Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пористые материалы для хроматографии

    Наряду со стандартными модулями и блоками, входящими в это исполнение хроматографа, в термостате / установлен барботер 5, соединенный с испарителем 5. Капиллярная хроматографическая колонка 2 представляет собой пустой капилляр из инертного материала (нержавеющая сталь, стекло, плавленый кварц с внешним полимерным покрытием и др.) внутренним диаметром 0,1—0,5 мм и длиной 2—10 м. Барботер 8 — это стеклянная цилиндрическая емкость, нижняя часть которой перекрыта фильтром 9 нз пористого материала (фильтр Шотта) или заполнена стеклянными шариками для обеспечения большой поверхности массообмена между газом-носителем и легколетучим растворителем, заполняющим верхнюю часть этой емкости. В качестве растворителя могут быть использованы дистиллированная вода, четыреххлористый углерод, муравьиная кислота и другие, к парам которых пламенноионизационный детектор проявляет слабую чувствительность в сравнении с чувствительностью к анализируемым соединениям. Газ-носитель перед поступлением в капиллярную колонку 2 насыщается парами легколетучего растворителя, который образует на внутренних стенках колонки тонкую пленку конденсата, выполняющую роль неподвижной жидкой фазы. [c.111]


    В молекулярно-ситовой хроматографии в качестве неподвижной фазы применяют пористые материалы. При этом поры имеют вполне определенные размеры, соответствующие размерам молекул одного из разделяемых веществ. Поэтому именно эти молекулы задерживаются в порах, а остальные остаются в растворе. В качестве пористого материала обычно применяют гидрофильные гели, поэтому метод именуют также гель-хроматографией. [c.255]

    При газо-жидкостной хроматографии на заполненных сорбентом колонках исследуемые смеси разделяют на сорбенте, состоящем из твердого пористого материала. На этот материал наносят жидкость, которая служит неподвижной фазой, обеспечивающей процесс разделения. Эта жидкость, точно так же как и твердый носитель, должна обладать особыми свойствами, для того чтобы происходило оптимальное разделение. Кроме того, имеют значение форма и материал колонки и способы нанесения жидкости и заполнения колонок. [c.74]

    В упрощенном виде механизм эксклюзионной хроматографии может быть представлен следующим образом. Неподвижная фаза — пористый материал, причем средний размер пор сопоставим с размерами молекул разделяемых веществ. Молекулы смеси в колонке, заполненной таким материалом, будут вести себя по-разному, в зависимости от размеров. Наиболее крупные молекулы, не способные диффундировать внутрь пор неподвижной фазы, могут находиться только в пространстве между частицами и, следовательно, их удерживаемый объем будет равен объему колонки минус суммарный объем частиц неподвижной фазы (Ко). Молекулы, размеры которых меньше наиболее мелких пор сорбента, способны диффундировать внутрь частиц, поэтому удерживаются в колонке дольше, чем более крупные молекулы. Объем их элюирования равен полному объему растворителя в колонке, т. е. сумме объема пор и объема между частицами (К/). Молекулы промежуточных размеров, для которых доступна та или иная доля пор сорбента, будут выходить из колонки между объемами Уо и I//. Если ввести в колонку смесь веществ с известными и в достаточной степени различающимися молекулярными массами, из хроматограммы можно получить калибровочную кривую, подобную изображенной на рис. 111.40. Следовательно основная сфера применения эксклюзионной хроматографии — фракционирование смесей в соответствии с их молекулярными массами. Калибровочная кривая эксклюзионной хроматографии в своей средней части содержит линейный участок, в котором разделяющая способность колонки и точность измерений максимальны. Эта линейная часть обычно охватывает примерно два порядка молекулярных масс. Рабочий диапазон эксклюзионной колонки зависит от размера пор и смещается в область больших масс при увеличении среднего размера пор сорбента. Поэтому для работы в широком диапазоне масс обычно последовательно соединяют две или более колонок, различающихся по размеру пор. [c.333]


    При газожидкостной хроматографии на заполненных сорбентом колонках исследуемые смеси разделяются на сорбенте, состоящем из твердого пористого материала (носителя), покрытого тонким слоем высоко кипящей жидкости (неподвижной жидкой фазы). [c.42]

