Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффекты теплопереноса

Рис. 11.3. Результаты статистического анализа процесса при низких температурах на очистной станции показано число дней с температурой ниже указанной температуры за 1 г. и за 5 лет (заштрихованные области отражают неопределенность оценки результатов, связанную с оценкой эффекта теплопереноса) [6]. Рис. 11.3. <a href="/info/18519">Результаты статистического анализа</a> процесса при <a href="/info/40815">низких температурах</a> на <a href="/info/1648999">очистной станции</a> показано число <a href="/info/289336">дней</a> с <a href="/info/33739">температурой ниже</a> <a href="/info/861648">указанной температуры</a> за 1 г. и за 5 лет (заштрихованные области отражают <a href="/info/671362">неопределенность оценки</a> результатов, связанную с <a href="/info/1733417">оценкой эффекта</a> теплопереноса) [6].

    При оценке эффектов теплопереноса удобно пользоваться величинами, названными теплоемкостями они являются интенсивными свойствами системы и зависят от состояния системы и природы вхо-дяш,его в ее состав веш,ества. Величина теплоемкости является, однако, характеристикой данного вещества в конкретном состоянии. Для системы единичного веса теплоемкость при постоянном давлении определяется суммой теплоты и трения, приходящейся на единицу бесконечно малого изменения температуры. [c.51]

    Кондуктивный теплообмен в сильной мере определяется теплообменной контактной поверхностью и диаметром частиц. На рис. 7.5 для данного вида теплообмена показана зависимость коэффициента теплоотдачи от диаметра частиц, а на рис. 7.6 — суммарный эффект теплопереноса. Для частиц малого диаметра благодаря увеличению площади контактов теплоперенос возрастает. [c.155]

    Если приходится иметь дело с теплопереносом, от которого зависит ход всего превращения (например, при подводе или отводе теплоты от слоя катализатора, когда необходимо поддерживать в узком интервале температуру реакции с большим тепловым эффектом), в наиболее простом случае зависимость подобна приведенной в предыдущем примере и следует из закона Фурье  [c.351]

    На этапе макрокинетических исследований решают следующие задачи 1) выбор типа опытного реактора, осуществляемый в соответствии с данными об организации процесса 2) определение модели гидродинамики процесса на основе данных о структуре потоков 3) анализ диффузионных эффектов, процессов массо- и теплопереноса в аппарате и оценка соответствующих тепловых и диффузионных параметров 4) синтез статической математической модели и процесса, установление ее адекватности 5) статическая оптимизация 6) синтез динамической модели процесса и установление ее адекватности анализ параметрической чувствительности 7) анализ устойчивости теплового режима процесса 8) динамическая оптимизация. [c.29]

    В ряде случаев при моделировании сложных объектов химической технологии необходимо учитывать процессы как детерминированной, так и стохастической природы. При этом результирующее математическое описание объекта обычно представляется в форме интегро-дифференциальных уравнений. Например, такая форма уравнений характерна для уравнения баланса свойств ансамбля частиц дисперсной фазы в аппарате, где эффекты взаимодействия (дробления—коалесценции) задаются соответствующими интегралами взаимодействия в дифференциальном уравнении для многомерной функции распределения частиц по физико-химическим свойствам. Другим характерным примером интегро-диффе-ренциальной формы функционального оператора объекта может служить дифференциальное уравнение, описывающее процесс диффузии или теплопереноса, свернутое по временной координате с помощью функции распределения элементов потока по времени пребывания в аппарате. [c.202]


    Там же показано, что для мелких капель с радиусом менее 20 мкм вклад конвекции в общем теплопереносе значительно превышает радиационные эффекты, и поэтому с незначительной степенью погрешности лучистым теплообменом можно пренебречь. [c.69]

