Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение аминокислот при помощи нингидрина

    Первым методом превращения аминокислот для использования в ГХ-анализе была реакция с нингидрином. Как известно, в этой реакции наряду с окрашенными веществами и СОг образуются и упоминавшиеся выше альдегиды, имеющие на один углеродный атом меньше, чем в исходной молекуле. Опираясь на метод количественного определения аминокислот, разработанный на основе этой реакции [92], с помощью ГХ удалось разделить и идентифицировать эти летучие альдегиды [37]. Очевидно, этот метод пригоден только для тех аминокислот, которые в реакции с нингидрином дают летучие альдегиды, и, следовательно, из этой группы, естественно, исключаются Про и родственные ему аминокислоты [61]. Побочные реакции при ГХ, такие, как полимеризация, затрудняют или вообще делают невозможным идентификацию определенных аминокислот [130]. Чтобы преодолеть указанные трудности, альдегиды окисляли [3] до карбоновых кислот и хроматографировали в виде метиловых эфиров. Несмотря на отмеченные недостатки, Златкис и др. [130] указывают, что этот процесс модификации аминокислот интересен в техническом отношении. По принципу реакций, используемых в ГХ, превращение аминокислот, а затем разделение и количественное определение альдегидов, переводимых в результате каталитического гидрокрекинга в метан, может происходить [c.326]


    Для определения аминокислот существуют разнообразные химические реакции, которые специфичны для некоторых из них (табл. 6.2). Эти реакции используются довольно редко, так как аминокислотный анализатор позволяет легко проводить качественный и количественный анализ и инструментальное детектирование этих соединений. Этим методом плохо определяется триптофан (Try) из-за его повышенной чувствительности к кислотам, поэтому его лучше идентифицировать с помощью химических реакций (табл. 6.2). Химической основой работы аминокислотного анализатора является реакция с нингидрином, описанная в опыте 20. [c.273]

    Для количественного определения аминокислот и пептидов по приведенным выше реакциям требуется колориметр или фотометр, с помощью которых обнаруживают изменения в свето-поглощении, связанные с протеканием реакций. Поскольку нингидрин наиболее широко используется для обнаружения аминокислот и белков, он послужит основой для дальнейшего обсуждения колориметра. [c.26]

    Если вещества бесцветны, они могут быть обнаружены на фильтровальной бумаге только при помощи специальных физических или химических методов. Все аминокислоты дают, например, окраску с нингидрином. Поэтому при определении аминокислот их проявляют , смачивая раствором нингидрина фильтровальную бумагу. На бумаге появляются окрашенные пятна, расположенные на разной высоте, в соответствии с тем, как распределились аминокислоты в токе жидкости. По месту положения пятна и интенсивности его окраски можно определить наличие той или иной аминокислоты и ее концентрацию в исследуемой смеси аминокислот (рис. 7). [c.35]

    Определение аминокислот при помощи нингидрина [c.75]

    Если целью опыта является определение значений и нет необходимости в выделении разделяемых веществ, то обнаружить зоны на столбике можно при помощи любой цветной реакции. Так, полосы аминокислот на колонке с крахмалом можно обнаружить, смочив столбик эфирным раствором нингидрина с последующим нагреванием всей колонки. При этом зоны аминокислот проявляются в виде интенсивных фиолетовых полос [133]. [c.460]

    Количественное определение аминокислот методом элюции и последующим фотоколориметрированием [105, 106]. С помощью этого метода можно определять в растворе или гидролизате белка 0,05—0,15 мкг аминокислоты. Метод основан на реакции аминокислот с нингидрином в слабокислой среде с последующим превращением полученного в результате реакции синего производного — дикетогидринделидендикетогидриндиамина (ДИДА) в стабильное производное меди оранжево-красного цвета, имеющее максимум поглощения при 530 ммк. [c.117]


