Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация при гидратации

    Ценность реакции гидроборирования — окисления в значительной степени заключается в необычной ориентации гидратации. Гидроксильная группа занимает положение, которое было занято в промежуточном алкил-боране бором, и, следовательно, конечный продукт отражает направление присоединения стадии гидроборирования. Действительно ли необычна зта ориентация  [c.491]

    Воздействие ультразвука на электрохимические процессы, включающие и процессы электрохимической коррозии металлов, складывается из целого ряда эффектов 1) перемешивания, которое устраняет концентрационную поляризацию 2) активационного воздействия на реагирующие частицы и внедрения их в двойной электрический слой (изменение состояния ионных атмосфер и гидратации частиц, преимущественная ориентация ионов и молекул) 3) влияния на переход электронов (за счет возбуждения [c.368]


    Процессам гидролиза белков предшествует гидратация, вызывающая их набухание и растворение. Гидратация ионизированных групп полимерного субстрата обусловлена ориентацией диполей молекул воды в электрическом поле ионизированной [c.359]

    Фуппы (-СОО -NHз и др.), а гидратация полярных заместителей - ориентацией молекул воды в результате образования водородных связей. Молекулы гидратно-связанной белком воды можно представить в виде монослоя вокруг ионизированных И полярных групп полипептида, в то время как гидрофобные ра- [c.359]

    Рассмотрим теперь, как образуются растворы солей. Предположим, кусочек соли оказался в воде. Тотчас начнется взаимодействие ионов соли с молекулами воды. Согласно Дебаю, молекулы воды, являющиеся диполями, будут притянуты и ориентированы в поле иона. Чем меньше расстояние между ионом и диполем, тем сильнее они взаимодействуют между собой. Ориентация диполей возрастает с ростом заряда и уменьшением радиуса иона. Фаянс и Фалькенгаген считают теплоту гидратации свободных газообразных ионов количественной мерой ионо-ди-польного взаимодействия. Это та теплота, которая выделяется при образовании ионных гидратов из молекул воды и газообразных ионов. [c.365]

    Таким образом, при электролитической диссоциации одновременно протекают сл дующие процессы 1) ориентация молекул воды 2) ионн а1П я (в случае полярного электролита) 3) диссоциация электролита 4) гидратация ионов. [c.70]

    Совокупность взаимодействий, приводящих к образованию гидрата, составляет первичную гидратацию. Молекулы воды, связанные с ионом в гидрат, образуют первую гидратную сферу (рис. VII. 8). Электростатическое поле иона действует и на более отдаленные от него молекулы воды, которые входят в ее квазикристаллическую структуру или являются свободными. Возникающее ион-дипольное взаимодействие способно только ориентировать молекулы воды. Эта ориентация может нарушаться под воздействием полей других ионов. Область частичной ориентации воды в поле иона составляет его вторую гидратную сферу, а само взаимодействие иона с полярными молекулами воды во второй гидратной сфере относят к вторичной гидратации. Иногда также говорят об области неориентированной воды, на которую не распространяется влияние ионов. [c.415]


    Образование ориентированных слоев играет также большую роль в процессах прилипания и склеивания. В этих процессах связующее вещество должно вначале быть жидким (для заполнения впадин и повышения фактической площади контакта) и затвердевать в процессах схватывания, посредством замерзания (лед), химических реакций окисления (лаки), гидратации (цемент), полимеризации (клеи) и др. Склеивание полимерных материалов осуществляется путем взаимной диффузии сегментов полимерных цепей. Силы адгезии между твердой поверхностью и затвердевшим клеем или пленкой, согласно представлениям, развитым Дерягиным, имеют во многих случаях (например, при взаимодействии металлов с полимерами) электрическую природу и определяются величиной Аф, возникающей при ориентации молекул в поверхностном слое. Поэтому при разработке новых склеивающих материалов и пленочных покрытий, широко используемых в современной технике, особое внимание следует уделять способности этих веществ к образованию ориентированных слоев. Для повышения этой способности разрабатываются специальные полярные присадки. [c.119]

    Естественно, что молекулы с несколькими симметрично расположенными полярными группами (например, дикарбо-новые кислоты и их эфиры) сохраняют горизонтальную ориентацию в адсорбционных слоях вплоть до их насыщения (Таубман). В этом случае коэффициент правила Траубе уменьшается с 3,5 до 2,6, а площадь, занимаемая молекулой, возрастает с увеличением длины цепи. Таубман также показал необходимость учета гидратации полярных групп в адсорбционном слое, что заметно увеличивает собственные размеры молекул. [c.86]

