Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный поток, механизм

    Принимая во внимание отрицательный итог всех попыток найти высокоэнергетические промежуточные соединения, а также очевидную необходимость интактной мембраны, Митчелл в 1961 г. предложил химио-осмотическую теорию окислительного фосфорилирования [97, 98]. В этой теории также принимается в расчет наличие энергозависимых процессов, таких, как накопление митохондриями катионов. Принципиальные положения теории Митчелла проиллюстрированы на рис. 10-12. Предполагается, что во внутренней мембране митохондрии имеется протонный насос, приводимый в действие потоком электронов этот насос выкачивает протоны из матрикса через мембрану. Идея о выкачивании протонов путем переноса электронов сама по себе не нова еще ранее высказывалось предположение, что этот механизм лежит в основе накопления в желудке соляной кислоты. Как указано на рис. 10-12, окисленный переносчик В при восстановлении в форму ВН приобретает два протона. Эти протоны не обязательно должиы поступать от восстановленного переносчика АНг, и Митчелл предположил, что они захватываются из раствора на внутренней стороне мембраны, т. е. со стороны матрикса. Затем, когда ВНг вновь окисляется под действием переносчика С, протоны освобождаются, но уже с наружной стороны мембраны. Митчелл привел данные, свидетельствующие о наличии требуемой стехиометрии процесса на каждые два протона, прошедшие через мембрану, синтезируется одна молекула АТР. Отсюда следует, что в цепь переноса электронов должно быть встроено три разных протонных насоса, соответствующих трем участкам фосфорилирования. [c.419]


    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

Фиг. 72. Механизм электронного потока для фотосинтетического фосфорилирования. Фиг. 72. Механизм электронного потока для фотосинтетического фосфорилирования.

    Как только частицы или капельки попадают в электрическое поле электрофильтра, они приобретают электростатический заряд в результате воздействия двух механизмов механизма бомбардированной зарядки и механизма диффузионной зарядки. Ионы газа, а также электроны в случае отрицательной короны движутся при нормальных условиях сквозь поток газа, перенося частицы под влиянием электрического поля и заряжая частицы, с которыми они сталкиваются. Такая зарядка называется бомбардировкой (столкновение ионов). Кроме того, ионы газа (и электроны — там, где они присутствуют) осаждаются на частицах вследствие их теплового движения, такое явление называется диффузионной зарядкой (диффузия ионов). [c.448]

    МЕХАНИЗМ ЭЛЕКТРОННОГО ПОТОКА [c.270]

    Л. Пастером (1860 г.) было показано, что оптическая активность органических соединений является результатом их асимметрического строения. Однако лишь тетраэдрическая теория Я. Вант-Гоф-фа и А. Ле-Беля (1874 г.) позволила объяснить явление оптической активности. Физический механизм вращения плоскости поляризации света асимметричной молекулой заключается в поглощении ею кванта света, перехода электрона на уровень с большей энергией, образовании на месте этого ушедшего электрона пробела ( дырки ), к которому будут винтообразно двигаться электроны из других частей молекулы. Направления вращения этого электронного потока противоположны для правого и левого изомеров. Это вращательное движение электронов создает добавочную магнитную компоненту в световой волне, испускаемой молекулой, что и приводит к вращению плоскости поляризации. [c.184]

    Здесь верхние индексы О и 1 означают отсутствие или наличие электрона на соответствующем переносчике. Цифры в скобках указывают номер состояния комплекса, кг — константы скоростей соответствующих переходов, указанных на схеме 1. В общем случае константы скоростей перехода между состояниями комплекса могут зависеть от состояний переносчиков, не принимающих непосредственного участия в реакции (эффект кооперативности). Параметры а и р характеризуют степень кооперативности. Папример, скорость притока электронов от внешнего донора на переносчик С может быть различной в зависимости от редокс-состояния переносчика Сг (а). Рассмотрение конкретных фотосинтезирующих объектов (см. 5 гл. ХХУП ) показало плодотворность такого способа описания кооперативности для объяснения механизмов регуляции электронных потоков (свойство кооперативности не может быть, естественно, учтено при описании переноса электрона с помощью закона действующих масс). [c.81]