    Первичные а-аминокислоты реагируют с нингидрином , давая интенсивное фиолетовое окрашивание. Реакция осуществляется в две стадии. Первоначально аминокислота окисляется до низшего альдегида или кетона с выделением аммиака и диоксида углерода. Затем аммиак взаимодействует с продуктом восстановления нингидрина и с непрореагировавшей молекулой нингидрина, образуя фиолетовое соединение. Количественное образование вещества наряду с интенсивностью его окраски делает эту реакцию очень ценной. Она широко используется как для качественного определения аминокислот (например, как опрыскиватель при хроматографии), так и для количественной оценки с помощью спектрофотоыетрических методов. Метод обладает большой чувствительностью благодаря высокой [c.295]

    Анализ аминокислотного состава включает полный гидролиз исследуемого Б. или пептида и количеств, определение всех аминокислот в гидролизате. Для гидролиза обычно используют 5,7 н. водный р-р НС1, а при анализе содержания триптофана-4 н. метансульфоновую к-ту, содержащую 0,2% ЗЧ2-аминоэтил)индола, или кипячение со щелочью. Количеств, определение аминокислот в гидролизате проводят с помощью аминокислотного анализатора. В большинстве таких приборов смесь аминокислот разделяют на ионообменных колонках, детекцию осуществляют спектрофотометрически по р-ции с нингидрином или флуориметрически с использованием флуоре-скамина или о-фталевого диальдегида. В последнем случае можно анализировать до 0,1-0,05 нмоль аминокислоты. [c.250]

    На основе нингидриновой реакции были разработаны методы количественного определения аминокислот, в частности метод распределительной хроматографии на бумаге, впервые внедренный в 1944 г. (А. Мартин и Р. Синдж). Эта же реакция используется благодаря своей высокой чувствительности в автоматическом анализаторе аминокислот. Впервые такой прибор сконструировали Д. Шпакман, С. Мур и У. Стейн (рис. 1.7). После разделения смеси аминокислот в колонках, заполненных специальными ионообменными смолами (сульфополистирольный катионит), ток элюента из колонки поступает в смеситель, туда же поступает раствор нингидрина интенсивность образующейся окраски автоматически измеряется на фотоэлектроколориметре и регистрируется самописцем. Этот метод нашел широкое применение в клинической практике при исследовании крови, мочи, спинномозговой жидкости. С его помощью за 2—3 ч можно получить полную картину качественного состава аминокислот в биологи- [c.42]

    Новый метод анализа аминокислот быстро развивался. Появилась возможность с его помощью приступить к решению ряда сложных, казавшихся неразрешимыми проблем, и прежде всего проблёмы определения первичной структуры белков. Вскоре стало очевидным, что анализ аминокислот в его первоначальном варианте слишком трудоемок и недостаточно эффективен. Ввиду этого был поставлен ряд исследований по механизации трудоемких операций и совершенствованию организации эксперимента. Основной вклад в решение этих задач вновь внесла группа исследователей под руководством Мура и Стайна [4]. Благодаря проведению реакции аминокислот с нингидрином в проточном капиллярном реакторе и измерению интенсивности окраски на регистрирующем проточном фотометре трудоемкая обработка фракции была преобразована в непрерывный процесс. Таким образом, на основе аналитического метода был создан новый прибор — аминокислотный анализатор. Выпуск и дальнейшее усовершенствование этого прибора были предприняты промышленными фирмами. Последующие усилия были направлены на повышение эффективности и чувствительности анализа. Первое время причиной низкой эффективности прибора служила длительность элюирования. Основой для дальнейшей оптимизации процесса послужила теоретическая работа Гамильтона [5], в которой было показано, что повышения эффективности можно достигнуть путем увеличения скорости подачи элюента и уменьшения размеров зерен ионита. В результате многочисленных модификаций ионитов (а эта работа все еще продолжается) удалось более чем в 10 раз сократить время элюирования без снижения разрешения. Сокращение продолжительности анализа [c.306]

