрагируется 98% Са. Для маскировки тяжелых металлов применяют комплексон III. При этом кальций практически количественно экстрагируется в виде роданидного комплекса (раствор 0,01 — 0,6 N по НС1 pH 2—0,2) [1371 (рис. 30). Такой метод позволяет [c.169]

    Превосходные разделения в аналитической химии можно выполнить пользуясь в качестве элюента растворами ЭДТА [28]. Примером может служить разделение кальция, стронция, бария и радпя [6, 15]. Кальций и стронций элюируют раздельно 0,01М раствором ЭДТА при pH 7,4. Затем при pH 9 элюируют последовательно барий и радий. Аналогичные методы разделения щелочноземельных металлов применялись многими авторами [9, 13, 38, 88 89]. Этп-лендиаминтетраацетат является ценным элюентом и тогда, когда нужно щелочноземельные металлы отделить от других металлов. В этом случав также рекомендуется применять ступенчатое элюирование растворами с повышающейся величиной pH. Для химика-аналитика представляет также интерес отделение редкоземельных элементов от стронция и бария [15], разделение актиния, висмута, свинца и радия [15], а также отделение алюминия от магния [22]. Когда константы нестойкости комплексов значительно различаются, разделение удобно осуществлять методом селективного поглощения. Типичным примером может служить разделение свинца и бария [76]. [c.313]

    Классическая схема группового отделения редкоземельных элементов от других продуктов ядерного расщепления была разработана с связи с так называемым Плутониевым проектом . Эта схема была разработана для препаративных целей, но она представляет интерес и с аналитической точки зрения. Следует отметить, что для препаративных целей предложена новая схема, основанная на сочетании ионообменного и других способов разделения (см., например, [77]). Применяемые аналитические методы основаны на том, что редкоземельные элементы хорошо поглощаются катионитами из солянокислого раствора. Шуберт, Рассел и Фароби [78, 79 ] вы -делили иттрий из мочи, подкисленной до 0,1М НС1. Подкисление препятствует выпадению осадка и разрушает комплексы иттрия с компонентами мочи. В начале одно- и двухзарядные катионы элюируют соляной кислотой (например, 0,8М [27]). Иттрий элюируется последним 6Ж соляной кислотой. Определение иттрия в костях п в яичной скорлупе основано на том же принципе [27]. [c.326]

    Отделение тория от других элементов может осуществлятьс хроматографией на катионите и анионите. Четырехзарядный ио тория прочно адсорбируется катионитом и в отличие от одно двух- и трехзарядных ионов, в частности ионов редкоземельны элементов, не может быть вымыт с катионита азотной и соляно кислотами любых концентраций. Для его элюирования необход МО применять комплексообразователи, например щавелевую, Л1 монную, молочную кислоты, NaHS04, фторид, карбонат. [c.444]

    Предложен еще один способ отделения алюминия от других элементов экстракцией его окси.чинолята добавлением ЭДТА и цианид-ионов при pH 8,5—9,0. В этих условиях шелочноземельные и редкоземельные элементы не мешают определению алюминия, однако висмут, галлий, индий, ниобий (V), тантал (V),сурьма (III), сурьма (V), титан (IV), уран (VI), ванадий (IV), цирконий и небольшие количества бериллия экстрагируются. [c.702]

    При дробном осаждении щелочами и при разложении посредством прокаливания нитратов иттрий осаждается и разлагается последним. Отделение пттрпя от других элементов иттриевой группы основано на том, что последние фракции обогащаются иттрием [203, 221, 222]. Прандтль [223] получал чистую У2О3 основным осаждением в присутствии гп(Г Оз)2, а затем фракционным осаждением ферроцианидов. Фогг и Гесс [68] отделяли иттрий действием мочевины на раствор смеси редкоземельных элементов. [c.79]

    Экстрагирование галли5[ эфиром из 5,5—6,0 н солянокислого раствора является наиболее надежным и быстрым методом его отделения от А1, Ве, В1, Са, Сс1, Сг, Со, N1, железа (II), РЬ, Мп, Оз, Рс1, Ни, ТЬ, У, и, 2г, А , редкоземельных и других элементов [33, стр. 22]. Трехвалентное железо, кроме указанного способа, может быть восстановлено тиосульфатом натрия в 6 н солянокислом растворе или металлическим кадмием в разбавленном (1 3) солянокислом растворе [13]. В последнем случае одновременно с восстановлением железа происходит цементация на металлическом кадмии элементов с более положительными потенциалами Си, Аб, Се, 5Ь, Зе, Те и др. Затем кислотность раствора доводят соляной кислотой до 6 н, добавляют раствор треххлористого титана и проводят экстракцию равным объемом эфира, насыщенного 6 н соляной кислотой. Объединенные эфирные экстракты после про.мывки 6 н соляной кислотой вьшаривают досуха с хлористым натрием или реэкстрагируют галлий в воду и выпаривают реэкстракт. Остаток растворяют. Если в полученном растворе присутствует железо, его можно осадить едким натром [9] или углекислым натрием [37]. [c.98]