    Процессы трансформации энергии при электронном транспорте в мембранах некоторых бактерий, митохондрий, хлоропластов и хроматофоров обладают фундаментальным сходством. Во всех этих системах происходит использование энергии электронного потока для синтеза молекул АТФ. Механизмы этого процесса, однако, во многом непонятны. [c.206]

    Таким образом, механизм дуги можно представить себе следующим. Из катода в результате высокой степени его разогрева (термоэлектронная эмиссия) или наличия около его поверхности больших напряженностей электрического поля (10 —10 в см — автоэлектронная эмиссия) вырывается поток электронов. Первый случай имеет место для материалов катода с высокой температурой плавления и испарения металла (уголь, графит, вольфрам, молибден), благодаря чему температура на их поверхности может достигать в катодных пятнах значений 2 500—3 000° С и выше, когда начинается заметная термоэлектронная эмиссия. Второй случай соответствует материалам с низкой температурой кипения и испарения (ртуть, титан, медь). В области катодного падения поток электронов разгоняется настолько, что за ее пределами происходит интенсивная ионизация частиц газа в дуговом промежутке, причем здесь, по-видимому, весьма существенна роль ступенчатой ионизации. Образовавшиеся положительные ионы под действием поля направляются к катоду и разогревают его вторичные и первичные электроны направляются через столб дуги в направлении анода. На их пути происходят новые соударения (главным образом термическая ионизация) и образование новых заряженных частиц, что компенсирует их исчезновение в более холодных частях столба путем рекомбинации и диффузии. При попадании на анод отрицательные частицы нейтрализуются, выбивая из него некоторое количество положительных ионов, устремляющихся через столб дуги к катоду. Плазма столба в целом нейтральна, т. е. концентрация положительных и отрицательных частиц одинакова, но из-за того, что подвижность электронов по [c.29]

    Теплопроводность в твердых телах обусловлена пере -носом или фононов (в неметаллических твердых телах), или электронов (в металлах). В случае фононного механизма переноса скорость распространения теплоты совпадает со скоростью звука. Поэтому максимальный тепловой поток определяется выражением [c.71]


    Радиационно-химические реакции (радиолиз) протекают, в отличие от фотохимических, под действием излучений высокой энергии. Обычно—это поток электронов, нейтронов, протонов, а-частиц и т. п., а также рентгеновские и у-лучи, приводящие к более сильному возбуждению молекул, чем это было при фотохимических реакциях. В остальном (механизм процесса, общие закономерности и т. п.) радиационно-химические реакции подобны фотохимическим. [c.188]

    Механизм электронного потока изображен на фиг. 72. Для простоты показан перенос только одного электрона, тогда как в действительности для восстановления каждой молекулы пиридиннуклеотида требуется два электрона, а для освобождения каждой молекулы кислорода — четыре электрона. Поскольку для переноса каждого электрона к НАДФ нужны две световые реакции, для освобождения каждой молекулы кислорода необходимо по крайней мере восемь таких реакций. Эти расчеты согласуются с данными группы Эмерсона о потребности в 7—9 реакциях. [c.271]

    Явление теплопроводности состоит в том, что перенос теплоты происходит путем непосредственного соприкосновения между микрочастицами (молекулами, атомами, электронами) - от частиц с большей энергией к частицам с меньшей энергией, т.е. процесс переноса теплоты теплопроводностью протекает по молекулярному механизму. В подвижных средах (жидкость, газ) при турбулентном режиме движения потока молекулярный механизм переноса теплоты, т. е. теплопроводность, имеет существенное значение в тонких, пограничных с твердой стенкой слоях. При ламинарном движении потока или в неподвижной жидкости теплопроводность может быть основным видом переноса теплоты. Поскольку теплопроводность-явление молекулярное, то на скорость процесса переноса теплоты теплопроводностью существенное влияние оказывают структура и свойства вещества (например, для подвижных сред - вязкость, плотность и др.). В твердых телах, например в диэлектриках, перенос энергии осуществляется фононами, в металлах - электронами. [c.263]

    Пластохинон выполняет в системе переноса электронов несколько специфических функций (рис. 10.13). Его значительно больше, чем других компонентов цепи, и он служит электронным буфером , который обеспечивает гладкое функционирование цепи даже при сильных колебаниях в распределении квантов света между двумя фотосистемами. Он способен также связывать между собой несколько электронтранспортных цепей и таким образом повышать надежность системы. Например, если какой-либо реакционный центр II не функционирует, то пластохинон может обеспечить работу связанного с ним реакционного центра I за счет электронов, поступающих из другого реакционного центра II. В результате реакционный центр I не будет испытывать недостатка в электронах. Другая возможная роль пластохинона упоминалась ранее (разд. 10.4.1), когда рассматривалось распределение фотосистем в тилакоидах. Из-за пространственного разделения разных фотосистем необходим механизм, обеспечивающий поток электронов между ними, и предполагают, что в этом механизме главную роль играет пластохинон. [c.346]

    Разработаны наружные управляющие устройства и записывающие системы, которые допускают быстрое полуавтоматическое выполнение различных операций. Маленький, хорошо экранированный подковообразный постоянный магнит через боковой отросток на внешней оболочке установки приводит в движение никелевый рычаг. Последний с помощью небольшого вертикального молибденового стержня связан непосредственно с фарадеевским коллектором, так что коллектор можно поворачивать вокруг вертикальной оси, проходящей через плоскость кристалла и падающий пучок электронов. Магнит окружают магнитным экраном, чтобы воспрепятствовать взаимодействию его поля с падающими или дифрагированными электронами, а поле Земли компенсируют посредством катушки Гельмгольца. Магнит устанавливают таким образом, чтобы его можно было вращать электромотором через особое приводное устройство со шкивом. Подобное устройство используют для передвижения пера самописца Вариана. Механизм этого мотора синхронизован с механизмом быстродействующего самопишущего потенциометра Брауна, так что горизонтальное смещение пера самописца сопряжено с угловым смещением фарадеевского коллектора. Сигнал с фарадеевского коллектора подают на вход вибрационного электрометра, показания которого записывают на диаграммной ленте самописца. Таким образом, самопишущий потенциометр позволяет записывать интенсивность дифракционного потока как функцию углового смещения. На рис. 2 приведены типичные диаграммы. Малая инерционность самописца делает возможным получение кривой, отвечающей полному повороту, за 30 сек. По окончании записи каждой кривой коллектор автоматически быстро возвращается в исходное положение. Начальное напряжение можно подобрать вручную в промежутке между записями кривых. Таким способом полную дифракционную картину по [c.323]

    Можно провести аналогию между потоко.ч электронов в термисторе (влиянием температуры на характеристики термистора) и вязким течением или испарением жидкостей, а) Обсудите кратко каждую из этих аналогий, сравнив механизмы процессов, б) Получены следующие экспериментальные данные по завнсимости сопротивления термистора от температуры  [c.121]

    Несмотря на ограниченность круга реакций, нельзя не отметить разнообразие фигурирующих частных механизмов и закономерностей. Характерно также большое число спорных кинетических явлений, которые существующие теории не в силах объяснить. Это может создать ошибочное впечатление некоего неблагополучия в теории сложного катализа. В действительности это не так. Дело в том, что поток новых фактов и идей, возникающий в результате более разностороннего и глубокого изучения катализа, поставил в порядок дня переход в сложном катализе от схематических, феноменологических схем и обобщений к более углубленным и совершенным теориям атомно-электронного уровня и к кинетике, отображающей реальную сложность процессов. Эти теории должны полностью использовать возможности современной квантовой химии и ассимилировать ряд достижений гомогенной кинетики и современной структурной химии. Работы в этом направлении, несмотря на большие трудности, активно ведутся, и это, естественно, приводит к пересмотру существующих концепций с отбором всего ценного и непреходящего и с отказом от устаревшего и ошибочного. Это может создавать у отдельных ученых беспокойство, но уже сейчас начинают вырисовываться контуры новых более глубоких и более широких обобщений, которые должны поднять теорию катализа на более высокий уровень, тесно связав гетерогенный катализ с гомогенным и с основными разделами современной теоретической химии. Мы надеемся, что наш Симпозиум будет этому способство- [c.9]