    Система жидкость — жидкость. Экстракционное выделение рубидия и цезия из их смесей с другими щелочными металлами в системах жидкость — жидкость имеет определенные особенности, объединяющие щелочные металлы в обособленную и до сих пор сравнительно мало исследованную группу. Щелочные металлы обладают большой способностью к образованию хорошо диссоциирующих в водных растворах ионных соединений. Для того чтобы перевести из водного раствора в органический растворитель гидратированный ион щелочного металла, необходимо затратить определенную энергию, равную, по крайней мере, сумме энергий гидратации иона, ориентации и поляризации растворителя. Компенсация этих видов энергии энергией комплексообразо-вания и сольватации иона может привести к тому, что образо- [c.348]

    Следующим достаточно общим свойством ПАВ в водных растворах можно считать их смачивающее действие [9]. Как универсальный эффект оно проявляется уже в самой поверхностной активности — в понижении поверхностного натяжения воды на границе с воздухом, что всегда вызывает повышение смачивания. Однако большое значение в изменениях смачивания под влиянием ПАВ имеет характер его адсорбции на смачиваемой водою твердой поверхности и специфические особенности соответствующего адсорбционного слоя. В отличив от границ раздела вода/масло или вода/воздух (пар), для которых ориентация адсорбирующихся молекул ПАВ однозначно определяется гидратацией полярной группы в водной фазе, для границы раздела твердое тело/вода такая нормальная ориентация не оказывается обязательной [10]. Если энергия связи полярной группы на соответствующих атомах (ионах) твердой поверхности [c.12]

    Ионы Ы разрушают структуру воды. Гидратированные ионы упаковываются вокруг ионов С1 , в результате чего число гидратации становится равным 8-9. Гидратированные ионы Ь содержат четыре молекулы воды, образующие вокруг иона тетраэдр Молекулы Н О прочно удерживаются ионами Ег , образуя октаэдр. Имеются данные, показывающие, что в результате высокой степени ориентации вокруг катиона молекулы воды образуют "льдоподобную" структуру В растворах галогенидов лития и натрия 7-9 молекул воды занимают первый гидратный слой аниона. Число молекул воды несколько возрастает с увеличением размера иона. С анионами связаны также второй и третий гидратные слои. Область влияния ионов Ы и Na в целом меньше, чем в случае анионов, и распространяется преимущественно на первый и второй гидратные слои. Галогенид-ионы располагаются вдоль ОН-осей, а катионы - на дипольных осях воды первого гидратного слоя. В растворах цезиевых солей обнаружено значительное число ионных пар, не наблюдаемых в растворах других солей Из соответствия частот растворов и кристаллогидратов в области 700-1600 см сделан вывод, что в концентрированных растворах относительное расположение ионов аналогично расположению ионов в кристалле- гидратах [c.199]

    Поскольку волокна целлюлозы диамагнитны, трудно предположить, что при кратковременном воздействии слабого магнитного поля они приобретают более однородную ориентацию. По нашему мнению, это связано со снижением степени гидратации поверхности волокон [c.194]


    В воде, сомнительно, чтобы этот ион мог существонать достаточно длительное время для ориентации диполей воды вокруг него и тем самым для выделения всей полагающейся при этом энергии гидратации. Для того чтобы обойти эту трудность, Уилмарт, Дэйтон и Флаурной предложили другой механизм. Они считают, что молекула водорода может одновременно взаимодействовать с ионом гидроксила и с молекулой воды  [c.213]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1<Ст2 диполи растворителя в сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]

    Гидратацию тройных связей обычно проводят с примене- пем в качестве катализаторов солей ртути (часто сульфатов) Г137]. Поскольку эта реакция подчиняется правилу Марковникова, то только ацетилен приводит к альдегиду. Все остальные алкины дают кетоны (при рассмотрении реакции 15-13 описан метод обращения ориентации для терминальных алкинов). В реакции алкинов типа КС = СН почти исключительно получаются метилкетоны, но субстраты типа НС = СН обычно приводят к обоим возможным продуктам. Однако если К — первичная группа, а К — вторичная или третичная, то карбонильная группа предпочтительно образуется по соседству с вторичным или третичным атомом углерода [138]. Удобный метод проведения реакции заключается в использовании катализатора, приготовленного пропиткой Ыа11оп-Н (полимерная супер-кислая перфторированная сульфокислота) оксидом ртути(II) [139]. [c.165]