    Редкоземельные металлы являются членами группы аммиака, их гидроокиси осаждаются аммиаком в присутствии аммонийных солей осаждение, в особенности для гидроокисей наиболее основного характера, протекает количественно только на холоду и при большом избытке аммиака. Осаждение щавелевой кислотой в кислом растворе служит для отделения лaнтaнviдoв от других элементов этой группы. [c.136]

    Наиболее удовлетворительным методом отделения циркония от других элементов является осаждение его в виде двузамещенного фосфата из раствора, содержащего 10% по объему серной или соляной кислоты, а также перекись водорода, если присутствуют титан, ниобий или тантал. По всей вероятности, лишь очень немногие элементы, помимо гафния, протактиния, ниобия и тантала, влияют на осаждение фосфата циркония, если осаждение проводится в сернокислом растворе. При отсутствии циркония ниобий и тантал выделяются из растворов, содержащих серную кислоту, фосфорную кислоту и перекись водорода, лишь после продолжительного стояния при комнатной температуре, но в присутствии циркония они частично выпадают в осадок. Метод осаждения циркония фосфатом и последующей обработки полученного осадка приводится ниже (стр. 585). Другие элементы, например железо, титан, торий и редкоземельные металлы, можно затем отделить от фосфорной кислоты осаждением едким натром и определить обычно принятыми методами. [c.583]

    Хотя комплексон и не является избирательным реагентом, однако во многих случаях, когда анализируемый материал содержит лишь один взаимодействующий с комплексоном элемент, применение К. является весьма эффективным, т. к. дает возможность получать )езультаты простыми средствами за короткий срок. 1ри анализе продуктов более сложного состава влияние мешающих титрованию элементов часто удается легко и просто устранить маскировкой цианидом, фторидом, триэтаноламином и т, п. или выведением в осадок в виде оксалата, сульфата и т. п. Избирательность К. может быть в отдельных случаях повышена увеличением кислотности раствора, т. к. при этом уменьшается число элементов, взаимодействующих с комплексоном. Можно, напр., титровать Ге + при pH 2—3 в присутствии Са и Mg, к-рые в этих условиях комплексопатов не образуют титрованию циркония в2н. солянокислой среде практически не мешают все другие элементы, ие считая тех, к-рые гидролизуются в указанных условиях.. Зависимость устойчивости комплексов от кислотности используется и для последовательного титрования двух, а иногда и более элементов в одном и том же растворе. Так, напр., титруют торий при pH 1,6, а затем повышают pH до 4,5 и титруют в том же растворе редкоземельные алементы. В тех случаях, когда нет возможности устранить влияние сопутствующих элементов непосредственно в титруемом растворе, прибегают к их предварительному отделению с помощью обычных методов. Применение К. в таких случаях упрощает определение. [c.335]

    Экстракция америция. Для отделения америция от лантана применяют экстракцию 0,2 М раствором децилтрифторацетона в бензоле [431, 443. Степень экстракции америция доходит до 100% при рН>4 для получения хорошего разделения следует доводить значение pH до 3,3. В этих условиях вымывается 97% Ат и только 3% Ьа. Обратная экстракция америция из органической фазы производится раствором с pH <2,5. Для отделения америция от ряда других элементов (Ыр , Ри , Ра , Тг , Ре , 2г " ) надо проводить их предварительную экстракцию при рН<2,5. Для отделения америция от редкоземельных элементов его экстрагируют [c.441]

    Советскими учеными проделан ряд работ по распределительно-хроматографическому выделению урана на сили-кагельных колонках. В. К. Марков [127] отмечает, что при правильном снаряжении колонки силикагелем, смоченным не водой, а подкисленным раствором высаливателя, и применении соответствующего подвижного растворителя, можно получить полное количественное отделение урана от сопутствующих элементов. При этом расход экстрагента значительно снижается по сравнению с разделением на целлюлозных колонках. Он предложил методику отделения урана от сопутствующих элементов при анализе руд на силикагеле с помощью диэтилового эфира. В работах других исследователей [128, 129] показана возможность отделения урана от плутония и ряда продуктов деления также на колонках с силикагелем. Известно также успешное применение распределительной хроматографии на силикагеле для разделения редкоземельных элементов с растворами теноилтрифторацетона (ТТА) в бензоле в качестве элюента [102]. [c.175]

    Широкое распространение получил экстракционный метод отделения железа (ГП) в в iдe Н[РеС14] от многих других ионов, например от кальция, стронция, бария, алюминия, редкоземельных и многих других элементов. Тетрахлоридный комплекс железа экстрагируют этилацетатом или диэтиловым эфиром. [c.267]

    Отделение оксалата плутония (IV). Метод может быть использован для отделения плутония от тех же элементов, которые отделяются при оксалатном осаждении четырехвалентного урана [9, стр. 277]. Растворимость оксалата четырехвалентного плутония с увеличением кислотности (до 1,0 М HNO3) уменьшается [34, стр. 310]. Однако для более полного отделения Pu(IV) от других элементов осаждение лучше проводить. из 2 М раствора кислоты (растворимость Ри ( 204)2 при этой кислотности возрастает незначительно). Совместно с плутонием в этих условиях количественно осаждаются торий, U(IV) и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с Pu(IV). Осаждению Pu(IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества [9, стр. 277]. [c.298]

