Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винтовая поверхность на цилиндре

    Пересечение винтовой поверхности цилиндром радиуса г и осью 2 дает винтовую ликию (фиг. 283), уравнение которой совпадает с уравнением (56). [c.572]

    Устройства для транспортирования жидкостей, в частности, водоподъемники (водоподъемные колеса, нории, водоподъемники типа Архимедов винт ), известны с глубокой древности. Водоподъемное колесо состояло из деревянного обода большого диаметра, на котором располагались черпаки. При погружении нижней части колеса в водоем черпаки захватывают воду. Наверху вода выливалась в желоб и самотеком направлялась к потребителю. Нории обычно выполняли в виде кольца из бечевы, к которому привязывали кувшины. По сравнению с водоподъемными колесами нории поднимали воду на большую высоту. Водоподъемники типа Архимедов винт выполняли в виде открытого с двух сторон цилиндра, внутри которого располагали вал с винтовой поверхностью. Цилиндр устанавливали наклонно (нижний конец его помещали в водоем). [c.4]


    Съемник на рис. 5.1,д содержит силовой цилиндр, например гидроцилиндр 3, корпус 4, внутри которого расположен шток 5 гидроцилиндра. Конец 8 штока 5 выполнен ступенчатым меньшего диаметра с винтовой поверхностью. Гайка 7 образует с этой поверхностью винтовую пару, установлена в подшипнике 1 и имеет рабочий участок 9 с резьбой под резьбовой элемент демонтируемого вала, являющийся захватом детали. Подшипник [c.306]

    Вначале вкратце обсудим некоторые геометрические соотношения, свойственные червякам. Двумя основными геометрическими параметрами, характеризующими червяк экструдера, являются диаметр D, замеренный по наружному размеру гребня, и осевая длина L или отношение длины к диаметру L/D. Обычно это отношение находится в пределах 24—26, хотя иногда бывают червяки с отношением длины к диаметру выше — до 40 или ниже — до 8. Последние обычно встречаются либо в экструдерах для переработки резины, либо в ранних моделях экструдеров для переработки термопластов. Диаметры червяков обычно находятся в диапазоне от 2 до 75 см, но могут быть ниже и выше. Червяк не может быть плотно вставлен в цилиндр из-за трения. Поэтому между гребнем червяка и внутренней поверхностью цилиндра диаметром Оь существует небольшой радиальный зазор б/, равный около 0,2—0,5 мм. Расплав полимера непрерывно течет по этому зазору, играя роль смазки. Диаметр червяка по краю гребня составляет D . = Оь — 26 , Длина одного полного витка гребня, измеренная вдоль оси червяка, называется шагом L . Большинство червяков одночервячных экструдеров является однозаходными с = D . Схема такого червяка представлена на рис. 10.12. Радиальное расстояние между поверхностью цилиндра и основанием червяка называется глубиной канала Я. Основным конструктивным параметром червяков является продольный профиль глубины винтового канала, т. е. Н (г), где z — расстояние. [c.321]

    Что увидит наблюдатель, двигаясь с этой скоростью в осевом направлении Во-первых, конечно, он скажет, что перемещается с той же скоростью, что и расплав в направлении головки. Во-вторых, с его точки зрения (лагранжевы координаты), поверхность цилиндра движется со скоростью V в противоположном направлении, а основание червяка — по винтовой линии со скоростью [c.356]

    Заканчивая анализ поперечных срезов (рис. 12.8), рассмотрим другие детали физических процессов, протекающих в винтовом канале червяка. Относительное движение поверхности цилиндра, направленное поперек винтового канала, увлекает за собой расплав и перемещает его к заполненному расплавом участку канала,находящемуся у толкающей стенки, одновременно создавая поперечный градиент давления и циркуляционное течение. Это гидродинамическое давление несомненно способствует дроблению твердой пробки полимера, расположенной у передней стенки винтового канала. А так как расплавленный полимер непрерывно удаляется из пленки расплава за счет относительного движения цилиндра, то твердый слой должен начать двигаться по направлению к поверхности цилиндра. В то же время нерасплавленный полимер скользит по витку вследствие этого ширина пробки, движущейся по каналу, непрерывно уменьшается до тех пор, пока пробка, наконец, полностью не исчезнет. С другой стороны, в данном сечении винтового канала размеры пробки остаются во времени неизменными. Таким образом, налицо все элементы установившегося процесса плавления, сопровождающегося удалением расплава вследствие вынужденного течения (см. разд. 9.8). Более того, подобный механизм плавления может существовать только в тонкой пленке расплава у поверхности цилиндра. Учитывая также существенное различие между интенсивностью плавления без и с удалением образовавшегося расплава, мы приходим к выводу, что плавление на сердечнике червяка (даже при проникновении расплава под твердый слой) так же, как взаимодействие между слоями расплав- [c.430]


    Скорость движения твердой пробки вдоль оси винтового канала червяка равна Ург/з1п 0. (Отметим, что эта скорость эквивалентна скорости и в разд. 8.13). Более удобно выразить расход О через угол Ф, образованный направлениями скоростей твердой пробки и поверхности цилиндра, поскольку этот угол входит в уравнение равновесия действующих сил и крутящих моментов [(ср. с уравнением (8.13-7)]. Соотношение между Ур/, Уь и углом Ф можно легко получить из рис. 12.10  [c.434]

    Как отмечалось ранее, между сечением, в котором начинается формирование пленки расплава на поверхности цилиндра (в результате нагрева цилиндра либо за счет тепла, выделяющегося при совершении работы против сил трения), и сечением, в котором у толкающей стенки канала образуется слой расплава, расположена зона задержки. Зона задержки плавления начинается в точке на оси червяка, где Ть превышает (образование пленки расплава) и распространяется до точки, в которой слой расплава начинает скапливаться у толкающей стенки канала. Силы, вызывающие транспортировку материала в этой зоне, складываются из увлекающей силы, возникающей из-за вязкостных напряжений на поверхности цилиндра, создаваемых деформацией сдвига в пленке расплава, и обычного фрикционного торможения, создаваемого силами трения, действующими на поверхностях сердечника и стенках канала [14, 21]. Толщина пленки расплава увеличивается вдоль оси винтового канала и в конце зоны в несколько раз превышает величину зазора между гребнем червяка и цилиндром. В настоящее время не существует математической модели, пригодной для расчета длины зоны задержки. На рис. 12.14 графически представлена зависимость (основанная на ограниченном числе экспериментальных данных) длины зоны, выраженной числом витков червяка, от величины (связь которой со скоростью плавления будет обсуждаться ниже). Соотношение не учитывает механических свойств твердого слоя, которые, вероятно, также оказывают влияние на длину зоны задержки. [c.441]

    Основное допущение, на котором основан вывод модели, заключается в предположении о существовании установившегося режима. Далее предполагается, что плавление происходит только на поверхности цилиндра, а образующийся расплав удаляется вследствие существования вынужденного течения твердая пробка однородна, деформируема и непрерывна. Локальные значения скорости движения твердой пробки по винтовому каналу червяка постоянны. Медленные изменения этой скорости, так же как и изменения физических свойств (т. е. плотности пробки), условий процесса (т. е. температуры цилиндра) и размеров (глубины канала), могут быть учтены процедурой счета, который последовательно проводится для участков червяка небольшой длины, расположенных друг за другом. Предполагается также, что физические и теплофизические свойства полимера постоянны, а поверхность раздела пленка расплава — твердая пробка имеет температуру плавления и явно выражена. [c.442]

    И. Доберейнер (1829) нашел закономерности в, изменении атомных масс для ряда триад элементов, сходных по химическим свойствам. А. Шанкуртуа (1862) расположил элементы в порядке возрастания атомных масс по винтовой линии, нанесенной на поверхности цилиндра. Причем выяснилось, что некоторые сходные элементы оказались один под другим (наметились группы сходных элементов). Ч. Одлинг (1857) опубликовал таблицу из 57 элементов, расставленных в порядке возрастания атомных масс. При этом в ряде случаев наметились более или менее удачные группы химических элементов. Дж. Ньюлендс (1866) расположил элементы в порядке возрастания их эквивалентов. Он выдвинул положение, что порядковые номера элементов отличаются обычно на семь или число, кратное семи, назвав эту закономерность законом октав. Л. Мейер (1864) на основании данных об атомных массах предложил таблицу, показываюш,ую соотношение атомных масс для нескольких характерных групп элементов. Вместе с тем никаких теоретических обобщений из своей таблицы он не сделал. [c.60]

    В 1862 г. де Шанкуртуа попытался объединить все элементы иа основе их атомных весов. Он расположил элементы на винтовой линии под углом 45° на поверхности цилиндра. Параллельно основанию цилиндра были проведены линии, отвечающие значениям атомных весов от О до 128. Направляющая окружность цилиндра была разделена на 16 частей (а соответствии с атомным весом кислорода, который был принят за 16). При таком расположении сходные элементы часто попадали на одну и ту же вертикальную прямую. Так, на одной линии оказались 5, 5е, Те, а также Ыа, К. Однако было и много отклонений в сходстве элементов, находящихся на одной вертикальной линии. [c.81]

    Гребнеотделитель представляет собой горизонтальный перфорированный цилиндр 4, внутри которого по оси смонтирован ротор-вал 5 с бичами б, закрепленными на одно- или двухзаходной прямой винтовой поверхности. Основные достоинства этого рабочего органа — высокая технологическая эффективность, простота конструкции, компактность, эксплуатационная надежность и др. Кроме того, его конструктивные особенности позволяют использовать относительно невысокие скорости воздействия на виноград при отделении гребней, что благоприятно отражается на качестве получаемого сусла. [c.371]


    Винтовая нарезка червяка обеспечивает и деформирование материала и его непрерывное перемещение вдоль цилиндра от воронки к головке. В дозирующей зоне червяк служит элементом винтового насоса здесь материал дополнительно гомогенизируется и находится в пластичном и вязкотекучем состоянии. В четвертой зоне материал формуется в заготовку того или иного профиля. Решающим фактором для перемещения материала в червячной машине является его взаимодействие с поверхностью червяка и цилиндра. В зоне загрузки большое значение имеет величина коэффициента трения между материалом и поверхностью цилиндра. Чтобы материал мог перемещаться вдоль оси червяка, коэффициент трения материала на поверхности червяка должен быть по возможности мал, а коэффициент трения материала на поверхности цилиндра достаточно велик. Если это условие не выполняется, то материал может вращаться вместе с червяком, не перемещаясь в направлении головки. Благоприятный режим работы машины в загрузочной зоне достигается выбором соответствующей геометрии винтовой нарезки червяка, формы загрузочного отверстия в цилиндре, обработкой поверхности червяка и цилиндра, а также подбором нужных тепловых и скоростных параметров технологического процесса. [c.175]

    В зоне пластикации осуществляются решающие процессы обработки материала. Вследствие сопротивления головки, а также переменного объема винтовой канавки червяка в цилиндре материал находится под давлением и за счет сцепления с рабочей поверхностью вращающегося червяка и неподвижной поверхностью цилиндра вовлекается в сложное движение. Деформации сдвига по мере перемещения материала к головке все больше и больше проникают в его глубину. Создается поток материала, который проявляет свойства аномально-вязкой жидкости. Переработка материала в этой зоне машины носит гидродинамический характер. Это и положено в основу современной теории работы червячной машины. В зоне пластикации происходит основной нагрев материала здесь материал доводится до такого состояния, чтобы его можно было формовать с минимальной затратой усилий. [c.175]

    По этой причине работоспособность машины в противоположных зонах зависит от разных свойств резиновой смеси и при конструировании каждой зоны должны учитываться свойства резиновой смеси. В зоне питания на производительность оказывает большое влияние коэффициент трения резиновой смеси по металлу червяка и цилиндра. Чем меньше коэффициент трения резиновой смеси по поверхности червяка и выше по поверхности цилиндра, тем выше подающая способность червяка. Коэффициент же трения зависит от состояния поверхности, температуры, давления, скорости скольжения. С целью повышения подающей способности червяка в зоне питания его поверхность обрабатывают до зеркального состояния, а поверхность цилиндра делают шероховатой. Иногда на внутренней поверхности цилиндра делают продольные канавки для уменьшения проскальзывания резиновой смеси. Охлаждение червяка также способствует лучшему проскальзыванию смеси вдоль винтовой канавки. Форму винтового гребня червяка выполняют с наклонной стенкой, это способствует затягиванию резиновой смеси в зазор между червяком и стенкой цилиндра, здесь повышается давление и усиливается сцепление смеси с поверхностью цилиндра. [c.184]

    Поршневые винтовые машины имеют существенно меньшую производительность (10—30 кг/ч). Усилия прессования (50—100 т) обеспечиваются движением поршня, сжимающего формуемую пластичную массу в объеме, ограниченном поверхностью цилиндра, фильерами и торцевой поверхностью поршня. Диаметр поршней 180—220 мм, фильерных отверстий — [c.228]

    Для того чтобы коэффициент трения материала на цилиндре был по возможности максимальным, отделка поверхности цилиндра не должна быть лучше, чем это требуется для чистки машины. Автор провел опыты на обыкновенной ручной мясорубке, на цилиндре которой были сделаны пазы. Эти пазы не были аксиальными, что согласно теории является оптимальным вариантом. Они были направлены перпендикулярно винтовой нарезке или почти параллельно движению мяса. Интересно отметить, что степень сжатия в этой мясорубке достигала очень большого значения как за счет уменьшения глубины канала, так и за счет уменьшения угла наклона винтовой нарезки. [c.120]

    Резиновая смесь поступает в воронку 5 в виде ленты с катушки или в виде гранул, крошки. Вращающийся червяк 2 увлекает нарезкой смесь вдоль цилиндрического корпуса 3, уплотняя и деформируя ее. Головка 1 и формообразующая деталь 6 оказывают значительное сопротивление движению материала и создают формующее давление. Винтовая нарезка червяка обеспечивает деформирование и непрерывное перемещение смеси вдоль цилиндра, для чего необходимо, чтобы коэффициент трения материала на поверхности червяка был по возможности ниже, а коэффициент трения на поверхности цилиндра достаточно высок. Если это условие не будет выполняться, то материал может вращаться вместе с червяком не перемещаясь к головке. Для процесса шприцевания это условие выполняют подбором геометрии нарезки червяка, формы загрузочного отверстия, обработкой поверхности шнека и цилиндра и подбором оптимальных тепловых и скоростных параметров процесса. [c.80]

    Диаметр каждого из аппаратов 10 см, высота 30 см, объем 2,4 л. Поверхность раздела фаз для второго аппарата, представляющего собой, с нашей точки зрения, центрифугу, подсчитана по поверхности цилиндра для третьего и четвертого аппаратов — как сумма поверхностей сферических частиц равного диаметра. Экспериментально установлено, что в автоклаве с винтовой мешалкой средний диаметр частиц газа в бензине равен 5 мм, а диаметр частиц бензина в воде примерно 0,01 мм. Результаты подсчетов приведены в табл. 25. [c.135]

    Характер ближнего порядка в полимерных цепях определяется их стереохимич. структурой. Для макромолекул виниловых полимеров с изотактич. расположением привесков, а также для макромолекул с симметричными привесками наиболее общий случай — спиральный ближний порядок, когда эквивалентные атомы (центры стереоизомерии) полимерной цепи располагаются вдоль винтовой линии на поверхности цилиндра (плоскую вытянутую структуру можно рассматривать как частный случай спиральной). Для синдиотактич. макромолекул характерны структуры, обладающие плоскостью скольжения, или плоские структуры. [c.266]

    Одночервячные вертикальные экструдеры. В этих Э. (рис. 5) зона загрузки м. б. расположена на конце 3 червяка, а зона выдавливания — вблизи от привода. Диаметр сердечника червяка в направлении к зоне выдавливания постепенно увеличивается. Цилиндр 6 обогревается через рубашку или электрич. нагревателями (на рис. не показаны). Ниже зоны выдавливания вал 5 червяка и цилиндр охлаждаются вентилятором (на рис. не показан). Чтобы пластицированный материал не проникал в радиальный зазор между валом червяка и внутренней поверхностью цилиндра, на поверхность вала наносят мелкую нарезку, направление винтовой линии к-рой противоположно направлению винтовой линии червяка. [c.461]

    Полученные уравнения течения вязкой несжимаемой л<идкости между двумя параллельными плоскостями применимы для течения расплава в винтовом канале червяка. Действительно, если винтовой канал червяка представить развернутым в плоскости, причем поверхность червяка оставить неподвижной, а поверхность цилиндра передвигать со скоростью, равной линейной скорости червяка, то относительное движение будет таким же, как в экструдере с неподвижным цилиндром и вращающимся червяком. [c.32]

    Цилиндры большинства современных одночервячных машин имеют устройства для охлаждения, что значительно усложняет их конструкцию. Если цилиндр состоит из литых секций, то в них есть каналы. У цилиндров из стальных поковок делают различного вида рубашки. Более совершенный метод охлаждения состоит в том, что на наружной поверхности цилиндра нарезают винтовые канавки и в них укладывают медные трубки так, что они тесно соприкасаются со стальным корпусом. По этим трубкам подают охлаждающую жидкость. В одной из конструкций нагревателей для цилиндра имеются ребра для охлаждения и отверстия для подачи охлаждающей жидкости.. Каналы для охлаждения могут также использоваться для подачи теплоносителя, если нагрев цилиндра осуществляется маслом или другим жидким теплоносителем. В целях регулирования на- [c.114]

    Пересечение винтовой поверхности цилиндром с радиусом г = onst и с осью, совпадающей с z, дает винтовую линию (фиг. 375, а). [c.506]

    На цилиндрической поверхности KADEB, отсекаемой от боковой поверхности цилиндра вертикальной плоскостью ADB, параллельной оси цилиндра, всегда найдется такая винтовая [c.204]

    Одновинтовые (героторные) насосы (рис. 111-26). В корпусе 1 насоса, в котором заключен цилиндр 2 с внутренней профилированной винтовой поверхностью, называемый обоймой, устанавливается однозаходный винт 3. Между обоймой и винтом образуются замкнутые полости, заполняемые при работе насоса жидкостью при вращении винта они перемещаются вдоль оси насоса. [c.148]

    Примерно в это же время французский ученый А. Бергье-де-Шанкуртуа построил систему химических элементов в виде объемной цилиндрической спирали, которую назвал "Тел-луров винт", так как построение заканчивалось теллуром (рис. 3). Известные ему около 50 элементов он расположил по винтовой линии на поверхности цилиндра, откладывая их на образующих в соответствии с их атомными весами в масштабе. Многие химически сходные элементы оказались расположенными друг под другом на вертикалях — образующих цилиндра. Так, Н, F, С1 оказались на одной вертикали впервые была проиллюстрирована аналогия между водородом и галогенами, лишь недавно ставшая общепризнанной. [c.34]

    Здесь W — ширина канала Н — глубина канала Уы — скорость поверхности цилиндра относительно червяка в направлении вдоль канала APf — приращение давления на длине AZr, замеренной вдоль развертки винтовой линии червяка. Коэффициенты FoTW = 4//(1 + 3/), Fprw = 4/(1 + 3/), где / — часть длины винтового канала, которая не перекрывается, так как приходится на отверстие между цилиндрами червяков [/ = а/(2п.)]. [c.365]

    В результате экспериментов установлено, что на большей части червяка экструдера сосуш,ествуют твердая и жидкая фазы, однако разделение их приводит к образованию слоя расплава у толкающего гребня червяка и твердой полимерной пробки у тянущего гребня. Ширина слоя расплава постепенно увеличивается в направлении вдоль винтового канала, в то время как ширина твердой пробки умень -шается. Твердая пробка, имеющая форму непрерывной винтовой ленты изменяющейся ширины и высоты, медленно движется по каналу (аналогично гайке по червяку), скользя по направлению к выходу и постепенно расплавляясь. Все поперечное сечение канала червяка от точки начала плавления до загрузочной воронки заполнено нерасплавленным полимером, который по мере приближения к загрузочному отверстию становится все более рыхлым. Уплотнение твердого полимера позволяет получать экструдат, не содержащий воздушных включений пустоты между частицами (гранулами) твердого полимера обеспечивают беспрепятственный проход воздушных пузырьков из глубины экструдера к загрузочной воронке. Причем частицы твердого полимера движутся по каналу червяка к головке, а воздушные пузырьки остаются неподвижными. Хотя описанное выше поведение расплава в экструдерах является достаточно общим как для аморфных, так и для кристаллических полимеров, малых и больших экструдеров и разнообразных условий работы, оказалось, что при переработке некоторых композиционных материалов на основе ПВХ слой расплава скапливается у передней стенки канала червяка [12]. Кроме того, в больших экструдерах отсутствует отдельный слой расплава на боковой поверхности канала червяка, чаще наблюдается увеличение толщины слоя расплава на поверхности цилиндра [131. Как отмечалось в разд. 9.10, диссипативное плавление — смешение возможно в червячных экструдерах в условиях, которые приводят к возникновению высокого давления в зоне питания. В данном разделе будет рассмотрен процесс плавления, протекающий по обычному механизму. Отметим, что на большей части длины экструдера [c.429]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Возможно, наиболее серьезным допущением в модели Дарнелла и Мола является предположение об изотропности распределения напряжений. Возвращаясь к разд. 8.9, можно предположить, что распределение напряжений в канале червяка достаточно сложное. Шнейдер впервые попытался учесть неизотропность распределения давлений [17. Предполагая существование некоторого определенного соотношения между сжимающими напряжениями во взаимно перпендикулярных направлениях и принимая во внимание геометрию твердой пробки, он получил более реальное распределение напряжений, при котором давление, воздействующее со стороны нерасплавленного полимера на гребни, сердечник червяка и поверхность цилиндра, имело различные значения и было меньше, чем давление вдоль оси винтового канала. Отношение между первым и последним составляло примерно 0,3—0,4. [c.436]

    Сбиватель (рис. 11.32, б) состоит из корпуса 1, цилиндра 3 и лопастной мешалки. В корпусе на двух опорах установлен съемный цилиндр, в который вставляется металлическая сетка. В цилиндре размешен вал 2 со съемными лопастями 4, которые прикреплены к корпусу. На внешней поверхности цилиндра сделаны винтовые канавки для протока охлаждающей воды. Цилиндр сбивателя предназначен для получения масляного зерна без дополнительной его доработки в разделительном цилиндре. Внутри цилиндра сбивателя, который охлаждается через рубашку холодной водой, вращается вал 2. Он приводится в движение от электродвигателя через вариатор скоростей. [c.573]

    Из жиросборной емкости по цеховому трубопроводу жир поступает к насосу, приводимому в действие от электродвигателя с помощью клиноременной передачи, и через трубопровод 5 направляется последовательно в первый, а затем во второй теплообменники 4 и 6. Теплообменники состоят из цилиндров изоляции и охлаждения, вытеснительных барабанов и торцов крыщек. Радиальный зазор между цилиндрами — винтовой канал прямоугольного сечения, равного сечению трубопровода хладоносителя. Вытеснительные барабаны и многоконтактные скребковые устройства при вращении барабанов благодаря центробежной силе прижимаются к поверхности цилиндра охлаждения и снимают слой жира. Перемешиваясь с остальной массой, жир охлаждается и вьпружается через патрубки 3 и 8. [c.910]

    Винтовая ОСЬ получила свое название по аналогии с винтом. Поворот вокруг оси в сочетании с одновременным переносом, параллельным ей, вычерчивает спираль лево- или правостороннюю в соотвегствии с направлением поворота. Вместо непрерывной линии на поверхности цилиндра можно выделить ряд отдельных точек, каждая из которых является результатом поворота па 360°/л. Через п точек мы вернемся к начальной, но сдвинутой на х, т. е. на шаг спирали, который в трехмерном узоре соответствует трансляции решетки. В символе винтовой [c.61]

    В 1955 г. М. С. Френкель, а также М. К. Поршель и П. Гейер (США) независимо друг от друга разработали конструкцию одночервячной машины с винтовой нарезкой на внутренней поверхности цилиндра. Особенностью такой машины являлось то, что глубина нарезок противолежащих витков червяка и цилиндра были переменными, колеблясь между определенными минимальными и максимальными значениями так, что перерабатываемый материал в процессе работы машины непрерывно переходит из винтовых каналов червяка в винтовой канал цилиндра и обратно. Червяк и полость цилиндра (рис. 4.14) имеют коническую форму и сужаются в направлении материального потока. Масса перерабатываемого материала находится в меж-витковых каналах червяка и цилиндра. Вектор скорости течения материала в обеих нарезках имеет осевую составляющую и компоненту, перпендикулярную направлению оси. Вследствие изменяющейся глубины нарезки перерабатываемый материал послойно переходит из межвитковых каналов червяка в каналы цилиндра и обратно. Такому процессу движения подвержена вся масса материала, поскольку глубина нарезки как на червяке, так и в цилиндре местами нисходит до нулевого значения, и в этих участках не может практически задерживаться ни одна частица материала. Следовательно, кроме движений, возникающих в обычных одночервячных машинах, частицы совершают движения по траекториям, перпендикулярным оси червяка. При таких перемещениях частицы материала, находящиеся вначале рядом, разносятся далее друг от друга, что способствует интенсификации смесительного эффекта. Вынуждаемый переход материала из канала червяка в нарезку цилиндра и наоборот называют конвергентно-дивергентной принудительной обработкой. [c.107]

    ОТ расположенных снаружи цилиндра нагревателей й теплоты внутреннего трения в материале. При плавлении объем полимера уменьшается. Соответственно в этой зоне уменьшается глубина канала червяка. В последней зоне — дозирующей — весь винтовой канал червяка заполнен расплавом. Б винтовом канале червяка в этой зоне выделяют четыре потока расплава прямой (вынужденный), направленный к формующей головке, обратный — уменьшение прямого потока вследствие сопротивления головки и стенок цилиндра, циркуляционный — в плоскости, перпендикулярной оси винтового канала, и поток утечки — в зазоре между червяком и внутренней поверхностью цилиндра, направленный к загрузочному бункеру. Производительность экструдера определяют прямой и обратный потоки. Циркуляционный поток не влияет на производительность, а поток утечки обычно настолько мал, что им часто пренебрегают при расчетах. Соотношение длин зон червяка определяется характером перерабатываемого материала Для переработки аморфных термопластов, плавящихся в широком интервале температур, применяют червяки с длинной зоной сжатия, для кристаллизующихся полимеров —с короткой зоной сжатия (длиной около одного диаметра), а для переработки нетермостойких материалов, например поливинилхлорида,— червяки без зоны сжатия, с постепенным уменьшением глубины канала, чтобы избежать paз ioжeния полимера за счет тепловыделения в зоне сжатия,. Для перемещения материала внутри цилиндра нужно, чтобы коэффициент трения о поверхность червяка был меньше, чем о стенку цилиндра, так как иначе полимерный расплав будет только вращаться с червяком без перемещения в осевом направлении. Чтобы снизить коэффициент трения, червяк охлаждают, подавая воду внутрь полости в его сердечнике. При перемещении расплава внутри цилиндра часть механической энергии переходит в тепловую, тепловыделение увеличивается с повышением частоты вращения червяка. В машинах с быстроходными червяками (частота вращения более 2,5 об/с) тепловыделение настолько велико, что при установившемся режиме работы отпадает надобность в наружном обогреве (адиабатические экструдеры). [c.276]

    В 60-х гг. появились сопоставления атомных и эквивалентных масс другого рода. Многие авторы придерживались желания показать справедливость гипотезы У. Праута, особенно в группах сходных элементов. Другие интересовались закономерностями в изменении значений атомных масс в группах сходных элементов. Первой из таких сопоставлений была так называемая винтовая линия , или земной винт (vis tellurique) А. де Шан-куртуа . В своих сообщениях он сделал попытку сопоставить свойства элементов в виде кривой. Он нанес на боковую поверхность цилиндра линию под углом 45° к его основанию. Поверхность цилиндра разделена вертикальными линиями на 16 частей (атомная масса кислорода равна 16). Атомные массы элементов и молекулярные массы простых тел были изображены в виде точек на винтовой линии в соответствующем масштабе. Если развернуть образующую цилиндра, то на плоскости получится ряд отрезков прямых, параллельных друг другу. При таком расположении сходные элементы оказываются друг под другом далеко не всегда. Так, в группу кислорода попадает титан марганец включен в группу щелочных металлов, железо — в группу щелочноземельных. Однако винтовая линия Шанкуртуа фиксирует и некоторые правильные соотношения между атомными массами ряда элементов. Тем не менее винтовая линия не отражает периодичности свойств элементов. На ее основе, например, нельзя предвидеть существование еще не открытых элементов и рассчитать их атомные массы. [c.151]

    В общем случае гибкая нить может быть изогнута одновременно в двух взаимно перпендикулярных направлениях. Важный и простой пример такого изгиба демонстрирует винтовая линия. Ее удобнее представлять как нить, намотанную с шагом В на поверхность цилиндра радиусом А. Если ось 2 декартовых координат ХУЕ совместить с осью цилиндра и начало нити закрепить на оси х в точке х = А, у = О, г = О, то уравнение этой линии будет х = созф, у = Лз1пф, г = Вц>/2п. [c.733]

    Этот метод литья обладает рядом преимуществ. В обычной, поршневой машине в центре массы в зоне плавления создается пробка из нерасплавленных гранул. Поскольку расплав, образующийся в промежутке между стенкой цилиндра и этой пробкой, обладает плохой теплопроводностью, приходится поддерживать на поверхности цилиндра повышенные температуры. Червяк же непрерывно счищает расплавившиеся гранулы с поверхности цилиндра и одновременно приводит в соприкосновение с ней новые порции материала. Кроме того, в обычных литьевых машинах наличие торпеды на Пути движения расплава вызывает увеличение потерь давления. В червяке винтовая нарезка давит на материал по мере продвижения его вдоль цилиндра, вызывая циркуляционное движение в канале червяка и способствуя тем самым лучшему смешению материала. В поршневых машинах поршень давит на расплавленный материал через слой полурасплавленных гранул, тогда как в машинах с червячной пластикацией в. период впрыска червяк давит непосредственно на расплавленную массу. С применением червяка уменьшается продолжительность пребывания материала в машине, что очень важно для материалов, чувствительных к перегреву (например, для поливинилхлорида). К сказанному следует добавить, что эффективность работы иластицирующего устройства и производительность этих машин выше, чем обычных литьевых машин. Дальнейшие усовершенствования несомненно пойдут по пути увеличения скоростей и размеров литьевых машин. [c.136]

    Червячные смесители непрерывного действия могут загружаться листовой резиновой смесью или каучуком. Наиболее широкое применение получили одночервячные машины с винтовой нарезкой на внутренней поверхности цилиндра типа Трансфермикс (или Шермикс ). На рис. 2.34 приведены схемы конструкции и движения смеси в смесительной камере. Червяк 3 и полость корпуса 2 имеют коническую форму с сужением к выходу из корпуса. Материал послойно переходит из межвитковых каналов червяка в каналы цилиндра и обратно по сложной траектории. Этому движению способствует переменная глубина нарезки противолежащих [c.68]

    К важным характеристикам Э., помимо рассмотренных выше конструктивных особенностей червяка, относится размер кольцевого зазора между гребнем червяка и внутренней поверхностью цилиндра. При большем зазоре повышается эффективность гомогенизации, но уменьшается объемная скорость подачи материала вследствие увеличения его потока утечек. При постоянном диаметре червяка кольцевой зазор в Э. с червяками большого диаметра равен обычно 0,002 В, с червяками малого диаметра — 0,005 В. При экструзии материалов, расплавы к-рых имеют низкую вязкость (напр., полиамидов или нек-рых марок полиэтилена), зазор не должен превышать 0,1 мм. Для переработки большинства аморфных термопластов, плавящихся в широком интервале темп-р, применяют Э. с универсальным червяком, имеющим длинную зону сжатия (5—7 В) для экструзии кристаллич. термопластов — машины с короткой зоной сжатия (0,5—1,0 В). При переработке нетермостабильных материалов, напр, жесткого поливинилхлорида, используют Э. с червяком, глубина винтового канала в к-ром уменьшается плавно (отсутствие зоны сжатия позволяет предотвратить деструкцию полимера). [c.461]


Смотреть страницы где упоминается термин Винтовая поверхность на цилиндре: [c.268]    [c.432]    [c.375]    [c.462]    [c.157]    [c.252]   
Смотреть главы в:

Машины химической промышленности Том 1 -> Винтовая поверхность на цилиндре

Машины химической промышленности -> Винтовая поверхность на цилиндре




ПОИСК





Смотрите так же термины и статьи:

Винтовые оси



© 2025 chem21.info Реклама на сайте