Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическое восстановление платиной, палладием, никелем

    Каталитическое восстановление платиной, палладием, никелем [c.373]

    Каталитическое восстановление оксидов азота. Проводят 13 присутствии в качестве катализаторов сплавов из металлов платиновой группы (палладий, рутений, платина, родий) или составов, содержащих никель, хром, медь, цинк, ванадий, церий и др. Восстановителями служат водород, оксид углерода, метан п другие углеводороды [c.65]

    Восстановление ароматических нитросоединений до аминов может сопровождаться гидрированием ароматического ядра, что особенно характерно прн катализе платиной, палладием и никелем. Поэтому для восстановления наиболее употребительна медь (при 200—300°С и 0,15—0,2 МПа). Если в исходных веществах присутствуют каталитические яды, ведут гидрирование с сульфидами никеля и молибдена при 300—350 °С и 20—30 МПа. Рекомендуются также медь-хромитные контакты. [c.514]


    Возможными способами удаления оксидов азота являются каталитическое восстановление (катализатор — платина, палладий, оксид меди на носителе, оксид никеля на оксиде алюминия и др.)  [c.126]

    Если не касаться не представляющего интереса для препарации жесткого восстановления молекулы моносахарида, приводящего к -гидро-генолизу оксигрупп и дающего простейшие галоидпроизводные (см. стр. 12), то единственной способной к восстановлению группировкой в молекуле моносахарида является карбонильная группа. Восстановление этой группы моносахарида достигается достаточно легко самыми различными методами, из которых наиболее употребительными являются восстановление амальгамой натрия или алюминия и каталитическое гидрирование над палладием или над никелем худшие результаты дает восстановление над платиной. [c.100]

    Интересным следствием этой реакции является то, что при замене в реакции восстановления палладия на платину не происходит раскрытия диоксанового кольца и образуются исходный 2-фенил-5-окси-1,3-диоксан и этиловый эфир соответствующей кислоты [144]. Каталитическое гидрирование в присутствии никеля не приводит к восстановлению ароматического ядра в таких соединениях, как 2-фенил-1,3-диоксан, хотя при этих условиях соединения, подобные фенилацетату, бензилацетату и бензиловому спирту, дают циклогексильные производные. В случае фенильных производных кислородсодержащих гетероциклических соединений в результате гидрирования получаются ароматические углеводороды, простые эфиры, оксиэфиры и гликоли [145]. [c.40]

    В ряде работ, проведенных методом теории ансамблей, было выяснено, что элементарный акт каталитических окислительно-восстановительных процессов протекает на одноатомном активном центре. Этот факт был установлен для окисления сернистого газа на платине и палладии, нанесенных на силикагель и алюмогель [10] для окисления аммиака на платине, нанесенной на силикагель [И] и алюмогель [12] для окисления сульфит-ионов [13] для восстановления нитрофенола и пикриновой кислоты на платине на угле [14] для восстановления ацетона на никеле в смешанных катализаторах Ni/MgO [15] и, наконец, для разложения перекиси водорода на различных адсорбционных катализаторах [13, 14, 16—19]. В дальнейшем будет рассматриваться этот последний процесс при использовании платиновых адсорбционных катализаторов на угле [20], силикагеле [21], окиси кадмия [19] и кадмии [18]. [c.123]


    Одним из наиболее эффективных методов обезвреживания нитрозных газов является каталитическое их восстановление до безвредного элементарного азота. Катализаторами служат платина, палладий, рутений, а также более дешевые, но менее эффективные — никель, хром, медь. В качестве восстановителей применяют метан, водород, окись углерода, природный и нефтяной газы и др. Реакция восстановления происходит по следующим схемам при применении метана [c.88]

    Каталитическое восстановление альдегидов, кетонов и органических карбоновых кислот осуществляют в присутствии активированных металлов никеля, платины, палладия. При восстановлении альдегидов или карбоновых кислот получаются первичные спирты, кетонов — вторичные спирты  [c.127]

    Одним из способов очистки газообразного водорода от кислорода является каталитическое восстановление О2 до воды на металлических катализаторах, например на платине, никеле или палладии [6, 49, 50]. Кислород может быть также адсорбирован активированным углем или силикагелем [16], водяные пары удалены вымораживанием, поглощением окисью алюминия или силикагелем, а также химическим методом (МаОН, КОН). Азот вымораживают или адсорбируют на активированном угле или силикагеле. Метан, аргон, азот и окись углерода удаляют обычно адсорбцией при температуре 80—100 К. Примесь СО2 удаляют из водорода путем вымораживания или промывкой щелочью. [c.28]