    Очистка газообразных органических веществ производится главным образом путем вымораживания, фракционированного испарения смесей при низких температурах, а также при помощи целого ряда химических операций, позволяющих связать имеющиеся в газообразном веществе примеси. Большие успехи достигнуты в области разделения газов хроматографическим методом. Благодаря большей скорости диффузии газов по сравнению с жидкостями скорость пропускания разделяемого газа через колонку и размеры гранул адсорбента могут быть значительно увеличены. При хроматографическом разделении газов используется также сильная температурная зависимость адсорбции. Иногда весь процесс ведут при низкой температуре, иногда — при высокой, а в ряде случаев выгодно вводить газовую смесь в охлажденную колонку, а затем вытеснять компоненты, постепенно повышая температуру. В последнее время все большее значение приобретает газо-жидкостная, или газовая, хроматография, отличающаяся тбм, что в колонку вместо твердого адсорбента помещается пористый материал, пропитанный высо-кокипящей жидкостью. Разделяемые вещества (газы или жидкости в испаренном виде) пропускают через такую колонку в токе инертного газа (N2, Нг, Не). Пары разных веществ задерживаются жидкой фазой по-разному, а потому выходят из колонки через разные промежутки времени. [c.35]

    В гл. 24 дано широкое определение хроматографии как процесса разделения, в котором подвижная фаза является газом или жидкостью, а стационарная фаза — жидкостью или твердым телом. В обшем хроматография может быть газовой или жидкостной в соответствии с состоянием подвижной фазы. В газовой хроматографии неподвижная фаза представляет собой или тонкую пленку жидкости на носителе, или твердое тело с большой поверхностью. Жидкостная хроматография может быть нескольких видов ионообменная, в которой подвижная фаза — обычно жидкая, а стационарная фаза — нерастворимый полимер, содержащий ионные группы адсорбционная, в которой стационарная фаза — твердое тело с большой поверхностью жидкостно-жидкостная, в которой неподвижная фаза — тонкая пленка из одной несмешивающейся жидкости, нанесенной на твердое тело гель- или эксклюзионная, в которой неподвижная фаза — гель или другой пористый материал тонкослойная, в которой неподвижная фаза — жидкость, нанесенная на слой тонко измельченного твердого тела, или твердый адсорбент бумажная, в которой стационарная фаза — тонкая пленка жидкости на бумаге как носителе электрохроматография, в которой разделение проводят под влиянием электрического поля. [c.534]

    В газожидкостных хроматографах с насадочными колонками исследуемые смеси разделяются на заполняющей колонку насадке, состоящей из твердого пористого материала, пропитанного неподвижной жидкой фазой, на которой, собственно, и происходит процесс разделения. Чтобы разделение проходило в оптимальных условиях, неподвижная жидкая фаза и ее носитель должны обладать некоторыми определенными свойствами. Значительное влияние оказывают также форма и материал колонки, а также методы заполнения колонки и нанесения жидкой фазы на носитель (процесс пропитки). [c.170]

    Стной хроматографии на тонких слоях пористого материала и построить в связи с этим научное описание и классификацию методов тонкослойной хроматографии. [c.275]

    Хроматографический процесс на тонкослойных пластинках осуществляется при движении элюента вдоль слоя пористого материала, которое происходит за счет капиллярных сил поднятия (восходящая хроматография) или за счет гидростатических сил (нисходящая хроматография). Обычно процесс хроматографии на тонкослойных пластинках заканчивается при достижении элюентом конца пластинки (т. е. длина пробега элюента Л, меньше длины пластинник). При проточной хроматографии пробег растворителя превышает в несколько раз длину пластинки i j  [c.293]

    Тонкослойная хроматография — это разделение веществ в тонком слое пористого материала, нанесенного на стеклянную пластинку. Растворитель (элюент), двигаясь в пористом материале [c.273]

    Заполнение трубки пористым материалом является важной операцией при подготовке колонки к работе. Применяющиеся в хроматографии пористые материалы представляют собой чаще всего порошкообразные вещества различной дисперсности или же волокнистые вещества (целлюлоза, вата и др.). От величины зерен или волокон адсорбента или носителя и плотности его упаковки зависит скорость фильтрации жидкости через колонку. При высокой дисперсности материала фильтрация будет происходить очень медленно, вследствие чего на проведение опыта будет затрачено много времени. С другой стороны, уменьшение степени дисперсности приводит к ряду нежелательных явлений, как, например, неравномерность фильтрации, образование затеков, уменьшение рабочей поверхности материала и др. В этом случае также начинает играть существенную роль и скорость поглощения вещества. Поэтому очень важно для данного пористого материала найти оптимальные значения степени зернения, высоты слоя в колонке и насыпной плотности, при [c.22]