    Различают три возможных механизма образования двойного электрического слоя. Согласно одному из ннх двойной электрический слон образуется в результате перехода нонов или электронов из одной фазы в другую (поверхностная ионизация). Например, с поверхности металла в газовую фазу переходят электроны, образуя со стороны газовой фазы электронное облако. Количественной характеристикой такого перехода может слуя ить работа выхода электрона. Интенсивность электронного потока увеличивается с повышением температуры (термоэлектронная эмиссия). В результате поверхность металла приобретает положительный заряд, а газовая фаза — отрицательный. Возникший электрический потен-инал на границе раздела фаз препятствует дальнейшему переходу электронов — наступает равновесие, при котором положительный заряд поверхности металла скомпенсирован отрицательным зарядом, созданным электронами в газовой фазе, т. е. формируется двойной электрический слой. [c.45]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    В блоке управления промышленного хроматографа GB 1 фирмы W. Giede (рис. 30) управление операциями (например, дозированием, переключением потоков и корректировкой пуля) также осуществляется с помощью переключателя, имеющего несколько кулачковых дисков, и трех реле. Можно регистрировать с различной чувствительностью до шести компонентов. Переключение соответствующих потенциометров производится кулачковыми дисками переключателя. Запись полосной диаграммы осуществляется специальным механизмом, вмонтированным в электронный самопишущий потенциометр. Он продвигает ленту самописца примерно на 2 мм после регистрации какого-либо комионента на хроматограмме (см. проспект промышленного хроматографа GB 1 фирмы W. Giede ). [c.388]

    Программа курса Кинетика и катализ охватывает 1) теорию ки-нетики гомогенных процессов (формальная кинетика, за некоторыми специальными исключениями, предполагается достаточно из вестноп из общего курса физической химии), включая разбор механизма элементар ных актов, теории столкновений и активного комплекса, разбор моно- и тримолекулярных реакций и некаталитических реакций в растворах 2) гомогенный катализ, сопря женные реакции и окислительные процессы, теорию промежуточных соединений в гомогенном катализе, кислот но -основной катализ цепные реакции, фотохимические реакции, газовоэлектрохимические реакции (последние в очень небольшом масштабе в связи с читаемым в IX семестре для части студентов специальным курсом Газовая электрохимия ) 3) кинетику гетерогенных каталитических процессов (теория Лэнгмюра, влияние неоднородности поверхности на гетерогенный каталитический процесс, кинетика реакции в потоке, элементы макрокинетики) и 4) теорию активных центров в гетерогенном катализе (первоначальные теории активных центров, теории мультиплетов и активных ансамблей, современные электронные представления в катализе). [c.220]

    Конвективный перенос характеризуется двумя разными режимами вынужденной и естественной конвекцией. Скорости переноса определяются обычно в предположении, что один из этих режимов конвекции является доминирующим. Однако при наличии теплообмена в пограничном слое вблизи нагреваемой или охлаждаемой поверхности существуют разности температур. Эти перепады температур создают градиенты плотности в окружающей среде, и при наличии поля объемных сил типа силы тяжести возникает естественная конвекция. Следовательно, в условиях вынужденной конвекции будут присутствовать и проявления естественной конвекции. Важным с практической точки зрения является вопрос о том, насколько велики эффекты, обусловленные действием выталкивающих сил, и при каких условиях ими можно пренебречь по сравнению с эффектами, обусловленными вынужденной конвекцией. С другой стороны, если эффекты естественной конвекции сравнительно велики, вопрос состоит в том, когда можно пренебречь влиянием механизма переноса, связанного с вынужденной конвекцией. Во многих практических случаях оба механизма играют примерно одинаковую роль. В условиях когда существенно влияние обоих механизмов, говорят о наличии смешанной, или комбинированной, конвекции. Задачи такого рода возникают, например, при проведении тер-моанемометрических измерений проволочными и пленочными датчиками в низкоскоростных потоках, при естественной конвекции в условиях циркуляции жидкости окружающей среды, при вынужденном течении в нагреваемом канале, при охлаждении электронных приборов вентиляторами и во многих других случаях, представляющих практический интерес. [c.575]

    Для наблюдения за процессами, происходяищми в течение кототкого промежутка времени (от неск. с до 10 с), широко применяют методы кинетич. спектроскопии. Они основаны иа регистрации (с помощью фотопластинок или фотоэлектрич. приемников) спектров поглощения или испускания исследуемой системы после кратковременного воздействия иа нее, иапр. быстрого смешения с реагентами или возбуждения внеш. источником энергии-светом, потоком электронов, электрич. полем и т.п. Спектром сравнения служит спектр невозбужден-иой системы. Методы кинетич. спектроскопии используют для изучения механизма р-ций (в частности, для установления состава промежут. продуктов), количеств, определения скоростей р-ций. [c.14]