    Вторая задача, от которой непосредственно зависит успех создания эффективных искусственно создаваемых нестационарных процессов,— это дальнейшее развитие теоретических основ динамики гетерогенных каталитических реакторов. В нестационарных условиях гораздо сильнее, чем в стационарных, проявляется влияние процессов переноса вещества, тепла и импульса. Небольшие изменения, например, в условиях массо- и (или) теплообмена в зернистом слое катализатора могут привести к весьма заметным изменениям избирательности, степени превращения. Поэтому для осуществления нестационарных процессов требуется глубокое и ясное понимание всех физических процессов в реакторе. Количественное знание позволяет строить простые математические модели процессов в реакторах любой производительности. Кроме того, глубокое понимание всех основных закономерностей массо- и теплопереноса в реакторах позволяет создавать условия, благоприятно влияющие на показатели каталитического процесса. Нам представляется, что поиск таких условий эмпирически, на основе общих соображений нечасто будет приводить к заметным положительным эффектам. Особо важно отметить необходимость экспериментальных и теоретических работ по исследованию и количественному описанию поведения твердых частиц катализатора в реакторах, работающих в условиях псевдоожижения, пневмотранспорта, циркуляции частиц между реакторам н регенератором. Именно в таких реакторах легче организовать условия работы при нестационарном состоянии катализатора. [c.227]

    Турбулентный теплоперенос энергии в потоке вязкого сжимаемого газа будет иметь место всегда, пока сохраняется градиент статического давления и отличное от адиабатного закона распределение термодинамической температуры. Доказательством несомненности возникновения вихревого эффекта за счет взаимодействия двух противоположных движущихся осевых потоков считается образование нагретого и охлажденного потоков в вихревой трубе при раскручивании периферийным потоком дополнительно вводимого в центр трубы потока со стороны вывода нагретого потока [17, 18]. Однако данный эксперимент, являясь сам по себе доказательством возникновения энергообмена между самостоятельными потоками, еще не подтверждает возникающее температурное разделение при образовании вторичного потока из исходного внешнего. В данной теории явно не учитывается такой важный фактор, как формирование термодинамических параметров исходного потока в каналах сопловых вводов. Как отмечается в работе [10], величина термодинамической температуры поступающего из сопловых вводов в вихревую трубу газа является наиболее важной, так как при прочих равных условиях именно она определяет в конечном счете среднюю термодинамическую температуру в сечении С, а следовательно, и температурный эффект вихревой трубы А1х . Под сечением С имеется в виду сечение соплового ввода Д1х = 1] - 1, где 1 — температура торможения исходного газа, [c.28]

    Установка позволяет изучать питтинговую коррозию металлов в условиях теплопереноса и ламинарного режима течения среды в отсутствие побочных эффектов, связанных с центрифугированием продуктов коррозии из зарождающихся питтингов [35]. [c.176]

    Все перечисленные работы рассматривают задачу течения в каналах экструзионных машин в одномерной постановке. Такой подход не позволяет учесть эффекты циркуляционного тепло- и массообмена, т.е. процессы смешения жидкости и конвективного теплопереноса. [c.639]

    Необходимо подчеркнуть, что в данной главе нас будут интересовать элементарные эффекты, связанные с нормальными (по отношению к теплопередающей поверхности) потоками теплоты в ходе конвективного переноса через пограничные слои (конвективный теплоперенос в направлении движения теплоносителей рассматривается в гл.7). [c.476]

    На практике перенос теплоты часто происходит одновременно несколькими способами — это сложный теплоперенос. Каждый из видов теплопереноса вносит свой вклад, его не всегда удается точно установить. Результирующий эффект сложного теплопереноса зависит не только от интенсивности конкретных видов переноса, но и от особенностей их взаимодействия (например, последовательного или параллельного, стационарного или нестационарного). Отдельные задачи, связанные со взаимодействием различных видов теплопереноса, рассматриваются в гл. 7. [c.476]