    Высокоэффективным методом разделения является сочетание электрофореза на бумаге с обычной хроматографией. При этом сначала через влажную бумагу, на которую нанесена смесь, пропускают ток высокого напряжения, а затем смесь хроматографируют с помощью подходящего растворителя в направлении, перпендикулярном направлению электрофореза. В результате достигается разделение первоначальной смеси в двух измерениях. Применение такого метода к продуктам ферментативного расщепления белков позволяет получить двухмерную картину, которую называют пептидной картой. Каждый белок дает характерную для него при каждом конкретном способе расщепления картину. Локализацию отдельных компонентов во многих случаях определяют с помощью специфических красителей. При определении аминокислот и пептидов в качестве такого красителя используют, например, нингидрин. Если производится элюция адсорбированных компонентов, то удобнее всего устанавливать их присутствие в элюате спектрофотометрически. Вероятно, наиболее тонким методом разделения белков следует считать иммуноэлектрофорез, при котором эффект достигается за счет использования различий в двух свойствах электрофоретической подвижности и иммунологической специфичности. [c.220]


    С-концевых аминокислот в этих соединениях Продукты реакции восстановления в среде Л/ -этилморфолина гидролизуются кислотой и полученные аминокислоты, а также аминоспирты, образовавшиеся из С-концевых аминокислот, разделяются с помощью бумажной хроматографии [1093, 1094]. Определение аминоспиртов методом бумажной хроматографии с помощью нингидрина как проявителя в смеси со значительно большими количествами различных аминокислот представляет значительные трудности. Однако можно провести разделение обоих компонентов, если продукты гидролиза обработать динитрофторбензолом согласно методу Зангера. При этом образуются Л/ -динитрофенильные производные аминокислот и аминоспиртов. Л/ -динитрофенильные производные аминоспиртов извлекаются из водных растворов щелочей диэтиловым эфиром, тогда как соответствующие производные аминокислот остаются в водной среде [1206, 1611]. [c.454]

    Количественное определение аминокислот. После получения хроматограмм количественно определять отдельные аминокислоты можно двумя методами при помощи нингидриновой реакции с метилцеллосольвом (мономе-тиловый эфир этиленгликоля) и по интенсивности окраски медных производных аминокислот с нингидрином. [c.42]

    Хантер и др. [186] предложили метод газохроматографического анализа, основанный на определении альдегидов, образующихся при взаимодействии аминокислот с нингидрином. Эти альдегиды можно также получить и с помощью других реагентов. Аминокислоты можно также хроматографировать в виде аминоспир-тов, аминов, нитрилов и т. д. 1[181]. Наиболее подходящими для газохроматографического анализа являются, однако, такие производные, в которых сохранены все функциональные группы, но их полярность уменьшена в результате модификации. В литературе описано большое число таких производных, а подробные методики их получения даны в превосходном руководстве Кнаппа, [187]. В настоящее время наиболее часто используются триме-тилсилильные производные и сложные эфиры ациламинокислот. [c.70]

    Тогда в случае необходимости можно было бы просто выразить остатки аминокислоты (а-аминоазот) в виде доли от общего количества аминокислотных остатков белка (общий а-аминоазот). Последний может быть определен с помощью метода нингидрин — СОг (исправленного на аспарагиновую кислоту) или методом Чибнела [176] (по разности определяемого общего азота и не-а-аминоазота), или другими подходящими методами (формольное титрование с поправкой и пр.). [c.61]

    К реакционной газовой хроматографии (в смысле определения Драверта и сотр.) должен быть отнесен также метод, разработанный Златкисом и сотр. (1958, 1960) для прямого определения алифатических аминокислот в водном растворе при применении двух реакторов (см. разд. 8.1.2). В нагреваемом до 140° реакторе I, заполненном нингидрином, сначала происходит окислительное разложение аминокислот до летучих альдегидов и двуокиси углерода. Продукты реакции разделяются в присоединенной последовательно колонке при комнатной температуре и переводятся в реактор II, заполненный никелем на кизельгуре. Это заполнение обеспечивает при 425° гидрогениза-ционное расщепление всех альдегидов до метана. Присоединяемая к реактору II короткая колонка с молекулярными ситами служит для абсорбции образующейся и захваченной из пробы воды. Отдельные аминокислоты затем определяются в виде пиков метана при помощи катарометра. Применением реактора II решается относительно простая задача газохроматографического анализа веществ, содержащих воду, тем более что метан в отличие от альдегидов легко высушить. Кроме того, превращение альдегидов в метан позволяет более просто количественно определять аминокислоты, так как специфическая для данных веществ теплопроводность остается всегда одинаковой и вследствие этого не нужно вводить поправочных коэффициентов в количественные результаты. Тот факт, что катарометр при обычной температуре может применяться для определения метана, положительно сказывается на чувствительности метода. [c.274]