    Количественная теория хроматографии должна быть основана на законах динамики сорбции веществ. Под динамикой сорбции понимается развитие процесса поглощения вещества в условиях прохождения его через слой пористого материала (сорбента). [c.50]

    В газо-жидкостном хроматографе веш ество вносят в колонку — длинную узкую трубку с нелетучей жидкой фазой, нанесенной на пористый инертный твердый материал, Через колонку пропускают струю газа-носителя при определенной, регулируемой температуре. Вещество в виде паров движется по колонке с током газа, непрерывно подвергаясь распределению между газовой (подвижной) и жидкой (неподвижной) фазами. Время, в течение которого данное вещество проходит колонку (так называемое время удерживания) зависит от летучести вещества и его способности абсорбироваться данной жидкой фазой. Оба свойства определяются тонкими особенностями структуры конкретного соединения, так что время удерживания весьма характерно и индивидуально для каждого вещества в конкретных условиях разделения. Поэтому, если в колонку внесена смесь веществ, то ее компоненты появляются на выходе из колонки в разное время достигается их разделение. После выхода из колонки газовый поток попадает в детектор, регистрирующий появление вещества, а сигналы с детектора через усилительную схему посту- [c.74]

    Этот процесс сходен с предыдущим в том смысле, что задержание молекул вещества в неподвижной фазе обусловлено пх связыванием с поверхностью твердого гидрофильного материала сплошных или пористых гранул, находящихся в контакте с жидким элюентом. Однако в этом варианте хроматографии задержание происходит не за счет молекулярной адсорбции, а в результате электростатического взаимодействия разноименно заряженных ионов. [c.9]

    Своеобразной разновидностью осадочной хроматографии является вариант этого метода, получивший название диффузионная осадочная хроматография [1501. Она от- личается от обычной осадочной хроматографии тем, что в ней основным механизмом массопереноса является диффузия, а не фильтрация раствора. Специфичность реакционной среды состоит в том, что она не допускает фильтрации раствора и конвективного перемешивания растворенного вещества. К таким средам относятся гели (студни), а также влагонасыщенный пористый материал и растворы в капиллярах. [c.196]

    Природа пористого материала. Перед использованием в молекулярноситовой хроматографии пористый материал должен набухнуть и впитать жидкую фазу, чтобы образовалась наполненная растворителем губка , в которую молекулы могут диффундировать. Поскольку молекулярно-ситовая хроматография проводится с различными жидкими фазами, начиная от воды и кончая углеводородными растворителями, то необходим большой набор различных пористых материалов — от гидрофильных, которые набухают в воде, до липофильных, которые впитывают неполярные органические растворители. Наиболее широко используемым гидрофильным материалом является искусственно сшитый полисахарид, полученный при обработке декстрана (природного полимера глюкозы) различными количествами эпихлоргидрина для получения определенной степени сшитости между цепями. Существует по крайней мере восемь различных степеней сшитости между цепями самый плотный гель будет исключать соединения с молекулярными массами свыше 700. Для полного исключения соединений на большинстве открытых гелей их молекулярные массы должны быть свыше 200 000. Пределы ситового исключения других пористых материалов, включая полиакриламид (имеющий десять различных степеней пористости) и гели агарозы, достигаются для соединений с молекулярными массами до 150000 000. Могут быть также использованы твердые , жесткие материалы, такие как стеклянные зерна с контролируемой пористостью. Молекулярно-ситовую хроматографию, в которой пример няют водную подвижную фазу, иногда называют гель-фильтрационной хроматографией. [c.597]

    Первые три метода различаются по степени однородности состава элюента вдоль хроматографической пластинки, которая задается как изменение состава элюента, поступающего на пластинку (градиентная элюция), так и фронтальным разделением многокомпонентного элюента на активном слое пористого материала (полизональная хроматография). Как тот, так и другой методы целесообразно использовать для разделения компонентов, относящихся к разным классам органических соединений с резко различающимися сорбционными характеристиками. [c.86]