    Соответственно указаниям автора формулы, теплофизические свойства теплоносителя берутся здесь при среднеарифметической величине из его температур на входе в теплообменник и на выходе из него. Множитель е/ отражает эффект тепловой стабилизации на входном участке трубы пристеночный градиент температур (именно он определяет истинную интенсивность теплопереноса) убывает быстрее температурного напора (входящего в формальные выражения типа 6.13) поэтому а снижается по ходу движения теплоносителя, постепенно приближаясь к постоянной величине. При 1/а >40ч-50 поправочный множитель е/ может быть принят равным 1, при меньших // /он превышает 1 (тем больше, чем ниже Ке). Игнорирование отличия е от 1 приводит при расчетах интенсивности теплообмена к занижению а, т.е. к ошибке в запас. [c.491]


    Подход к расчету эффекта экранирования рассмотрим (рис. 6.16) на примере стационарного лучистого теплопереноса для двух плоских параллельных поверхностей, между которыми расположен тонкий экран Э — его степень черноты 83. Температуры излучающих поверхностей — Т и Т2 (пусть Ti > Ti), температура обеих поверхностей экрана T a — одинакова (так как экран тонкий). Согласно (6.27), лучистые потоки теплоты от горячей поверхности № 1 к экрану и от него к более холодной поверхности №2 составят [c.515]

    В соответствии с классификацией, установленной в гл. 6, под теплопередачей понимают перенос теплоты нормально к поверхности контакта. Это означает, что в рамках теплопередачи не рассматриваются эффекты, связанные с переносом теплоты вдоль теплопередающей поверхности с движущимися теплоносителями (от входа в теплообменник к его выходу) такой теплоперенос, именуемый теплообменом, изучается в разд. 7.5 и далее. [c.527]

    BOM случае это чаще всего теплообменники смещения с непрерывным вводом и выводом твердого материала (теплообмен осуществляется с непрерывно движущейся сплошной средой — газом или жидкостью). Непрерывный теплообмен возможен также при наличии в твердом теле Источника (Стока) теплоты — скажем, при проведении каталитической гетерогенной реакции с тепловым эффектом теплота реакции воспринимается здесь сплошной средой при постоянных локальных температурах твердого материала и среды. Во втором случае (периодические и полунепрерывные процессы) теплообмен является нестационарным температура твердых тел (крупные элементы, зерна, мелкие частицы) изменяется во времени, в уравнениях теплового баланса появляется составляющая Накопление среда обычно имеет постоянную входную температуру, температура среды на выходе из рабочей зоны может изменяться во времени. Заметим, что при осуществлении стационарных (применительно к рабочей зоне теплообменника) процессов отдельные акты теплопереноса (по отнощению к индивидуальному зерну, например) чаще всего нестационарны. [c.575]

    Физически множитель tip призван учесть два основных эффекта. Во-первых, в процессе работы регенератора не полностью используется аккумулирующая способность насадки температура ее внутренних зон (средняя по объему элемента насадки 0ср — тоже) в своем изменении может заметно отставать от температуры поверхности 0. Этот эффект выражается с помощью коэффициента использования насадки к он определяется соотношением количеств теплоты, которая может быть передана кондукцией внутрь насадки и которая на самом деле аккумулируется ею. Поэтому к зависит от критерия Фурье. И во-вторых, независимо от внутреннего теплопереноса должны быть учтены особенности конвективного теплообмена на поверхности насадки. Здесь определяющим будет критерий, прямо получаемый из уравнения нестационарного конвективного теплопереноса — типа (а) в разд. 7.10.2 — путем масштабных преобразований ах/ с р 1) s vj/, где / — определяющий линейный размер, выражающий соотнощение объема тела и его поверхности. Нетрудно убедиться, что ц/ представляет собой произведение критериев Фурье и Био  [c.597]

    Следует различать два случая конвективного теплопереноса ламинарный и турбулентный. Если ламинарному процессу уделено большое внимание, связанное с обеспечением стабильности потоков, а следовательно, и стабильности условий роста, то турбулентному процессу внимания уделено явно недостаточно. Это связано с тем, что теория турбулентности в настоящее время еще не развита [61]. Единственным способом получения аналитических закономерностей для конвекции в расплаве с высокими уровнями тепловыделения являются качественные оценки, связанные с учетом симметрии системы, закона сохранения, эффектов подобия и размерности. Важную информацию дает также метод численного моделирования, однако этот метод не позволяет продвинуться в ту область параметров, которая не поддается данному моделированию. [c.58]

    Специфические эффекты увеличения коэффициентов дисперсии, связанные с неравнодоступностью объемов зернистого слоя (раздел 111.4), не имеют значения в случае теплопереноса в слое, продуваемом газом, поскольку составляющая теплопроводности ЯэДг, не зависящая от Кеэ, имеет существенное значение. При движении жидкости в слое эта составляющая относительно мала (табл. IV.] [34]). В соответствии с зависимостью (111.41) в области Кез <50 и Рг > 50 В( 2,0. Более точные значения можно найти по этой зависимости с заменой Зс на Рг и учетом Я.О. [c.127]

    При одновременном протекании в пористом зерне катализатора тшических реакций и процессов массо- и теплопереноса в нем возникают градиенты температур и концентраций, т. е. концентрации реагентов и температура смеси изменяются по глубине зерна и отличаются от их значений на поверхности. Скорость же превращения в аппарате обычно определяют при значениях переменных на поверхности катализатора. А для учета внутри-диффузионных эффектов вводится вспомогательная функция т], которая носит название фактора эффективности, или степени использования внутренней поверхности зерна катализатора, и определяется отношением [c.158]

    Вторым процессом, обеспечивающим температурное разделение газа, является перестройка поля скоростей вращающихся потоков, которая приводит, по мнению авторов данного толкования вихревого эффекта, к образованию в сечении соплового ввода потока, вращающегося по закону вынужденного вихря и занимающего почти все сечение трубы. Как будет показано ниже, такое вращение не наблюдается в приосевой зоне, а выше отмечалось, что турбулентный теплоперенос при квазитвердом вращении не может активно действовать. Процесс перестройки поля скоростей сопровождается снижением окружной скорости внутреннего потока и повышением ее у внешнего потока по мере приближения к сечению соплового ввода, что соответствует отводу кинетической энергии от внутреннего потока к внешнему. Как известно, по А. П. Меркулову, в сечении соплового ввода взаимодействуют развитый свободный вихрь и внутренний вынужденный. При этом кинетическая энергия передается от свободному вихря к внутреннему вынужденному. [c.29]

    Очевидно, что оценка коэффициента теплопереноса, полученная на основе первого из двух приведенных выражений, будет более чем на порядок ниже. Вследствие рассмотренного эффекта применяются численные методы исследования параметрической чувствительности более точных моделей трубчатых реакторов, учитывающих радиальный массо- и теплоперенос. Было найдено, что некоторые параметры оказывают при этом особенно сильное влияние, в частности, пристеночный коэффициент теплопереноса [Фромент (1967 г.)] и тепловой критерий Пекле в радиальном направлении [Карберри и Уайт (1969 г.)]. [c.128]

    Крайне низкая кажущаяся теплопроводность порошка обусловлена тем, что в вакууме скорость теплопереноса описывается уравнение.м (8). Это явление хорошо известно как эффект Смолуховского (см. разд. 2.8, а также 2.1.8). При нормальном давлении для частиц диаметром примерно 1 мм скорость передачи тепла может контролироваться уравнением (8) в том случае, если теплообмен происходит в нестационарных условиях и время соприкосновения частиц достаточно мало (несколько секунд или меньше). Такая ситуация имеет место в псевдоожиженных слоях, где частицы соударяются с нагревающим или охлаждающим элементом, а также в других контактных теплообменных устройствах, таких как вращающиеся печи для обжи1 а и барабанные сушилки. [c.71]