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]

    Аминокислотный состав П. определяют после их гидролиза (кипячение в 6 и. НС1 в течение 20 ч) до составляющих аминокислот, к-рыс анализируют хромато-графич. методом на сульфокатионитах с автоматич. фотометрироваиием окрагиенных продуктов их взаимодействия с нингидрином. Для определения содержания триптофана применяют щелочной гидролиз пептидов (кипячение в 5 н. NaOH в течение 20 ч), т. к. кислотный гидролиз приводит к разрушению триптофана, а также частично серина и треонина. Глутаминовая к-та при гидролизе подвергается значительной рацемизации. Полиаминокислоты с объемистыми алкильными боковыми группами (валин, изовалин, изолейцин, лейцин) гидролизуются значительно медленнее остальных. Гидролиз П. до аминокислот моишо проводить п при помощи ферментов (трипсин, эрепсин). [c.15]

    В книге достаточно детально рассмотрены основные преимущества и недостатки классического метода определения аминокислотного состава белков с помощью ионообменной хроматографии по Муру и Стейну даны указания относительно выбора ионообменников, подготовки реактивов и численной интерпретации результатов. Значительное место также уделено изложению принципов анализа аминокислот методом газожидкостной хроматографии. Применение этого метода, обладающего на 2—3 порядка большей чувствительностью по сравнению с нингидринной реакцией по Муру и Стейну, позволяет значительно снизить количества белка, требуемые для определения его состава. Анализ аминокислот с помощью газожидкостной хроматографии пока еще не находит широкого применения, однако имеющиеся в ли-Фературе данные позволяют считать этот метод весьма перспективным. Кроме того, обсуждаются возможности использования газожидкостной хроматографии в сочетании с масс-спектромет-рией для определения состава и аминокислотной последовательности в пептидах. [c.4]

    Этерификацию можно контролировать с помощью тонкослойной хроматографии, так как отсутствие реакции с нингидрином указывает на ацилирование а-аминогруппы. Будучи полезной на первом этапе исследования, методика, однако, не является удовлетворительной для определения процента превращения малых количеств аминокислоты. Сравнение площадей пиков в ГХ аминокислот, прошедших все микроколиче-ственные синтетические операции, с пиками высокоочищенных стандартных образцов позволяет провести точную количественную оценку методики получения соответствующих производных [41, 84]. Намного труднее поставить опыты для доказательства того, что вещество устойчиво на колонке, а площадь регистрируемого пика действительно отвечает известному количеству аминокислоты. Большинство исследователей довольствовалось предположением, что пик правильной формы измеряет все количество аминокислоты, нанесенной на колонку. Частичное решение этой проблемы было предложено Блау [И], рекомендовавшим сравнивать площади пиков, полученных на выбранной фазе и на очень неполярных фазах (5Е-30). Для того чтобы компенсировать потери, связанные с обработкой или различными условиями ввода пробы, необходимо включать внутренний стандарт. В пламенно-ионизационных детекторах молярная интенсивность сигналов для всех аминокислот различна, но линейность интенсивности сигнала в нормальных рабочих пределах позволяет проводить количественное измерение неизвестных соединений, поэтому между ними существует прямо пропорциональная зависимость. Для вычисления молярных соотношений (например, в пептидном гидролизате) внутренний стандарт не требуется. Его нужно включать в одинаковой концентрации в стандартную анализируемую смесь в том случае, если нужно рассчитать абсолютное количество каждой аминокислоты (см. разд. обсуждение в работе [41]), [c.127]

    Хартел и Плеймикерс [112] использовали бумагу с четвертичными азотными группами для количественного определения цистеиновой кислоты в гидролизате белков. В восходящем методе хроматографии проявляли 0,34 М хлоруксусной кислотой. После проявления высушенную бумагу обрабатывали нингидрином для обнаружения красных пятен и с помощью денситометра определяли количество цистеиновой кислоты в пятне. По мнению авторов, ни одна из аминокислот, найденных в белке, не перекрывалась с цистеиновой кислотой. Точность метода была проверена авторами на шестнадцати определениях этой кислоты в гидролизате 1 г шерсти. Средние значения составили 1,25% при относительной средней ошибке 3%. [c.323]