    Существуют две разновидности газохроуатографического анализа - газоадсорбционная и газожидкостная. Если хроматографическая колонка наполнена твердым адсорбентом (силикагель, алюмогалъ, активированный уголь), то осуществляется газоадсорбцяонная хроматография. При газожидкостной хроматографии колонка содержит пористый материал, смоченный специальной нелетучей жидкостью, так называемой неподвижной фазой (например, скволаном). В этом случав адсорбция заменяется процессами растворения газов в, тонком слое этой жидкости. [c.230]

    Тонкослойная хроматография — это разделение веществ в тонком слое нористого материала, нанесенного на стеклянную пластинку. Получается хроматография как бы в открытых колонках, т. е. в колонках с частично удаленной стенкой. При такой постановке опыта слой пористого материала по всей длине доступен для детектирования зон вещества, разделяемых на пластинке. Последнее обстоятельство удобно тем, что для завершения хроматографического разделения достаточно времени пробега наиболее быстрого компонента. Отсюда вытекает первое преимущество метода — большая скорость процесса (время опыта мало). При этом появляется возможность увеличения эффективности анализа путем применения особо мелкодисперсных материалов, которые обеспечивают высокую разрешающую способность тонкослойной хроматографии. [c.197]

    Для тонкослойной хроматографии используются два типа пластин с закрепленными и незакрепленными слоями. Пластины с закрепленными слоями приготовляются на стеклянных четырехугольных пластинках различного размера (можно использовать старые фотопластинки), на которые наносится слой пористого материала. Обращается внимание на необходимость тщательной очистки, а главное на обезжиривание поверхности стекла перед нанесением слоя, например промывая стекло раствором детергента, водой и водным 50%-м метанолом, подкисленным ПС1. Перед нанесением на пластинку закрепленных слоев силикагеля приготовляют так называемую адсорбционную массу. Ее консистенция зависит от соотношения воды силикагеля и парижского пластыря, а если в состав ее входит прокаленный гипс, то и от времени между приготовлением массы и ее нанесением на пластинку. Для получения одинаковых хроматографических пластинок, в особенности при использовании апликаторов, важно выдерживать постоянными оба фактора. Для нанесения закрепленных слоев на пластины используют несколько способов. [c.290]

    Несмотря на трудность формулировки общего принципа, на котором основана современная хроматография, попытки в этом направлении все же делались. Наиболее удачной является формулировка проф. В. В. Рачииского, хотя и она встретила некоторые возражения. Согласно этой формулировке, можно считать, что современная хроматография основана на следующем общем принципе любая жидкая или газообразная смесь веществ может быть разделена на составные части путем фильтрации ее через колонку или слой пористого материала, если имеют место качественные или количественные различия во взаимодействии компонентов смеси с материалом колонки или пористого слоя. [c.10]

    Жидкость неподвижной фазы, как и прп гель-фильтрации, может быть просто иммобилизована внутри пористых гранул, илп, например, быть прочно связана с волокнами набухшей целлюлозы, илп же покрывать тонкой пленкой гранулы из сплошного материала и поверхность пор внутри них. Покрытие может осуществляться за счет смачивания, сорбции пли химическим путем. В последнем случае нередко пленка жидкости сводится к мономолекулярному слою вещества, способного удерживать близ своей поверхности молекулы колшонентов фракционируелюй смеси в соответствии со степенью их сродства к нему. В этом случае о соотношении растворимостей говорить трудно, так что лучше оперировать только понятиями сродства того или иного компонента к неподвижной и подвижной фазам, что, впрочем, с позиций теории хроматографии сведется к точно такой же, как при истинном растворении, количественной характеристике равновесного распределения фракционируемого материала между двумя фазами. Если в процессе распределительной хроматографии участвуют две истинные жидкости, то для осуществления равновесного распределения вещества они сами тоже должны быть в равновесии между собой, т. е. в случае частичной их растворимости друг в друге должны быть взаилшо насыщенными. [c.8]