    Для устранения мешающего влияния ванадия и др. металлов В, И. Титов и И, И, Волков [157, 184], а также и другие исследователи [197, 748, 818, 820, 975] предложили проводить осаждение в присутствии комплексона П1, удерживающего в растворе основные мешающие элементы—Ре, А1, Сг, Си, N1, редкоземельные элементы и ряд других. Ванадий при кипячении раствора восстанавливается комплексоном П1 из пятивалентного до четырехвалентного, который затем также маскируется избытком комплексона III. Таким образом, осаждение урана фосфатами в присутствии комплексона III позволяет количественно определять уран в сложных по составу растворах, Однакоэтот метод нашел основное применение как способ отделения малых количеств урана от сопутствующих элементов для [c.61]

    В некот(М)ых случаях, как, например, в экстракционных разде-лшвях, в о(й>емных определениях или в колориметрии, особое внимание уделяется рассмотрению поведения четырехвалентного церия. Среди методов разделения более подробно рассмотрены два основных метода хроматографический и экстракционный. В основном первый Из них применяется для разделения смесей редкоземельных элементов и в этой части освещен более детально. Отдельные методы количественного определения весьма неравноценны так, объемные методы, основанные на реакциях окисления-восстановления, применяются в основном для определения церия, полярография — для определения европия и иттербия, а объемные методы с использованием комплексообразующих или осаждающих реагентов—для группового определения редкоземельных элементов. Наиболее универсальные оптические и активационный методы рассмотрены в гораздо большем объеме ввиду их особой роли в анализе смесей редкоземельных элементов. В главах по прикладным вопросам уделено значительное внимание анализу особо чистых веществ и отделению редкоземельных элементов от других элементов. [c.6]

    Наконец, необходимо отметить амальгамы, о существовании которых упоминалось сравнительно давно. Рзэ цериевой группы образуют амальгамы легче, чем элементы иттриевой группы. Амальгамы можно получать замещением щелочных металлов редкоземельными металлами из насыщенных спиртовых растворов безводных хлоридов [2031], прямым растворением редкоземельных металлов и ртути или выделением на ртутном катоде при электролизе. Последний метод широко применяется при электролитическом отделении 8т, Ей и УЬ от других элементов. Амальгамы с содержанием до 5% редкоземельного металла еще жидки, но при дальнейшем увеличении его концентрации постепенно переходят в пастообразные смеси. Вакуумной отгонкой можно почти полностью освободить сплав от ртути. Остаточные количества ртути удерживаются довольно прочно, особенно для тяжелых рзэ. При нагревании нлн стоянии на воздухе амальгамы имеют тенденцию к разрушению, которое при соприкосновении с кислородом сопровождается быстрым окислением. [c.29]

    Отделение от трансплутониевых элементов. Отделение от Ат, m и Вк [1878, 1925] является очень сложной задачей и практически разрешается в основном хроматографически. Наиболее эффективным оказывается групповое отделение трансурановых элементов от редкоземельных на смоле D-50 при элюировании 13 N НС1. При этом Ат и m выходят первыми, а затем выходит Lu и другие рзэ. При использовании других элюантов трансплутониевые элементы также отделяются от редкоземельных, но выходят в промежутках между ними. [c.265]

    Пршибил и др. [3J7] разработали метод осаждения MgNH4P04- BHjO в присутствии катионов III и IV аналитических групп, а также урана, бериллия, титана, тория, редкоземельных элементов и ш елочноземельных металлов, связываемых комплексоном и тироном неосаждающиеся соединения. Вместо тирона другие авторы применяют лимонную кислоту [792]. Фосфор определяют по количеству магния, не вошедшего в реакцию или содержащегося в осадке магнийаммонийфосфата. Для отделения Fe + применяют купферон [668, 669] с последующей экстракцией образующихся комплексов эфиром. Затем в водном растворе определяют РО4 в присутствии молочной кислоты, прибавляя комп-лексон III и титруя его избыток сульфатом магния (в качестве индикатора при этом применяют эриохром черный Т или смесь его с тг-нитрозодиметиламином [119]) до перехода окраски из изумрудно-зеленой красную. Косвенный комнлексонометриче-ский метод с применением солей магния был изучен и усовершенствован многими авторами [119, 546, 661, 712, 805, 902, 1136, 1137]. Его применяют для определения фосфора в различных [c.38]


Смотреть страницы где упоминается термин Отделение редкоземельных элементов от других элементов: [c.59]    [c.638]    [c.247]    [c.79]    [c.65]    [c.38]    [c.6]   
Смотреть главы в:

Ионообменные разделения в аналитической химии -> Отделение редкоземельных элементов от других элементов




ПОИСК





Смотрите так же термины и статьи:

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте