Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрический анализ общие условия

    Если раствор аналитической формы не подчиняется закону Бугера — Ламберта — Бера, то это приводит к появлению систематических погрешностей при определении концентрации вещества в растворе по прямолинейному градуировочному графику. Следует отметить, что при устойчиво воспроизводимой нелинейности градуировочного графика также возможно получение достаточно точных результатов анализа. Однако подчинение раствора аналитической формы закону Бугера — Ламберта — Бера в общем случае все же остается основным условием его использования в фотометрическом анализе. [c.57]


    Аналитические реакции в методе фотометрического титрования проводят при оптимальных условиях, способствующих наибольшему выходу аналитической формы, при длине волны, соответствующей наибольшему поглощению того партнера, по окраске которого (или его соединения с индикатором при индикаторном титровании) регистрируют протекание реакции титрования. При выборе индикатора для конкретного случая фотометрического титрования, естественно, справедливы общие правила, сформулированные в титриметрических методах анализа, согласно которым момент изменения окраски индикатора дол-л<ен соответствовать резкому изменению концентрации А или В, в зависимости от избранного способа регистрации конечной точки. Если константы равновесия нескольких аналитических реакций, чаще всего двух, определяемых веществ неодинаковы и различаются в достаточной степени, то на кривой титрования можно зафиксировать две конечные точки и выполнить анализ смеси одним титрованием. [c.84]

    Таким образом, центральное место в фотометрическом анализе занимает химическая реакция. Время, затрачиваемое на анализ, чувствительность метода, его точность и избирательность зависят в основном от выбора химической реакции и оптимальных условий образования окрашенного соединения. Правильное из.мерение светопоглощения, разумеется, имеет большое значение. Однако выбор того или другого способа измерения поглощения света обусловлен, как правило, ке особенностями анализируемого материала или выбранной реакцией, а общими условиями работы той или другой лаборатории. [c.14]

    В книге изложены теоретические основы и практические приемы фотометрических методов анализа (спектрофотометрии, фотоколориметрии, колориметрии) описаны общие условия фотометрического определения веществ, аппаратура и методы измерения светопоглощения растворов в видимой и ультрафиолетовой областях спектра. Приведены практические работы, иллюстрирующие применение фотометрических методов к анализу примесей и основных компонентов растворов и твердых веществ. Специальные главы руководства посвящены спектрофотометрическому определению состава и констант устойчивости окрашенных соединений, математической обработке экспериментальных данных и некоторым расчетам, встречающимся в практике фотометрического анализа. В приложении приведена библиография фотометрического определения различных элементов. Включено около 50 задач с ответами для самостоятельных расчетов. [c.2]


    Наибольшее значение имеет поглощение в ультрафиолетовой и видимой частях спектра. Легкая подвижность электронных связей приводит к тому, что возбуждение обычно передается на наиболее легко возбудимую связь в молекуле или комплексе. Поэтому даже сложные соединения имеют обычно одну или небольшое количество полос поглощения, часто специфических как по положению в спектре, так и по интенсивности поглощения. Обычный растворитель — вода практически прозрачна для ультрафиолетовой и видимой областей спектра. Таким образом, электронные спектры часто довольно просты по сравнению с ИКС. Поэтому анализ даже двух-или трехкомпонентных систем не представляет большой сложности, так как обычно положения максимумов отдельных компонентов лежат в разных участках спектра. Тем не менее анализ более сложных систем уже будет представлять затруднения, поскольку спектры поглощения накладываются друг на друга. Поэтому наиболее общим является следующий путь фотометрического анализа. Сложную систему обрабатывают реактивом, который в определенных условиях образует характерно окрашенное соединение только с одним из компонентов системы. Далее измеряют интенсивность поглощения света в данном участке спектра. [c.86]

    Когда говорят о люминесцентном (или о флуоресцентном) методе анализа, под этим обычно понимают фотолюминесценцию. Различают обычно две группы методов анализ по непосредственному наблюдению люминесцирующего материала и анализ, основанный на переведении определяемого компонента в люминесцирующее соединение. Вторая группа методов люминесцентного анализа близка к фотометрическому анализу. Известно немало случаев, когда один и тот же реактив может быть применен для определения одного и того же элемента как фотометрическим, так и люминесцентным методом. В обоих случаях необходимо перевести определяемый компонент в соединение, которое, возможно, более сильно поглощает свет. При фотометрическом анализе измеряют непосредственно ослабление интенсивности светового потока. Для люминесцентного же анализа эту реакцию можно использовать только в том случае, если значительная часть поглощенной энергии выделяется не в виде тепла, а в виде света. Естественно, что это явление более редкое, поэтому в общем число люминесцентных методов меньше, чем фотометрических. В то же время люминесцентные методы при некоторых условиях более чувствительны по сравнению с фотометрическими. [c.354]

    Приблизительный подсчет показывает, что полный библиографический указатель работ по фотометрическому анализу занял бы около 400 страниц. Таким образом, перед авторами данной монографии встала задача отбора наиболее важных данных из огромного количества материала. Этот отбор неизбежно оказался в некоторой степени субъективным. При отборе материала для теоретической части книги авторы старались руководствоваться известным общим положением физика Людвига Больцмана Нет ничего практичнее хорошей теории . Главное внимание в книге уделено тем вопросам теории, которые в настоящее время позволяют установить научно обоснованные -критерии выбора реактива, я также физических и химических условий определения. Ряд теоретических направлений, которые дают возможность в настоящее время лишь описать явление в тех или других терминах, но не указывают рычагов для управления процессами, не рассматривается в книге. В отдельных подобных случаях авторы ограничиваются ссылками на литературу. [c.11]

    Главы 5—8 посвящены непосредственно физико-химическим основам фотометрического анализа — влиянию концентрации, pH, а также других практически важных факторов. Таким образом, в этих главах рассмотрены основные условия переведения определяемого компонента в окрашенное соединение. В следующих главах (9—II) рассмотрены аппаратура и общие условия измерения поглощения света — визуальные и фотометрические методы, а также вопросы чувствительности и точности фотометрического анализа. При этом авторы считали необходимым не ограничиваться только рассмотрением математической обработки результатов, но показать роль физико-химических факторов, а также больше внимания уделить вопросам правильности анализа. Попутно показаны принципы фотометрического определения больших количеств — этот вопрос целесообразно рассмотреть именно здесь, так как дифференциальная спектрофотометрия отличается от обычной фотометрии не принципом, а лишь приемами измерения оптической плотности. [c.12]

    Наконец, в главах 12—15 рассмотрены общие характеристики наиболее важных групп окрашенных (поглощающих свет) соединений и условия их использования в фотометрическом анализе. Материал в этих главах расположен не по группам определяемых элементов, а по типам реакций, которые лежат в основе фотометрического анализа. Такой порядок даст возможность в следующих книгах избежать повторений (издателыгво предполагает в дальнейшем издать еще три книги по фотометрическому анализу — Фотометрическое определение органических веществ И. М. Ко-ренмана и книги по методам определения металлов и неметаллов [c.12]


    Для достижения высокой воспроизводимости и правильности результатов фотометрического анализа важное значение имеют селективность выбранного реагента и условия проведения фотометрических определений. Некоторые общие рекомендации по основным химическим, оптическим и метрологическим данным, которые необходимы при разработке и выборе фотометрического метода анализа, его оптимизации и представлении материала для публикации, приведены в литературе [8—10, 148—154]. [c.95]

    Повышения избирательности фотометрических определений можно достигать различными путями. Радикальным способом является направленный синтез избирательных органических реагентов. Однако на практике из-за отсутствия общей теории синтеза избирательных реагентов реализовать этот способ для большинства элементов пока еще не удалось. Поэтому повышения избирательности фотометрических определений добиваются либо созданием ассортимента реагентов, взаимно дополняющих друг друга по избирательности 1155], либо применением групповых реагентов в сочетании с маскирующими комплексантами и тщательным выбором условий их аналитического применения. Преимущество применения в фотометрическом анализе ограниченного числа групповых реагентов состоит не только в техническом упрощении анализа при определении многих элементов, но и в том, что благодаря их глубокому и всестороннему изучению можно выбрать наиболее обоснованную и рациональную схему определения каждого элемента даже в сложных объектах [1551. [c.105]

    В монографии описаны классификация оптических методов анализа, общие характеристики реактивов, оптимальные условия анализа и аппаратура. Приведены методы расчета и физико-химическая характеристика чувствительности, точности и специфичности анализа. Рассмотрены физические основы фотометрического анализа даны оптические характеристики (спектры поглощения) окрашенных соединений, методы измерения оптической плотности, а также физико-химические свойства растворов окрашенных соединений. Описаны методы экстракции и маскирующие вещества. Большое внимание уделено методам отделения и получения аналитических концентратов. Приведены физические и химические методы анализа сложных систем. [c.384]

    Значение фона можно также видеть при сравнении фотометрического и люминесцентного методов анализа. В обоих случаях сначала переводят определяемое вещество в окрашенное или люминесцирующее соединение. Далее, при фотометрическом анализе определяют поглощение света. Интенсивность сигнала зависит от величины мольного коэффициента светопоглощения. При люминесцентном анализе частицы образующегося соединения переходят в возбужденное состояние при действии света, а затем часть поглощенного света выделяют в виде света с большей длиной волны. По физическому смыслу процесса очевидно, что даже при максимальном выходе интенсивность сигнала в люминесценции не может в общем превышать интенсивности сигнала в фотометрическом анализе. Однако чувствительность люминесцентного метода значительно выше, чем чувствительность фотометрического метода. Это обусловлено тем, что при люминесцентном методе сигнал наблюдается почти при полном отсутствии фона (т. е. в темноте). Между тем по условиям фотометрического анализа сигналом является небольшое ослабление довольно сильного светового потока при этом неизбежно по разным причинам возникают некоторые флуктуации фона, что уменьшает чувствительность. [c.35]

    В общем случае, измеряя при выбранных оптимальных условиях анализа значения аналитического сигнала (например, оптическую плотность — при фотометрических определениях силу диффузионного тока — при полярографических определениях и т. д.), отвечающие определенным разным значениям х (концентрации, содержанию или массовой доле в стандартных растворах, эталонах, стандартах), находят соответствующие пары значений г// и XI и по ним строят градуировочные графики. [c.35]

    В фотометрическом анализе определяемый компонент переводят в окрашенное или, вообще, в поглощающее свет соединение количество продукта реакции определяют по поглощению света. Во всяком фотометрическом определении главное внимание должно быть уделено выбору и правильному выполнению химической реакции образования окрашенного соединения. Эта часть операций является общей для всех фотометрических методов анализа. Конечная стадия — измерение количества (концентрации) окрашенного продукта реакции — может быть выполнена разными методами в зависимости от наличия в лаборатории приборов или от технических условий. Различают несколько способов измерения концентрации окрашенного продукта реакции. Наиболее важными из них являются а) колориметрическое определение — когда визуально сравнивают цвет или интенсивность окраски испытуемого раствора с цветом или интенсивностью окраски стандартного раствора б) спектрофотометрия — измерение светопоглощения (оптической плотности раствора) при некоторой определенной длине волны или в узком интервале длин волн. Промежуточное место занимают измерения на приборах с фотоэлементами (фотоэлектроколориметрами), снабженными светофильтрами или на приборах типа фотометра Пуль-фриха, где наблюдение ведут визуально, но в некоторой узкой области спектра. [c.232]

    Для получения надежных результатов пламенно-фотометрических измерений необходим строгий контроль за многими переменными. Эталонные растворы, используемые для получения градуировочного графика, должны по возможности иметь тот же общий состав, что и неизвестный раствор. Калибрование лучше всего проводить одновременно с анализом. Даже соблюдая эти предосторожности, получение хороших результатов при измерении на фотометрах со светофильтрами возможно лишь при условии, что состав образца относительно прост и определяемое вещество является главным компонентом. [c.185]

    Приводимые в литературе значения г/ ин ( мнн) и С н, и ( мин. и) рассчитаны обычно на основании результатов, полученных в оптимальных условиях, или на основании анализа идеальных модельных систем, причем значения k, как правило, не приводятся. Все рассмотренные выше причины резко затрудняют объективную оценку пределов обнаружения элементов разными методами и методиками. В общих случаях пределы обнаружения элементов фотометрическими методами анализа колеблются в интервалах [21 ]  [c.67]

    Количество публикаций по экстракционно-фотометрическим мето-тодам анализа с основными красителями быстро возрастает. Описаны методы определения галлия с семью красителями, таллия — с восемью и т. д. Для извлечения многих пар Ме — Р предложены различные экстрагенты и условия экстракции некоторые элементы могут быть экстрагированы в разных валентных состояниях и с различными аддендами. Работы В. И. Кузнецова, А. И. Бусева и других исследователей показывают примеры сознательного синтеза основных красителей, обладающих нужными для применения в экстракционно-фотометрических методах свойствами. Таким образом, число возможных сочетаний адденд-краситель — экстрагент, пригодных для экстракционно-фотометрического определения каждого из элементов (а тем более — сочетаний параметров экстракционного процесса), практически неограниченно. Насколько полезен результат того или иного исследования Какой из опубликованных методов определения элемента или их вариантов следует предпочесть Эти вопросы, возникающие в практической работе аналитика, настойчиво требуют разработки способа объективной сравнительной оценки аналитических методов. Целью последующего изложения является решение этой общей задачи применительно к ЭФМ-ОК. [c.74]

    Спектрофотометрия и люминесценция остаются важнейшими методами определения следовых количеств- неорганических веществ в объектах окружающей среды В настояп ее время даже наметились тенденции в усилении их роли и значения в общей системе химического анализа, что объясняется по крайней мере двумя факторами. Во-первых, это создание устройств (типа проточно-инжекционной системы), позволяющих полностью автоматизировать химический анализ, и, во-вторых, это создание химических сенсоров с фотометрическими или люминесцентными датчиками. Фактически это — новая концепция химического анализа, позволяющая осуществлять единичные или массовые определения в экспрессном варианте с высокой точностью и надежностью, а также проводить дистанционный анализ в экстремальных условиях, подойти к новым типам приборов с меньшей (в 10 —10 ) металлоемкостью и энергозатратами, что существенно удешевит выполнение массовых анализов, — это особенно важно при контроле за загрязнением окружающей среды. [c.6]

    Хотя общие методы установления структуры вещества по продуктам пиролиза не разработаны и решение подобных задач весьма индивидуально и требует высокой квалификации и химической интуиции химика-исследователя, возможно сформулировать несколько положений, которые следует принимать во внимание. Во-первых, аналитический пиролиз целесообразно проводить в условиях, когда роль вторичных реакций невелика, в частности обращая внимание на возможность осуществления пиролиза при пониженных температурах. Вопвторых, идентификацию образующихся продуктов желательно проводить, используя капиллярные колонки и селективные детекторы (например, масс-спект-рометр, пламенно-фотометрический я др.). В-третьих, в эксперименте особое внимание следует обращать на анализ и идентификацию тяжелых продуктов, которые, по-видимому, в большей мере отражают структуру исходного полимерного образца. В-четвертых, определение функциональных групп в ряде случаев также можно проводить методом пиролитической газовой хроматографии, Особенно целесообразно этот метод иопользовать для определения тех функциональных групп, элементный состав которых отличается хотя бы по одному элементу от элементного состава других частей анализируемой молекулы. Так, в литературе [45] описан метод определения степени этерификации ксанто-гената целлюлозы. Основным продуктом пиролитических превращений дитиокарбоновых групп является се- [c.97]

    При непрерывном пропускании газа через раствор стабильность нулевого положения прибора хуже, чем при фотометрическом определеции следов углекислоты в газах она равна 0,5 делениям шкалы гальванометра. Это связано главным образом с циркуляцией раствора в реакционном сосуде. Но так как отдельные отклонения, вызванные приведенными факторами, компенсируют друг друга, нулевой ход прибора устанавливают определением средних значений отклонений с точностью до 0,1 деления. Необходимо определить углеводороды хотя бы тремя точками хроматографической записи анализа, причем нужно, чтобы разность изменения погашения раствора, отвечающая соответствующему углеводороду и выражаемая в делениях гальванометра, равнялась не менее чем трем делениям. Отклонение в максимальном элюционном объеме отличается от нулевого хода приблизительно на 1,5 деления. В соответствии с требуемой чувствительностью определения отдельных углеводородов можно подобрать такое количество адсорбента и такие изменения температуры хроматографической колонки, которые соответствуют условиям прохождения отдельных углеводородов в индикационной системе в небольших интервалах времени (для высших углеводородов интервал времени всегда более продолжителен, но общее количество образующейся углекислоты оказывается также повышенным и эквивалентно числу атомов углерода в молекуле). [c.325]


Смотреть страницы где упоминается термин Фотометрический анализ общие условия: [c.42]    [c.127]    [c.336]    [c.2]    [c.400]    [c.10]   
Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ условия

Фотометрический анализ



© 2025 chem21.info Реклама на сайте