Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикальные реакции цепной полимеризации

    Влияние различных факторов на процесс радикальной полимеризации и свойства получаемого полимера. Механизм большинства реакций цепной полимеризации гораздо сложнее рассмотренной простейшей системы. Однако, зная общие закономерности процесса, легче понять влияние различных факторов на течение и результаты конкретных реакций цепной полимеризации. [c.77]


    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Активными центрами в реакциях цепной полимеризации могут быть свободные радикалы и ионы. В соответствии с химической природой активных центров различают радикальную и ионную полимеризацию. [c.213]

    В отличие от радикальной полимеризации ионную полимеризацию можно регулировать, изменяя катализатор и среду, в которой протекает реакция. Ионная полимеризация, как и радикал).-ная, является цепной реакцией и состоит из нескольких элементарных актов. Г[роцесс протекает через образование ионов, содержащих трехвалентный углерод, заряженный положительно или отрицательно. В зависимости от знака заряда трехвалентного углерода различают катионную (карбониевую) или анионную (карбанионную) полимеризацию. Первоначально возникающий ион в процессе роста находится все время в поле соответствующего противоиона (иона, несущего противо- [c.133]

    Вторым шагом по пути решения проблемы глубокого крекинга должно явиться изучение взаимодействия продуктов между собой, что позволит включить в проблему крекинга комплекс вторичных реакций, как полимеризация, конденсация, ароматизация и др. Учет этих возмущений , так сказать, второго рода потребует выяснения связи между этой категорией вторичных процессов и реакциями радикально-цепного распада. Связь между этими процессами несомненно существует, так как полимеризация и другие названные процессы также, по-видимому, происходят по радикально-цепному механизму и поэтому могут инициироваться радикалами первичного крекинга, хотя высокие температуры крекинга менее благоприятны для реакций роста полимерных цепей. С другой стороны, крекинг самих олефинов, согласно концепции В. В. Воеводского, может происходить радикаль-но-цепным путем. [c.6]


    Активными центрами реакции цепной полимеризации могут быть свободные радикалы (электронейтральные частицы, имеющие неспаренный электрон) или ионы (положительно или отрицательно заряженные частицы). В зависимости от характера активных центров различают радикальную и ионную полимеризацию. [c.330]

    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    Активными центрами реакции цепной полимеризации могут быть свободные радикалы (электронейтральные частицы, имеющие один или два непарных электрона) или ионы (положительно или отрицательно заряженные частицы). В соответствии с характером активных центров различают радикальную и ионную полимеризацию. Методы возбуждения и механизм этих двух видов цепной полимеризации различны. [c.314]

    Активным центром в реакциях цепной полимеризации может быть свободный радикал или ион, в зависимости от чего различают радикальную и ионную полимеризацию. [c.40]

    Активным центром в реакциях цепной полимеризации может быть свободный радикал или ион. В зависимости от этого разли- чают радикальную и ионную полимеризацию. Существует много способов превращения мономера в первичный радикал. Это может происходить под влиянием тепловой энергии, света, ионизирующего излучения (а-, Р- и у-лучи), а также при введении в систему свободных радикалов или веществ, легко распадающихся на свободные радикалы (инициаторов). В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную полимеризацию и полимеризацию под влиянием химических инициаторов, в качестве которых применяют перекись бензоила, перекись водорода и др. [c.41]

    В промышленности для проведения цепной полимеризации используют совместное воздействие теплоты и химических агентов инициаторов или катализаторов. Инициаторы (в основном соединения перекисного характера органические перекиси, гидроперекиси и азосоединения) в течение реакции распадаются на реакционноспособные радикалы, которые входят в состав молекул полимера в виде конечных групп. Радикалы инициаторов возбуждают молекулы мономера в результате возникают радикалы мономеров, присоединяющиеся к радикальной цепи. Следовательно, радикальная полимеризация обязательно включает стадию образования свободных радикалов и последующий рост цепи полимера. [c.193]

    Цепные химические реакции могут ускоряться в присутствии малых количеств одних соединений (катализаторы) или тормозиться в присутствии других (ингибиторы). Об этом мы уже знаем из рассмотрения реакций цепной радикальной полимеризации мономеров (см. ч. 1). Аналогичные по химической природе соединения способны также ускорять или ингибировать и замедлять и цепные реакции окисления полимеров. [c.264]