    Визуальное колориметрическое определение количества аминокислоты производится следующим образом участок бумаги, содержащий аминокислоту, предварительно вырезают из бумажной хроматограммы, помещают в пробирку и обрабатывают раствором нингидрина. Экстрагированную и окрашенную нингидрином аминокислоту исследуют на количественное содержание нри помощи какого-либо колориметра. Следует отметить, что точность и чувствительность этого метода зависят от ряда условий температуры, при которой происходит нин-гидриновая реакция, количества воды, концентрации нингидрина, времени реакции, рП раствора. Поэтому, прежде чем приступить к колориметрированию растворов, необходимо исследовать влияние этих условий на ход количественного анализа, выбрать оптимальные условия и в дальнейшем проводить измерения только при этих вполне определенных условиях. Предельная чувствительность этого способа достигает 1 -]f. [c.152]

    Дженкинсон и Тинслей [19] идентифицировали с помощью хроматографии на бумаге состав аминокислот, гидролизат которых был получен в ходе изучения аминокислот растительного происхождения, выделенных из компоста. Десять мл гидролизата, содержавшего приблизительно 1 мг связанного азота, запаривали досуха при пониженном давлении, растворяли в 5 мл воды и снова упаривали досуха. Остаток растворяли в 1,5 мл воды и центрифугировали. Осветвленную жидкость в количестве 0,04 мл наносили на бумагу Ватман № 1. Разделение проводили элюентом, предложенным Вольфом [20]. Хроматограмму проявляли, окуная лист в 0,2%-ный раствор нингидрина в ацетоне. Были идентифицированы следующие аминокислоты цистеиновая, аспарагиновая, глутаминовая, лизин, аргинин, глицин, гистидин, серии, аланин, тирозин, пролин, валин, треонин, изолейцин, лейцин и фенилаланин. Метионин не поддавался определению, поскольку его трудно было отделить от глицина в описанных системах растворителей. Метио-нин-5-оксид тоже не отделялся от валина. Хроматограммы опускали в 0,1%-ный раствор изатина в ацетоне для обнаружения про-лина и подтверждения отсутствия оксипролина. Детектирование и определение содержания пептида с остатком лизина в середине цепи проводили с помощью 2,4-динитрофторбензола [21]. Эта реакция протекает, поскольку е-аминогруппа, в отличие от а-амино-группы лизина, свободна и может вступать в реакцию. [c.306]

    Если адсорбенты не содержат красителей, то положение соединений на пластинке определяют другими методами. При опрыскивании пластинок 50%-ным раствором серной кислоты и последующем их нагревании большинство соединений обугливается, в результате чего на пластинках в соответствующих местах проявляются коричневые пятна. Флуоресцирующие или поглощающие ультрафиолетовый свет соединения можно обнаружить, просматривая пластинки в УФ-свете. Ненасыщенные соединения хорошо окрашиваются в присутствии паров иода- Опрыскивание пластинок особыми красящими агентами вызывает окрашивание определенных соединений так, например, нингидрин применяется для идентификации аминокислот. Действие большинства таких красителей основано на специфических количественных цветных реакциях (разд. 5.3.2). При разделении радиоактивных веществ можно получать авторадиограммы пластинок местоположения компонентов определяют по темным пятнам на рентгеновской пленке. ИнЬгда пластинки просчитывают на счетчиках при помощи специальных сканирующих устройств. [c.72]


Смотреть страницы где упоминается термин Определение аминокислот при помощи нингидрина: [c.564]    [c.24]    [c.291]    [c.42]    [c.80]    [c.363]    [c.312]    [c.286]    [c.287]    [c.266]    [c.578]    [c.312]   
Смотреть главы в:

Методы химии белков -> Определение аминокислот при помощи нингидрина




ПОИСК





Смотрите так же термины и статьи:

Нингидрин



© 2024 chem21.info Реклама на сайте