    Каталитическое и фотохимическое восстановление карбонильной группы в спиртовую. Восстановление карбонильной группы в альдегидах и кетонах до спиртовой может быть осуществлено и каталитическим путем— в жидкой или паровой фазе водородом в присутствии платины, палладия или никеля  [c.126]

    Спирты получаются в результате восстановления или гидрирования альдегидов, кетонов и кислот. Из альдегидов получаются первичные спирты, из кетонов — вторичные. Гидрирование проводится металлическим натрием или амальгамой натрия в водном, спиртовом или эфирном растворе. В некоторых слзгчаях получают хорошие результаты и при каталитическом гидрировании в присутствии платины, палладия или никеля [c.430]

    Примером реакции присоединения к бензольному ядру является каталитическое гидрирование бензола до циклогексана, которое протекает очень гладко с такими катализаторами, как мелкораздробленный никель, платина или палладий. Для успешного хода восстановления, особенно при работе с платиновыми металлами, необходимо применять очень чистый бензол, без примеси тиофена  [c.478]

    Отличительная особенность палладия — способность поглощать значительные количества водорода. Так, 1 объем Рд при 80Х может поглотить до 900 объемов Нг- Палладий и никель — хорошие катализаторы гидрирования, восстановления водородом. В присутствии Рс1 водород (даже на холоду и в темноте) легко восстанавливает галогены, переводит 50, в Н,8, СЮ в С1, и т. д. Для платины наиболее характерно поглощение кислорода. Большое значение платина имеет как катализатор окисления кислородом аммиака (в производстве ННОз), водорода (для очистки О, от примеси И,) и в других процессах каталитического окисления. [c.646]

    В табл. XIII, 1 приведены некоторые данные, полученные при изучении состава активных центров адсорбционных катализаторов методом теории активных ансамблей. В качестве катализаторов применялись платина, палладий, никель, железо, а также ряд других, например ионных, катализаторов. Катализаторы наносились на силикагель, алюмогель, активированный уголь применялась также окись магния, окись бария, окись кадмия, металлический кадмий и никель (на платине) и ряд других. Изученные каталитические процессы можно разделить на следующие окисление, восстановление кислородсодержащих групп, гидрирование ненасыщенных связей, разложение перекиси водорода, синтез аммиака. Во всех случаях была получена зависимость активности от концентрации катализатора на носителе, отвечающая теоретической и позволяющая определить состав активного центра. [c.340]

    Реакция каталитического восстановления и гидрирования находит широкое применение в промышленности для получения полупродуктов органического синтеза, нанример ароматических аминов из нитросоединений, циклогексанола и циклогексанона из фенола, углеводородов этиленового ряда из ацетиленовых производных. В качестве катализаторов в этих реакциях применяют платину, палладий, никель или в виде высокодисперсных порошков, или нанесенных на различные носители казельгур, окись хрома, окись алюминия, уголь. Реакции жидкофазного гидрирования обычно проводят в среде гидрируемого вещества, продукта реакции или в растворителях при температурах О—200 °С и давлениях водорода (1—200) бар. Каталитический процесс осуществляют в аппаратах, позволяющих интенсивно перемешивать гетерогенную систему в целом. [c.233]


    Лучше протекает реакция восстановления натрием и спиртом, и этот способ оказал большие услуги (в особенности Краффту) при синтезе высших аминов жирного ряда. В последнее время более подробно было изучено каталитическое восстановление нитрилов никелем и водородом, а также палладием или платиной и водородом (Сабатье и Сандеран, Рупе и др.). Оказалось, что в зависимости от характера нитрила получаются либо первичные, либо вторичные амины, либо смесь обоих соединений. Объяснение хода реакции образования первичных аминов не представляет трудности, но синтез вторичных аминов уже не столь ясен. Вероятно, он протекает так, что из нитрила при присоединении молекулы водорода образуется альдимин, который затем частично гидролизуется до альдегида и частично восстанавливается до первичного амина. Оба эти вещества соединяются с образованием шиффова основания, которое при дальнейшем действии водорода превращается- во вторичный амин. Возможно также, что альднмин реагирует с одной молекулой образовавшегося первичного амина, причем сразу получается шиффово основание  [c.162]