    Чем отличается ионная цепная полимеризация от радикальной полимеризации Какие катализаторы применяют при катионной и анионной полимеризации Напишите схемы реакций цепной полимеризации для следующих соединений 1) СН2 = СН—С2Н5, [c.26]

    Составьте схему реакции цепной полимеризации пропилена. Приведите радикальный механизм этой реакции (три стадии) с участием перекиси ацетила. [c.38]

    Способность ДФПГ взаимодействовать с радикалами позволяет использовать его в качестве ингибитора таких радикальных реакций, как полимеризация и радикальное цепное окисление. ДФПГ используют в качестве одноэлектронного окислителя для окисления тиолов и фенолов. В качестве основного продукта окисления тиолов образуется дисульфид  [c.520]

    ОТ факторов, определяющих кинетику реакции. В зависимости от метода инициирования реакции цепной полимеризации различают два метода цепной полимеризации радикальную и ионную. [c.48]

    Синтез привитых сополимеров по реакции цепной полимеризации. Цепная полимеризация — один из наиболее широко распространенных методов синтеза высокомолекулярных соединений. В зависимости от характера активных центров, возникающих в процессе реакции, различают ионную и радикальную полимеризацию. [c.46]


    Из к и н е т и к и полимеризации [104] можно только тогда сделать вывод о механизме, если температурная зависимость скорости реакции цепной полимеризации, измеряемая скоростью роста полимера, известна настолько точно, что можно вычислить энергию активации и константу действия и затем сравнить эти величины со значениями для реакций, механизм которых известен. Этим путем для вызываемой ультрафиолетовым светом Я >2500 А фотополимеризации газообразного винилацетата при низких давлениях доказан радикально-цепной механизм полимеризации [305]. Однако такого рода доказательства можно дать только в исключительных случаях вследствие трудностей, связанных с необходимыми для этого точными измерениями. [c.555]

    В книге изложены некоторые термодинамические и кинетические методы решения задач количественной кинетики, рассмотрено их применение для расчета констант равновесия и скорости основных типов радикальных реакций, играющих важную роль в крекинге, полимеризации, окислении и других раднкально-цепных превращениях, даны примеры использо вания кинетических и термодинамических данных для выяснения механизма термических превращений углеводородов. [c.2]

    По числу участвующих мономеров различают гомополимеризацию (один вид мономера) и сополимеризацию (два и более видов мономеров). Полимеризация —самопроизвольный экзотермический процесс (Л0<0, Д//<0), так как разрыв двойных связей или циклов с образованием ординарных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т.д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зависимости от характера активных частиц различают радикальную и ионную полимеризации. [c.352]

    Радикальная полимеризация является цепным процессом. Инициатор радикальных реакций, добавленный к мономеру, в условиях полимеризации распадается на свободные радикалы. Образовавшийся радикал присоединяется к мономеру  [c.158]

    Ко второй группе реакций деструкции относятся цепные реакции деструкции, т. е. такие, при которых па один акт разрыва полимерной молекулы под действием какого-либо деструктирую-щего фактора приходится несколько актов распада цепей в других местах цепи. Как и цепная полимеризация, цепная деструкция может протекать по радикальному или ионному механизму. Инициирование цепной деструкции происходит под влиянием факторов, вызывающих образование радикалов или иоиов в цепях полимера (т. е. аналогично цепной полимеризации) под действием теплоты, света, излучений высоких энергий, а также химических веществ, распадающихся на свободные радикалы (пероксиды) или ионы. Цепная деполимеризация как частный случай цепной деструкции рассмотрена выше на примере деполимеризации полиметилметакрилата, содержащего двойные связи на концах макромолб1сул. Цепная деструкция протекает также при действии кислорода на полимеры (окислительная деструкция). [c.241]

    В соответствии с изложенным выше общая скорость реакции цепной радикальной полимеризации является алгебраической суммой скоростей трех ее стадий  [c.25]

    Магнитный полевой эффект может найти технологические применения как способ управления химическими реакциями. Например, уже приводились результаты, которые указывают на возможность контроля молекулярным весом полимерных молекул в процессе эмульсионной полимеризации с помощью магнитного поля. Можно думать, что есть обещающая перспектива в магнитном контроле цепными радикальными реакциями, в управлении длиной цепи с помощью внешнего магнитного поля, в управлении пределами воспламенения и др. [c.44]