    В настоящее время для расчета продолжительности коксования используются методики Н.К.Кулакова и И.В.Вирозуба, которые основаны на решении уравнения Фурье, но не учитывают следующие отличия процесса коксования от простого нагрева плоской плиты в процессе нагрева большое значение имеет испарение влаги и теплоперенос влагой теплофизические характеристики угольной загрузки в процессе коксования значительно изменяются, например X и а увеличиваются почти в 10 раз теплопередача в коксовой камере осуществляется не только теплопроводностью, но и конвекцией в процессе коксования происходят химические реакции, сопровождающиеся экзотермическими и эндотермическими эффектами. [c.187]

    Результирующий эффект зависит от узкого звена в этюй цепи процессов теплопереноса, а теплоотдача в сумме может быть охарактеризована уравнением [c.123]

    Жидкий объем любого масштаба может подвергаться воздействиям гидростатической подъемной силы, возникающим однократно или многократно от многих и разнообразных видов и сочетаний физических процессов. Подъемная сила может возникнуть из-за разности плотностей в поле объемной силы, а разность плотностей образуется вследствие тепло- и массопереноса. В свою очередь тепло- и массоперенос, вызывающий появление подъемной силы, может быть обусловлен действием многих и разных механизмов. Например, даже кажущийся простым эффект возникновения подъемной силы, действующей на лист кукурузы, освещенный солнцем, оказывается достаточно сложным. Солнце нагревает лист, который для поддержания теплового равновесия (терморегулирования) может испарять водяной пар. В процессе фотосинтеза хлоропласт листа поглощает СОа из воздуха и выделяет Ог. Таким образом, в образовании результирующей подъемной силы одновременно участвуют перенос тепла и три процесса массопереноса. Эти процессы объединяются с переносом тепла излучением. Другой пример — потеря метаболической теплотымлекопитающими с поверхности их тел. Теплота тела порождает теплоперенос вблизи его поверхности. Но часто такое же по порядку величины воздействие оказывает потение. Испарения с поверхности тела увлажняют прилегающий слой воздуха. Таким образом, возникают две составляющие аэростатической силы, направленной вверх. [c.9]

    Вместе с тем гидростатические (выталкивающие) силы и эффекты вращения часто в геофизических процессах имеют один и тот же порядок величин. Так, проведены расчеты [55, 56] конвективного переноса для вращающейся атмосферы над локально нагретой поверхностью. Именно в таких ситуациях возникают самумы, смерчи и другие восходящие циркуляционные течения в атмосфере. В аналогичной работе [77], правда относящейся скорее к техническим приложениям, проведены расчеты теплопереноса и построены картины течения в области над вращающимся горизонтальным диском радиуса а, находящимся при температуре /о- Соотношение сил вращения и архимедовых выталкивающих сил характеризуется параметром [c.463]

    В предыдущих главах при рассмотрении свободноконвективных течений мы не учитывали другие виды теплопереноса или же механизмы, которые могли возникать одновременно с конвекцией. Совместное действие различных механизмов переноса в примыкающих друг к другу областях обсуждалось в предыдущем разделе. Здесь же мы рассмотрим одновременное совместное действие кондуктивно-конвективного переноса, на которое накладываются радиационные эффекты. Так, в некоторых сопряженных задачах переноса, например в задачах, рассматривавшихся в разд. 17.5 (в частности, в задаче о пограничном слое вблизи нагретой вертикальной поверхности), перенос тепла излучением может играть существенную роль даже при относительно низких температурах, поскольку теплопередача естественной конвекцией часто оказывается очень малой, особенно в газах. В зависимости от свойств поверхности и геометрии задачи перенос излучением во многих практических ситуациях нередко близок по величине или даже больше, чем конвективный теплоперенос. Именно поэтому важно определить его влияние на характер течения и теплопередачу. [c.483]