    Рис. У-39 показывает, что при одинаковом по абсолютной величине заряде и равном радиусе энергия гидратации аниона выше, чем катиона. Обусловлено это различным типом ориентации молекул воды в обоих случаях (рис. У-40). К катиону вода притягивается своим кислородом, расположенным приблизительно в центре молекулы, а к аниону —одним из водородов, которые размещаются Рис. У-40. Схема на периферии. В последнем случае возможно более тесное сближе- ° " кул воды ° ние, что и сказывается на значениях энергии гидратации. [c.210]

    В. И. Данилов и В. Е. Неймарк, исследуя те же растворы, попытались получить ответ на два вопроса в какой мере влияние растворенных электролитов на структуру воды связано с природой электролита и в какой мере разрушающее действие растворенных ионов на структуру воды зависит от температуры. Сопоставляя кривые интенсивности, полученные ими для растворов H I, HF, Li l и NaOH одинаковой концентрации, они показали, что на кривой интенсивности растворов, содержащих ионы № и 0Н , второй максимум выражен четче, чем у растворов той же концентрации, но содержащих ионы Li" и 1 . По мнению В. И. Данилова, наличие побочного максимума на кривых интенсивности водных растворов, содержащих ионы Н" и ОН , можно, по-видимому, считать достаточно убедительным показателем четверной координации молекул воды, а его относительную интенсивность — мерой сохранения в растворе собственной структуры воды. Очевидно, ионы Н" и ОН" изменяют структуру воды в значительно меньшей степени, чем те ионы, для которых возможна перманентная гидратация. Если предположить, что ион Li гидратируется четырьмя молекулами воды, располагающимися в вершинах тетраэдра, то, очевидно, все четыре молекулы НгО будут обращены к иону Li атомами кислорода (рис. 11.6). Такое расположение молекул воды должно нарушать в прилегающих к ним слоях ту взаимную ориентацию молекул НгО, которая характерна для собственной структуры воды. Следовательно, деструктирующим действием должен обладать всякий гидратированный ион независимо от того, какое количество молекул воды он вокруг себя удерживает. [c.281]

    Представители группы хлоритов отличаются числом и видом атомов, замещенных в двух слоях, а также ориентацией и по- следовательностью слоев в пакете. Обычно в хлоритах нет воды между слоями, но в некоторых деградированных хлоритах часть бруситного слоя удалена, в результате чего становятся возможными частичные межслоевая гидратация и разбухание рещетки. [c.143]

    Вертикалыгая ориентация неиояогенных ПАВ на поверхности раздела приводит к образованию слоя полярных групп, являющихся центрами гидратации — создается эшцвтный гидратный слой. [c.251]

    В большинстве технологических процессов текстурирования необходима простая гидратация белков. Поэтому конформация макромолекул мало изменяется, а механизмы ориентации действуют на молекулярные агрегаты. Наоборот, влажное филирование требует полного растворения белков и вызывает ориентирование даже на уровне макромолекулы. [c.533]

    Наблюдается ориентация по Марковникову (т. е. протон в общем случае присоединяется к менее замещенному атому углерода, что приводит к образованию более устойчивого карбениевого иона) gk реакции гидратации замещенных стиролов прекрасно коррелирует со значениями а+, при этом р имеет большое отрицательное значение к — наблюдаемая константа скорости реакции первого порядка, а а+ и р — соответствующие постоянные в уравнении Гам-мета), а в подходящих системах наблюдаются перегруппировки, характерные для карбениевых ионов. Скорость гидратации увеличивается в последовательности  [c.200]

    Ионы размещаются в структуре воды либо в ее полостях, либо замещая молекулы НгО. В любом случае они вызывают разрушение структуры, во-первых, из-за несовпадения размеров иона и молекулы воды и, во-вторых, из-за вынужденной ориентации молекул воды относительно иона, отличающейся от их ориентации в чистой воде. Наряду с эффектом разрушения ион оказывает и упорядочивающее действие, что связано со следующим. Взаимодействие ионов с молекулами воды вызывает смещение электронной плотности на катион. Это эквивалентно увеличению протон-акцепторных свойств, кислорода). В результате оборот, смещение электронной плотности к кислороду при гидратации аниона эквивалентно увеличению протон-акцеторных свойств кислорода). В результате усиливается взаимодействие молекул воды первого гидратного слоя с молекулами воды второго слоя. Эффект упорядочивания растет по мере увеличения плотности заряда иона и степени ковалентности его связи с водой. Конечное действие иона на структуру воды можно оценить по влиянию ионов на подвижность молекул воды за пределами первого координационного слоя. [c.15]