    Таким образом, для каталитического восстановления пиридиииевых солей и их конденсированных производных, содержащих гидроксиалкильные заместители при атоме азота, могут быть использованы различные катализаторы - оксид и диоксид платины, палладий на угле, никель скелетный, никель модифицированный рутением. В реакцию с одинаковым успехом вводились различные соли хлориды [40], бромиды [41], иодиды, тозилаты, перхлораты [42], тетрафторбораты [44]. Этот метод позволяет осуществить стереонаправленный синтез М-гидрокси-алкилпипиридинов, недоступных через каталитическое алканоламинирования [c.72]

    Нитрование и восстановление. Нитрование и последуюш,ее восстановление производных пиридина, уже имеющих в ядре амино- или оксигруппу, является очень удобным методом синтеза 3-амино- и 3,5-диаминониридиноп. Поскольку 2-амино- и 2,6-диаминопиридины легко получаются прямой реакцией аминирования, эти два метода взаимно дополняют друг друга. Восстя-новление нитропиридинов можно осуществлять одним из методов, применяемых в ароматическом ряду, например каталитическим восстановлением или восстановлением при помощи железа и уксусной кислоты. Из катализаторов можно использовать скелетный никель, платину, палладий. Единственным обстоятельством, с которым приходится считаться при подборе условии каталитического восстановления, является необходимость исключить возможность гидрирования пиридинового цикла до пиперидинового. Однако и это не представляет серьезных затруднений, поскольку восстановление нитрогруппы протекает значительно легче, чем насыщение двойных связей пиридина. Так, например, восстановление нитрогру.нпы 3-нитропиридина до аминогруппы происходит в присутствии скелетного никеля уже при комнатной температуре, а восстановление дихлоргидрата 3-аминопиридина до [c.428]

    К этим способам относятся методы восстановления других классов органических соединений в алканы класс требует специфических условий реакции и ствующего восстановителя, все определяется реак-ой способностью восстанавливаемой группы Так, ес-ены и алкины легко гидрируются каталитически ораздробленные никель, платина, палладий), то маг-ганические соединения легко восстанавливаются уже кта с водой [c.251]

    Бредиг и Алло лис [69] произвели рентгеновское исследование строения решетки и среднего размера частиц в слоях, полученных при катодном диспер гировании платины, палладия и никеля на стеклянных пластинках. Чередующиеся слои платины и палладия, диспергированные при давлении десять и более миллиметров водорода, при применении для гидрогенизации этилена оказались почти неактивными. Рентгеновское исследование показало, однако, значительное увеличение решетки, указывающее на высокое содержание водорода, что повидимому значительно снижает и даже полностью уничтожает активность платины и палладия. При диспергировании в кислороде палладиевые и платиновые катализаторы образуют окисные слои, которые сначала неактивны, но при последующем восстановлении становятся очень активными. Кристаллический никель гексагональной формы, диспергированный в водороде, оказался при гидрогенизации этилена неактивным до 360°. Каталитически активные металлы образуются, ксгда окисление сопровождается последующим восстановлением водородом. Отсюда можно сделать вывод, что чистые металлы являются каталитически активными веществами. [c.247]

    Н. Д. Зелинским и сотрудниками. В качестве катализаторов ими использовались платина, палладий и никель, нанесенные на носители, например на активированный уголь и окись алюминия. Каталитическое дегидрирование в присутствии указанных восстановленных металлов протекает в паровой фазе при 300—330° без образования каких-либо промежуточных продуктов дегидрирования типа циклоолефинов или циклодиолефинов. Лишь циклопарафины, содержащие шесть углеродных атомов, способны дегидрироваться пятичленные углеродные кольца, а также любые другие циклические структуры, кроме шестичленных углеродных колец, остаются неизмененными (правило Зелинского). Для дегидрирования шестичленных нафтеновых структур рекомендованы с.пе-дующие катализаторы 1) платина на окиси алюминия (или на древесном угле), [c.137]

    Экспериментальные данные в общем согласуются с предположением о том, что электролитическое восстановление в основ-Н0Л1 является реакцией атомов водорода при разряде. Оно облегчено на электродах с высоким перенапряжением, на которых атомарный водород либо выделяется с больщой энергией активации (теория замедленного разряда, стр. 243), либо сохоа-няется в большой концентрации на поверхности электрода (теория Тафеля). Часто обнаруживаются, однако, специфические каталитические эффекты. Так, при восстановлении нитратов в аммиак или нитросоединений в амины особенно эффективны губчатые медные катоды. На других электродах получаются большие выхода гидроксиламинов. Необходимо отметить, что метал-лы, наиболее эффективные при катодном восстановлении, отнюдь не являются теми металлами, которые способствуют каталитическому восстановлению органических соединений газообразным водородом. Причины этого вполне понятны. Поверхность никеля, платины или палладия может катализировать и диссоциацию и рекомбинацию водорода [c.245]