    При низких давлениях с соответствующими низкими плокостя ми длина свободного пробега молекулы X становится сравнимой с размерами тела, и тогда влияние молекулярного строения начинает сказываться в механизмах потока и теплопереноса. Относительная важность эффектов, обусловленных разрежением газа, может быть показана путем сравнения величины среднего свободного пробега молекулы газа с каким-нибудь характерным размером тела. Отсюда, если I есть размер тела, являющийся характеристическим размером в поле потока, влияние разрежения на поток перенос тепла станет заметным, как только отношением Я// нельзя будет больше пренебрегать. Это отношение безразмерно и определяется как критерий К-нуд-сена Кп. Критерий Кнудсена, представляющий, таким образом непосредственный интерес при изучении потока разреженного газа и переноса тепла, можио выразить через критерий Маха и Рейнольдса  [c.344]

    Скорость подъема температуры. Большое значение имеет возможность точно осуществлять подъем температуры в системе, особенно при максимальных скоростях программирования температуры. Обычно при программировании темнературы наблюдается небольшое запаздывание в начале и опережение в конце программы. Система регулирования темнературы должна обеспечивать сведение к минимуму этих эффектов. Характерная кривая подъема температуры в термостате представлена на рис. 4-1. "Нажудшая" максимальная скорость подъема температуры задается наклоном кривой на участке, соответствующем максимальным температурам. Перечислим параметры, которые влияют на максимальную скорость подъема температуры термическая масса системы, мощность нагревателя, термическая "герметичность" системы (хорошая термоизоляция), теплоперенос от нагретых зон (таких, как узел ввода пробы и детектор), характеристики колонок и ириснособлений, установленных в термостате, [c.67]

    Уравнения (За)—(Зг) описывают теплоперенос в образце, содержащем источник тепла химического происхождения, тепло-перенос в держателе и в газовом окружении соответственно. Уравнение (36) описывает скорость реакции. Обозначения Т — температура, К а — степень превращения а — коэффициент температуропроводности, см -/с Я — коэффициент теплопроводности, Дж7(см-с-К) с — теплоемкость, Дж/г-К у — плотность, г/см Q — тепловой эффект реакции, Дж/см Е — энергия активации, Дж/моль А — предэкспонента, с t — время, с 6 — скорость линейного нагрева, К/с р — текущая пространственная координата, см г — координата границы, см и Лр — коэффициенты управляющей функции, размерность — К-с, /ср — безразмерный a/diiip 6 — заданная скорость превращения, с" daldt — текущая среднеинтегральная скорость превращения, с" . Индексы 1 — относится к переменным и свойствам держателя, [c.83]

    Практически при решении задач теплопереноса весьма часто X к а можно считать не зависящими от температуры. Но вот при переносе импульса в движущейся среде встречаются ситуации, когда пренебрегать нелинейностью нельзя значения ц и V могут существенно зависеть от градиентов скоростей. Это происходит, когда нарущается связь и аи /Эл, заданная формулой Ньютона либо ц не является постоянной величиной из-за происходящих в жидкости структурных деформаций, так что ц зависит от градиента скоростей, либо осуществляется намеренная подмена задачи, когда нелинейные эффекты вихреоб-разования в жидкости выражают в терминах и символах нормального переноса импульса, т.е. в манере формулы (1.9). Такие случаи будут освещены в главе "Гидравлика". При переносе вещества коэффициенты диффузии О также нередко зависят от уровня концентраций С. С этим встречаются, например, при массопереносе в твердых телах (процессы адсорбции, сушки), когда с изменением концентрации вещества в твердом теле изменяются скоростные характеристики диффузии, а иногда и сам механизм массопереноса (по крайней мере, изменяется вклад различных механизмов в перенос вещества). Тогда вместо [c.97]

    Лучистым (теплоперенос излучением) называют перенос теплоты путем электромагнитных колебаний он сопровождается превращением тепловой энергии в электромагнитные волны и обратно. Каждое тело постоянно излучает энергию, причем интенсивность этого излучения, обусловленного сложными возмущениями на атомном и молекулярном уровнях, зависит прежде всего от свойств излучающей поверхности и от температуры. Часть излучаемой энергии при попадании на тело погло-ш,ается им и вновь переходит в теплоту другая часть отражается от поверхности тела или проходит сквозь тело (в конечном счете она поглощается другими телами или уходит в окружающую среду). В результате одновременного излучения и поглощения телом разных количеств энергии происходит теплообмен разумеется, если температура участвующих в лучистом тенлопереносе тел одинакова, то потоки излучаемой и поглощаемой энергии одинаковы, и эффект лучистого теплопереноса отсутствует. [c.476]