    В этом процессе неподвижная фаза представляет собой твердый сорбент. Равновесие процессов сорбции и десорбции в условиях, достаточно далеких от насыщения емкости сорбента, устанавливается независимо для каждого компонента смеси веществ. Различие в коэффициентах адсорбции обусловливает разницу в распределении этих компонентов между сорбентом и подвижной жидкой фазой. Соответственно чел1 большим сродством к сорбенту обладает данный компонент смеси, тем медленнее он будет мигрировать вслед за элюен-том вдоль колонки или пластинки. Если сорбция происходит на наружной поверхности сплошных гранул, то имеет место адсорбционная хроматография в чистом виде. Если же материал сорбента имеет пористую структуру и большая часть сорбирующей поверхности находится внутри его гранул, то в задержании молекул вещества в неподвижной фазе участвует еще и процесс их диффузии в неподвижной жидкости внутри пор, подобно тому как это имеет место при гель-фильтрации. Практически, впрочем, связывание вещества за счет сорбции доминирует. [c.9]

    Матрицей называют твердую основу неподвижной хроматографической фазы. Она имеет вид сплошных или пористых гранул последние часто представляют собой прострапствеииую сетку линейных полимеров. Для придания материалу матрицы необходимых для хроматографии свойств его модифицируют. Модификация люжет представлять собой химическое присоединение ( присадку ) поио-геиных групп, гидрофобных молекул, биологически активных веществ или фиксацию путем адсорбции тонкого слоя растворителя. Хотя особенности хроматографического процесса определяются в основном характером модификации, физико-химические параметры матрицы могут существенно влиять на свойства неподвилчной фазы. К таким параметрам относятся следующие размеры и форма гранул и их нор диапазон разброса этих размеров механическая прочность материала матрицы характер его смачивания и набухания в элюенте химическая стойкость и инертность в условиях хроматографической элюции реакционная способность, обеспечивающая возможность химической модификации матрицы. [c.48]

    Декстран ( Sephadex ) — очень гидрофильный материал. Присоединение ионогенных групп происходит также по гидроксилалг полисахарида. Пористость и жесткость матриц на основе сефадексов зависит от процентного содержания сшивки (эпихлоргидрина). Модифицированные сефадексы для ионообменной хроматографии выпускаются на основе только двух типов сефадексов G-25 и G-50. Размеры пор у модифицированных сефадексов значительно выше, чем у двух исходных типов матриц, за счет уже знакомого нам эффекта расталкивания одноименно заряженных ионогенных групп. Ионообменные сефадексы соответственно и менее жестки их объемы тоже могут изменяться в зависимости от pH и ионной силы элюента. Особенно сильно это выражено у ионообменников, полученных на основе сефадекса G-50. Рабочий диапазон pH 2—12. [c.251]

    PLOT (ОКК-ПС — открытая капиллярная колонка с пористым слоем) — колонка для капиллярной газоадсорбционной хроматографии, изготовленная осаждением слоя адсорбирующего материала на внутренние стенки трубки. [c.134]

    При адсорбционной хроматографии на колонках адсорбент (например, активированная окись алюминия, порошок целлюлозы, кремневая кислота, или кизельгур) в виде сухого твердого вещества или пасты укладывают в трубку (стеклянную, пластмассовую или из другого подходящего материала), имеющую ограниченное выходное отверстие (обычно защищенное стеклянной пористой пластинкой) для вытекания подвижной фазы. Раствор хроматографируемого вещества наносят на поверхность сорбента в колонке и дают ему протечь в сорбент затем на вершину колонки наносят растворитель, представляющий собой подвижную фазу, помещают и дают ему протечь вниз либо под действием силы тяжести, либо под небольшим давлением. При выполнении этой методики надо следить за тем, чтобы вершина колонки не обсыхала. Анализируют протекающий раствор — элюент — либо непрерывно (например, с помощью проточной кюветы, в которой измеряется поглощение в ультрафиолетовой области), либо поэтапно (например, собирая фракции либо через определенные промежутки времени, либо определенного объема или массы элюата с последующим определением разделяемых компонентов в каждой фракции). Необходимость индивидуально анализировать много фракций для получения полной количественной оценки вещества привела к тому, что применение в последние годы классических методик хроматографии на колонках сократилось там, где их продолжают использовать, существует естественная тенденция выбирать те методы обнаружения и определения, которые легко переводятся в автоматические процессы. [c.100]