    Очистка исходного газа от кислороду при получении кидкого водорода занимает особое место. Принятый для очистки метод должен обеспечивать надежную степень очистки. Та-кс у требованию отвечает процесс, основанный на каталитическом восстановлении водородом. Надежными катализаторами являются металлы - никель, платина, палладий, нанесенные на подложку с сильно развитой поверхностью (например, оксвд алюминия). Палладий считается очень эффективным катализатором для работы даже при нормальной температуре. Однако при наличии в газе примесей некоторых углеводородов шш оксида углерода может произойти его отравление. Никелевый катализатор, хорошо работающий при температуре 570 К, менее подвержен отравлению [8, 17, 21].  [c.70]

    Двойная связь углерод — азот в иминах, их производных и иминоэфирах. Восстановление иминов до аминов осуществляют каталитически под давлением в присутствии палладия, платины или никеля [ hem. Rev., 63, 497 (1963)]. [c.244]

    Обобщающее исследование механизма каталитического восстановления ароматических нитросоединений на никеле, платине и палладии было проведено Сокольским и Шмониной [2—6]. [c.100]

    При каталитическом гидрировании молекулярный водород обычно активируется такими металлами, как платина, палладий и никель. Наиболее пригодны для гидрирования малых колп1честв методы восстановления ири атмосферном давлении или давлениях, близких к атмосферному. Гидрирование под давлением хотя и может быть использовано для работы с полумикроколичествами веществ, однако имеет не обнщй, а специальный интерес. Следует, впрочем, отметит ., что имеется много работ, посвященных восстановлению малых количеств веществ под давлением с использованием об . чн >1х методов каталитического гидрирования. Так, например, Клемо и Суон [2] при гидрировании 2,23 г 2-метил-7-азаиндола при 180° и давлении 160 ат в присутствии хромита меди получили 0,95 г сырого 2-метил- [c.193]

    Восстановление карбоновых кислот протекает с большим трудом. Обычный восстановитель (кислота + металл) в этих условиях неэффективен. Каталитическое гидрирование кислот при высоком давлении (100 атм) в присутствии хромита меди (СиСгОг) как катализатора приводит к получению спиртов. Обычные металлические катализаторы (никель, палладий, платина)—инертны. Алюмогидрид лития гладко превращает карбоновые кислоты в соответствующие спирты  [c.147]

    Химическое восстановление никеля является автокаталити-ческой реакцией, так как металл, образовавшийся в результате химического восстановления из раствора, катализирует дальнейшую реакцию восстановления этого же металла Но для начального периода восстановления метапла необходимо, чтобы покрываемая поверхность имела каталитические свойства, которые создаются в результате выполнения операции называемой активированием Активирование заключается в том что на обрабатываемую поверхность химическим путем наносят чрезвычайно малые количества металлов, являющихся катализаторами реакции химического восстановления никеля Такими катализаторами являются коллоидные частицы или малорастворимые соединения палладия, платины золота серебра Самое широкое распростране[[ие получил палладий обладающий высокой каталитической активностью Образование каталитического слоя в виде металла, находя щегося в коллоидном состоянии, осуществляется в две стадии [c.38]

    В более поздних работах описано восстановление 8-нитрО хинолина сульфатом гидразина в жидком аммиаке под давлением (выход около 80%) [20] и каталитические методы гидрирование водородом на никеле Ренея [21, 22] или на окиси платины [23], а также восстановление гидратом гидразина в присутствии палладия на угле [24] или никеля Ренея [25]. Выход составляет соответственно 69% [21], 96% [23], 65% [24], 90— 95% [25]. [c.86]


Смотреть страницы где упоминается термин Каталитическое восстановление платиной, палладием, никелем: [c.172]    [c.361]    [c.131]    [c.366]    [c.534]    [c.72]    [c.161]    [c.161]    [c.204]    [c.162]    [c.157]   
Смотреть главы в:

Непредельные нитросоединения Издание 2 -> Каталитическое восстановление платиной, палладием, никелем




ПОИСК





Смотрите так же термины и статьи:

Никель(П) и платина(П)

Палладий

Палладий палладий



© 2025 chem21.info Реклама на сайте