    Анализ в свете лимитирующих стадий позволяет с иных позиций трактовать сопоставление прямотока и противотока (см. рис. 7.16). При очень малых или очень больших отношениях потоковых пропускных способностей 01С1/(02С2) теплоперенос происходит в области потоковой задачи, соответственно по горячему (индекс 1 ) или холодному (индекс 2 ) потоку поэтому другие стадии (в том числе связанные с тепловым взаимодействием теплоносителей) просто не влияют на процесс в целом. В области чисто поверхностной задачи [ /(61 1) = а 0] также все лимитируют поверхностные эффекты (кР) — независимо от потоковых стадий ОхСх и 62 2 И только при сопоставимости потоковых стадий и не слишком малых значениях кР, т.е. в условиях смешанной задачи, общая интенсивность теплопереноса небезразлична к взаимному направлению потоков теплоносителей. [c.572]

    Следует особо упомянуть о двухпараметрической диффузионной модели. В отличие от однопараметрической (она использует только один параметр — Peg, базирующийся на Е), двухпара-метрическая ДМ учитывает перенос вещества не только в продольном, но и в поперечном направлении. Поэтому здесь наряду с коэффициентом продольного перемещивания Ei фигурирует еще и коэффициент Er, характеризующий интенсивность поперечного (радиального) перемешивания. Появление двухпараметрической ДМ обусловлено тем, что в некоторых аппаратах распределение элементов потока по времени пребывания существенно зависит от интенсивности радиального переноса. И поэтому эффективность процесса в таких ХТА в значительной мере определяется поперечным переносом (теплоты, вещества и т.п.). Он может быть затруднен, и тогда диффузионные (при переносе теплоты — термические) сопротивления радиальному переносу игнорировать нельзя он может быть достаточно интенсивен, и тогда надо учитывать выравнивание интенсивных свойств потока (температур, концентраций и др.) в поперечном сечении. Эти эффекты и учитываются коэффициентом Er (в случае теплопереноса — коэффициентом эффективной радиальной теплопроводности Хд). Примерами здесь могут служить химические процессы с высокими тепловыми эффектами в трубках с неподвижным слоем катализатора (отвод теплоты через слой и стенки трубок) или химические превращения в ламинарно движущихся тонких жидкостньк пленках (заметное выравнивание концентраций реагентов по толщине пленки). [c.643]

    Иайрс, Двир и Мартин [34] при изучении теплопереноса и жидкостной динамики в теплообменнике типа распылительной колонны отмечали существенный концевой эффект на профиле температур сплошной водной фазы. В исследованиях применялись распылительные колонны диаметром 2,5 и 5,1 см и система вода — ртуть. С помощью фотографии было показано, что поток воды увлекался вниз каплями ртути и между основным восходящим потоком воды и дисперсной фазой возникал весьма непродолжительный контакт, хотя каждый из двух противоположно направленных потоков воды подвергался значительному перемешиванию. Перемешивание, приводящее к рециркуляции водной фазы, было обнаружено также возле патрубков ввода и вывода. Из этих наблюдений авторы заключили, что течение жидкости может сильно ограничивать эффективность распылительных колонн, работающих в качестве теплообменников. [c.128]


Смотреть страницы где упоминается термин Эффекты теплопереноса: [c.314]    [c.149]    [c.32]    [c.450]    [c.366]    [c.58]    [c.117]    [c.191]    [c.79]    [c.576]    [c.149]   
Смотреть главы в:

Основы химической кинетики в гетерогенном катализе  -> Эффекты теплопереноса




ПОИСК





Смотрите так же термины и статьи:

Теплоперенос



© 2025 chem21.info Реклама на сайте