    Характерным свойством живого материала является то, что он движется. Степень движения меняется от явного перемещения в потоке цитоплазмы до движения ионов, электролитов, молекул и макромолекул относительно друг друга внутри клетки. В результате обмена веществ биологический материал постоянно изменяется, разрушая и перестраивая функциональную архитектуру клетки. Эта выраженная нестабильность мешает проведению рентгеновского микроанализа, если не найдены пути мгновенного сдерживания активности клетки и удержания ее в этом состоянии до тех пор, пока выполняются исследования. Если бы это было сделано, то окружающая среда, в которой должен производиться рентгеновский микроанализ, полностью была бы лишена жизненных процессов. Типичный одноклеточный организм менее 2 мкм в поперечинке синтезирует много сотен соединений путем тонкого регулируемого процесса, способен воспроизводить сам себя и генетически эволюционировать и видоизменять эти процессы. Если захотелось бы найти быстрый способ разрушения этого уникального тончайшего механизма, то, вероятно, не нашлось бы ничего лучше потока быстрых электронов, который за одну секунду смог бы испарить количество воды, во много раз превышающее вес образца. [c.266]

    Один из центральных вопросов современной биохимии заключаете в том, каким образом поток электронов по цепи переносчиков приэодц к образованию АТР. Вопрос этот очень важен, так как большая часть АТР, образующегося в аэробных и некоторых анаэробных организмах, генерируется именно в процессе окислительного фосфорилирования. Более того, энергия, улавливаемая в процессе фотосинтеза, идет на образование АТР с помощью очень сходного процесса. Механизм генерирования АТР может быть тесно связан с функционированием мембран при транспорте ионов. Вполне возможно, что механизм окислительного фосфорилирования в известном смысле является обратным механизму использования энергии АТР для мышечного сокращения. [c.391]

    Механизм термоэлектронной эмиссии заключается в том, что с повышением температуры в зоне трения (в точках касания микронеровностей она может достигать температуры плавления материалов трибосопряжения) увеличивается число электронов, обладающих энергией, достаточной для совершения работы выхода электрона из материала. При этом возникает поток электронов, испускаемых зоной трения, а плотность этого потока определяется температурой поверхностей трущихся деталей. [c.654]

    Механизм фотосинтетического фосфорилирования сходен с синтезом АТФ в процессе окислительного фосфорилирования в митохондриях. Система переносчиков электронов интегрирована в мембрану тилакоида таким образом, что перенос пары электронов создает поток протонов с наружной поверхности тилакоида внутрь, pH на внутренней поверхности тилакоида может достигать 4 и ниже. Таким образом, на мембране создается электрохимический протонный потенциал АцН+, который используется интегрированной в мембрану Н -зависимой сиитетазой для синтеза АТФ (рис. 16.3). Структура этого фермента аналогична митохондриальной АТФ-синтетазе (гл. 15) и обычно обозначается как СРд—СР Символ С означает, что этот ферментный комплекс локализован в хлоропластах сЫогорШз ) и, подобно митохондриальной Н" -зависимой-АТФ-синтетазе, включает гидрофобный, интегрированный в мембрану тилакоида компонент (СРд) и гидрофильный комплекс (СР]), катализирующий синтез АТФ. [c.215]

    Однако функционирует дополнительный механизм, обеспечивающий синтез АТФ без сопутствующего восстановления НАДФ , в котором участвует только ФС I (см. рис. 16.2). Поток электронов, поступивших из реакционного центра ФС I и восстановивших А , возвращается в ФС I, проходя через цитохромы 559 и/, пластоцианин, и, создавая протонный градиент на тилакоидной мембране, используется для синтеза АТФ. Поскольку в данной системе наблюдается циклический поток электронов, то этот путь синтеза АТФ получил название циклического фотосинтетического фосфорилирования. Следовательно, этот путь синтеза АТФ не сопряжен с восстановлением НАДФ" , вьщелением [c.216]