    Газовую хроматографию можно рассматривать как форму хроматографии на колонках, при которой подвижной фазой является газ (газ-носитель), а не жидкий растворитель. Неподвижной фазой может служить либо активный сорбент, такой, как окись алюминия, силикагель или уголь (тазоад-сорбционная хроматография), либо жидкость, которая в виде тонкой пленки покрывает тонко измельченный инертный твердый носитель, такой, как диатомовая земля, кирпич,, стеклянные бусинки или другой подходящий. материал (газожидкостная хроматография) если хроматографическая колонка имеет очень небольшой диаметр, неподвижной фазой может быть покрыта внутренняя стенка колонки это так называемые открытые трубчатые, или капиллярные, колонки. Имеются некоторые материалы, которые не требуют покрытия жидкой фазой, например полиароматические пористые бусинки, что весьма ценно в случаях специального применения. [c.105]

    Наверное, простейшая по типу хроматография — это хроматография, использующая пористую инертную стационарную фазу. Разделение здесь достигается на основе соответствия размера и формы молекул размеру и форме пор, В методе гельпроникающей хроматографии 39] стационарной фазой обычно служит сшитая полистирольная смола, а подвижной фазой — органический растворитель, который в практических целях пропускают через колонку под высоким давлением. Очень близок к этому методу по технике исполнения метод гель-фильтрации [40], где стационарной фазой является сшитый полиакриламид (или другой гидрофильный материал), а подвижной фазой слух<ит водный раство- [c.318]

    Альтернативным решением при заполнении насадками колонок больших диаметров является применение насадок в виде пористых блоков [81]. Пористые блочные насадки, пригодные для использования в хроматографии, имеют два типа пор, различающихся по размерам поры, характерные для материала сорбента и носителя, и поры, размеры которых соизмеримы с межчастичными расстояниями в обычных хроматографических колонках с гранулированными насадками. Насадки этого типа созданы для газоадсорбционной и ионообменной (на неорганических ионообменни-ках) хроматографии [83, 84]. Аналогично решается задача улучшения хроматографических характеристик колонок большого диаметра в экстракционной хроматографии [85, 86]. В качестве полимерной основы таких сорбентов и носителей стационарной жидкой фазы используется пористый политетрафторэтилен. Наиболее широкое практическое применение подобные сорбенты находят для концентрирования радионуклидов в радиохимическом анализе [87]. Постоянство геометрической формы и размеров сорбентов позволяет в данном случае отказаться от стадии элюирования выделенных радионуклидов и использовать их непосредственно в качестве источников радиоактивного излучения. Аналогичная схема группового хроматографического выделения может быть использована в рентгенофлуоресцентном анализе. [c.186]

    В качестве справочного материала в приложении приведен перечень насадок, опубликованный Маджорсом [66] Из них только насадки на полимерной основе применяются в полумикро-ВЭЖХ относительно редко Однако это не означает, что они менее пригодны для полумикро-ВЭЖХ Просто до последнего времени в этой области ЖХ более популярны были такие распространенные насадочные материалы, как силикагель или силикагель, модифицированный ОДС Пористые полимеры, ионообменные смолы и насадки для эксклюзионной хроматографии также являются хорошими материалами для заполнения полумикроколонок В работе Хиби и сотр [67], например, описано разделение методом эксклюзионной хроматографии на полумикроколонках с полимерной насадкой [c.88]

    Интересно отметить, что природные пористые материалы (в-, виде губчатых веществ) в качестве носителей для хроматографии применялись, видимо, уже более четырех столетий назад. Битте-[9] в 1957 г. сообщил, что Браншвиг [9а] в 1512 г. очищал этиловый спирт перегонкой над губкой, пропитанной оливковым-маслом. Фактически этот метод можно классифицировать как газожидкостную распределительную хроматографию, в которой губчатый материал является носителем, а оливковое масло — неподвижной фазой. В 1962 г. Байер [10] воспроизвел этот метод, и подтвердил его эффективность. [c.439]


Смотреть страницы где упоминается термин Пористые материалы для хроматографии: [c.110]    [c.274]    [c.110]    [c.274]    [c.230]    [c.63]    [c.100]    [c.74]    [c.446]    [c.35]    [c.127]    [c.97]    [c.97]   
Смотреть главы в:

Хроматография в биологии -> Пористые материалы для хроматографии




ПОИСК







© 2025 chem21.info Реклама на сайте