    Если ограниченно растворимое в воде вещество обладает в растворе свойствами слабого электролита (частично ионизировано), то на его адсорбцию существенно влияет различие в энергии взаимодействия с водой неионизированных и ионизированных молекул. Электрическое ноле органического иона является причиной ориентации диполей воды и, следовательно, усиления энергии гидратации в расчете на 1 з-ион вещества. Поскольку гидратация молекул усиливает их связь с растворителем, адсорбция более сильно гидратированных ионов сопрял ена с выполнен11ем добавочной работы, и — адсорбции ионов, как было показано выше, меньше, чем — А/ адсорбции неионизированных молекул. Таким образом, частичная ионизация слабых электролитов в растворах приводит к неодинаковым условиям адсорбции ионизированных и неионизированных молекул, причем из-за более слабой гидратации должны адсорбироваться преимущественно [c.133]

    Степень гидратации гелей зависит от скорости их формирования. По данным Рюммеля [1791, чем ниже скорость формирования, тем меньше воды захватывает гель. Если рассматривать процесс структурообразования как ориентированную агрегацию частиц, увеличение водонасыщенности при больших скоростях образования твердой фазы можно объяснить запаздыванием ориентации. [c.92]

    Из рассмотрения кристаллографических сечений различных кристаллических модификаций кремнезема [1, 2] следует, что при прочих равных условиях различие в упаковке кремнийкислородных тетраэдров должно существенно сказаться на степени гидратации поверхности. При механическом дроблении кристаллического кварца структура его поверхности может быть значительно искажена. В литературе имеются указания о наличии на поверхности кварца тонкого слоя аморфного кремнезема [3]. В связи с этим картина расположения свободных углов кремнийкислородных тетраэдров на поверхности раскола реального кристалла может существенно отличаться от полученной из кристаллографических данных. Тетраэдры могут быть связаны с объемной структурой не только тремя углами, но, возможно, также четырьмя, двумя и даже одним. В случае силикагелей различие в упаковке и ориентации тетраэдров 5104 на поверхности может быть вызвано условиями их Приготовления и дальнейшей обработки. При длительном контакте образца с водой все выступающие на поверхности углы кремнийкислородных тетраэдров заняты гидроксилами, т. е. поверхность в этом смысле будет полностью гидратирована. Однако число таких углов, а следовательно, степень гидратации единицы поверхности различных образцов кремнезема может быть различной. Для проверки этих положГений. мы [4—8 провели систематические исследования адсорбционных и энергетических свойств, а также степени гидратации единицы поверхности кремнезема. В этих работах использовались различные образцы силикагеля, непористый кремнезем, полученный сжиганием кремнийорганических соединений (БС-1), и кристаллический а-кварц , их основные адсорбционные характеристики приведены в табл. 1. [c.107]

    Характер ориентации адсорбированных молекул на неоднородной поверхности адсорбента, какой явлдется, в частности, поверхность кремнезема [1], не может не зависеть от топографии адсорбционных центров и их концентрации на поверхности. Влияние изменения степени гидратации поверхности силикагеля на адсорбцию фенола из растворов в гептане было обнаружено в [19]. Недавно уменьшение адсорбции лауриновой кислоты при термической обработке силикагеля наблюдалось в работе [20]. Для [c.119]

    Бринтцингер [2] определил вес иона из коэффициента диализа, он предполагал, что гидратная вода не окутывает передвигающийся ион, а молекулы воды располагаются соответствующим образом около ионов вследствие ориентации диполей воды. Центральные ионы, вследствие своего относительно мощного электрического поля, связывают особенно прочно некоторые молекулы воды, наход5Йциеся в непосредственной близости, и диффундируют в виде гидратированных ионов. Батлер [3] рассматривает энергию гидратации и энтропию органических соединений, исходя из представлений Лэнгмюра, он рассчитал теплоты гидратации АН для ряда спиртов посредством теоретически определяемого обмена энергий для различных органических групп с молекулами воды. У простых соединений теплоты гидратации обнаруживают аддитивность. При разветвлении цепей наблюдается определенная правильность, именно теплота гидратапии АН уменьшается для каждого разветвления на 0,6—1,0 ккал. Энтропия гидратации 15 вычисляется по уравнению  [c.586]


Смотреть страницы где упоминается термин Ориентация при гидратации: [c.360]    [c.104]    [c.28]    [c.88]    [c.164]    [c.108]    [c.146]    [c.195]    [c.463]    [c.208]    [c.185]    [c.185]    [c.173]    [c.67]    [c.185]    [c.80]    [c.138]    [c.491]    [c.7]    [c.100]   
Смотреть главы в:

Электрофильное присоединение к ненасыщенным системам -> Ориентация при гидратации




ПОИСК







© 2025 chem21.info Реклама на сайте