    В [9] рассматривается ситуация, которая имеет место ири определении вероятности рекомбинации атомов кислорода газодинамическими методами, и для которых характерна замороженность реакций в газовой фазе. Предполагается, что в этих условиях можно учитывать только образование и тушение на поверхности электронно возбужденных молекул Оз- Пе учитываются процессы, связанные с колебательно возбужденными молекулами Оз- Считается также, что гетерогенная рекомбинация протекает по ударному механизму Или-Райдила. Результаты расчетов показали, что в случае эффективного образования электронно возбужденных молекул О2, тепловые потоки на исследуемую поверхность могут быть снижены на 10-20 %. Это обусловливает погрешность восстановления коэффициента рекомбинации по измеренному тепловому потоку, достигаюгцую целого порядка. Отметим также, что в [9] показано, что на траектории входа планируюгцего аппарата в атмосферу Земли возбужденные частицы оказывают влияние на тепловой поток к поверхности с высокими каталитическими свойствами, а для низко каталитических покрытий их влияние не столь суш,ественно. [c.92]

    Рассматривая третий путь — обратный поток энергии вдоль оси пламени в направлении стабилизатора, начинающийся в светящейся зоне и проходящий через вершину пламеии элементарного объема зажигания, — следует предполагать целый ряд возможных путей переноса энергии, например излучением, с помощью электронов, протонов, свободных радикалов, атомов и заряженных радикалов. Электроны и протоны присутствуют в чрезвычайно малых концентрациях, радикалы обладают сравнительно малой подвижностью, а столкновения радикалов, приводящие к обрыву цепи, ограничивают длину цепи, поэтому они не играют существенной роли в изучаемом процессе. Поглощение лучистой энергии маловероятно, но имеются надежные экспериментальные доказательства легкой рекомбинации атомов водорода, которые обладают большой подвижностью и по сравнению с другими радикалами могут мигрировать относительно далеко, пока в результате тройного столкновения не высвободится энергия рекомбинации. В результате рекомбинации атомов водорода Н—Н выделяется 103 ккал/моль. Атомы водорода, выделяя тепло, инициируют также цепные реакции горения в предварительно перемешанной смеси прп непламенных температурах. Диффузия и рекомбинация атомов водорода рассматривались в качестве одного из звеньев механизма, определяющего скорость распространения пламени в свежую смесь. Здесь эта схема также принимается в качестве механизма, посредством которого тепло подводится в элементарный объем зажигания и тем самым оказывает влияние на пределы устойчивости. Эта точка зрения подтверждается результатами работы Лапидуса, Розена и Уилхелма [6], которые экспериментально установили, что скорость зажигания и распространения пламени от одного конца щели горелки до другого существенно изменяется (причем сохраняется воспроизводимость) в зависимости от каталитического характера стенок устья горелки. Предполагая, что различные скорости распространения пламени обусловлены изменением концентрации свободных радикалов во фронте пламени вследствие их рекомбинации на поверхности, авторы предложили теоретическую модель, с помощью которой удалось количественно определить значения коэффициентов рекомбинации на поверхности по отношению к платиновой поверхности. В случае сухих поверхностей относительные коэффициенты имели следующие значения платина Ю" , латунь 10 , окись магния 10 ". Все поверхности, покрытые влагой, дают значения коэффициента рекомбинации меньше 10" . Таким образом, если радикалы могут достигать поверхности стабилизатора, как это указы- [c.239]

    С пециальные механизмы сопряжения. Из различных специальных механи.змов рассмотрим, во-первых, сопряжение с участием электронов проводимости и экситонов. Этот тип в простейшем виде рассматривался выше для распада Н2О2 (см. рис. 2). На каталитических центрах акцен-торпого типа происходит окислительная стадия с потерей электронов и образованием Н+ и Од. На центрах донорного характера происходит восста-новление электроны, переходя к перекиси, превращают ее в два ОН -иона. Процесс облегчается гидратацией ионов. Его непрерывность поддер-н ивается потоком электронов от акцепторных центров к донорным по проводнику. По сходному механизму возможно также протекание восстановительных и окислительных реакций перекиси водорода с другими веществами. Дополнительные возможности сопряжения открывает образование при цепном продолжении реакции в объеме нейтральных и заряженных радикалов НО-2, О3", ОН. Объемные цени заметны на катализаторах малой и умеренной активности. [c.32]

    Механизм потери активности катализатора в результате коксоотложения при гидрокрекинге легкого и тяжелого сырья различен. При гидрокрекинге легкого сырья катализатор равномерно закоксовывается по всей глубине гранулы и длительность его работы определяется коксуемостью сырья и режимом гидрокрекинга при гидрокрекинге тяжелых видов сырья активность катализатора теряется вследствие локального отложения кокса в виде пробок в устьях пор. Псевдокристаллиты кокса, экранируя активные центры катализатора, снижают его активность. Внутренняя поверхность катализатора закоксовывается в меньшей степени. Снимки, сделанные с помощью электронного микроскопа, подтвердили, что наружная поверхность закоксованного катализатора действительно менее пористая. Образовавшиеся при высоких температурах гидрокрекинга коксовые пробки изолируют внутренние слои катализатора от газосырьевого потока, исключая их участие в процессе. [c.39]

    Свет от источника 1 попадает на зеркальный конденсор 2, затем на плоское зеркало 3. Зеркало отклоняет поток лучей на 90° и направляет его в щель 4 (автоколлимационного монохроматора с 30° призмой), защищенную пластинкой-5. Свет, прошедший через щель, попадает на зеркальный объектив 6, который посылает параллельный поток лучей на диспергирующую призму 7, разлагающую его в спектр диспергированный ноток направляется обратно на объектив, который фокусирует лучи в щель( . Призма соединена с помощью специального механизма со шкалой длин волн. Поворачивая призму вращением соответствующей рукоятки на выходе монохроматора, получают монохроматический поток света заданной длины волны, который, нройдя щель 5, кварцевую линзу 9, фильтр 10, поглощающий рассеянный свет, эталон (или образец) и защитную пластинку 11, попадает на светочувствительный слой фотоэлемента 12. Фототок, возникающий в фотоэлементе под действием падающего света, усиливается электронными радиолампами и передается на миллиамперметр (прибор-индикатор). [c.145]

    Анализатор сообщается с атмосферой через стеклянный шар, расположенный на корпусе со стороны источника ионов и разбиваемый при проведении анализа специальным ударным механизмом. Для поддержания вакуума в предварительно откачанном анализаторе на стенках стеклянного шара распылен титаио-бариевый поглотитель, не поглощающий инертных газов, которыми заполняется анализатор для проведения контрольного анализа. При анализе нейтрального состава газа молекулы ионизируются потоком электронов, испускаемых накаленным катодом, при анализе ионного состава катод отключается. [c.81]

    Центробежный эффект разделения не является единственным механизмом, который может наблюдаться в плазменной центрифуге. Наличие источников тепловыделения в плазме, связанных с омическими потерями при протекании электрических токов и вязкой диссипацией, приводит к возникновению в разделяемой смеси градиентов температуры, которые в свою очередь вызывают термодиффузионные процессы. Кроме того, в плазменной центрифуге со скре-щёнными радиальным электрическим и осевым магнитным полями радиальный ионный поток в условиях замагниченности электронной составляющей, вызывает разделительные эффекты, связанные с селективностью передачи направленного импульса от ионов к нейтралам ( ионный ветер ) [35-38. Обычно действие ионного ветра приводит к обогащению тяжёлым изотопом прикатодной области. [c.335]

    Перейдём теперь к анализу процессов разделения в дуговом капиллярном разряде постоянного тока. Ещё раз подчеркнём, что тяжёлым изотопом в данном случае обогащалась прикатодная зона пониженного давления, куда направлен поток ионов. Это обстоятельство подтверждает развитые выше представления о механизмах разделения изотопов в слабоионизованной плазме. Дело в том, что перепад давления нейтралов в разряде постоянного тока вызывается в основном потоком электронов к аноду, которые в силу своей малой массы вызывают лишь пренебрежимо малые масс-диффузионые эффекты. [c.353]


Смотреть страницы где упоминается термин Электронный поток, механизм: [c.33]    [c.556]    [c.156]    [c.365]    [c.204]    [c.49]    [c.110]    [c.157]    [c.161]    [c.127]    [c.127]   
Биохимия растений (1966) -- [ c.270 ]




ПОИСК







© 2025 chem21.info Реклама на сайте