    В зависимости от путей осуществления реакции цепная полимеризация подразделяется на радикальную или иници-нированную, ионную или каталитическую, гидролитическую и т. д. [c.283]

    Таким образом, несмотря на наличие некоторых общих черт у радикальной н ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных расту1цих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободнорадикальной полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакциоппоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры). [c.36]

    Полимеры можно получать не только реакциями цепной радикальной полимеризации, но и цепными реакциями, в которых растущая цепь является не свободным макрорадикалом, а макроионом. Такой способ получения полимеров называется ионной полимеризацией, а вещества, диссоциирующие на ионы и возбуждающие полимеризацию мономеров по ионному механизму, называются катализаторами. [c.48]

    Ионно-цепная полимеризация проходит со значительно большей скоростью, чем радикальная, поэтому своевременный отвод тепла, выделяющегося во время реакции, становится особенно трудным. Поскольку образование начальных ионов может происходить и при низких температурах, мономер охлаждают до минус 60—минус 80 °С еще до начала реакции, что предотвращает перегрев полимера хотя бы на первых стадиях процесса полимеризации. Однако при низких температурах вязкость раствора полимера в мономере быстро нарастает по мере повышения концентрации полимера, затрудняя дальнейший отвод тепла из глубинных слоев. [c.403]

    Кинетика радикальной полимеризации. Рассмотрим начальную стадию цепной полимеризации, т. е. стадию, когда степень превращения мономера в полимер невелика. По экспериментальным данным, на ранних стадиях процесса средняя степень полимеризации образующегося полимера остается постоянной, а время жизни растущих радикалов очень мало. На этой стадии полимеризации реакцией передачи цепи можно пренебречь, поскольку она протекает с заметной скоростью лишь при достаточно высоких степенях превращения. Поэтому для вывода кинетических уравнений можно воспользоваться принципом стационарного состояния Боденштейна. Сущность этого принципа заключается в следующем. В некоторый момент времени в системе начинают генерироваться со скоростью Va активные центры, концентрация которых [п] непрерывно возрастает. Одновременно активные центры исчезают в результате обрыва цепи со скоростью Uo6p, причем с увеличением концентрации активных центров скорость реакции обрыва цепн возрастает. В результате через некоторый промежуток времени устанавливается стационарная концентрация активных центров (число вo - [c.75]

    В связи с изложенным выше следует признать, что в гомогенных растворах реакция димеризации Pig в среде п-донорных веществ протекает по радикально-цепному механизму, сходному с тем, который предложен в работе [4]. Специфическое действие ге-донорных соединений проявляется, по-видимому, в том, что они комплексируют выделяющийся в реакции молекулярный иод, а также способствуют обрыву радикальных цепей, ведущих к продуктам полимеризации Pig. Действие иодид-иона и трифенил-вердазила сводится к инициированию радикальной реакции димеризации (полимеризации) PI3. [c.170]

    Исследование кинетики и термодинамики радикальных реакций имеет важное научное и практическое значение и является актуальным ввиду того, что многие химические превращения (крекинг, полимеризация, окисление и др.) протекают с участием радикалов или, как принято говорить,, по радикально-цепному механизму. Изучение физикохимических свойств радикалов и установление связи между их строением и реакционной способностью необходимо для вылсненил механизма названных превращений и решения задач автоматизации и оптимального управления химическим производством. [c.5]

    Цепная полимеризация, идущая с участием катионов, как правило, протекает по схеме, аналогичной описанной выше для радикальной полимеризации однако в этом случае реакционными частицами, обеспечиваюшими рост цепи, являются карбениевые ионы или иные положительно заряженные частицы. В зависимости от природы растущего катиона и его противоиона, от сольвати-рующей и ионстабилизирующей способности растворителя и температуры реакции в той или иной степени могут участвовать как свободные катионы, так и различные ионные пары. [c.305]

    Полимеризацией (см. гл. 3) называется такая химическая реакция, цри которой мономеры, содерЖ1ащие реакционноспособные двойные связи или мономеры циклического строения, путем последовательного присоединения образуют макромолекулы либо спонтанно, либо под воздействием инициаторов или катализаторов. Однако особенностью полимеризации являются не сам 1 стадии процесса црисоединения, а, скорее, его кинетика полимеризация представляет собой цепную реакцию. Различают цепную радикальную и цепную ионную полимеризацию ионная полимеризация может протекать по анионному и катионному механизмам. Процесс образования сравнительно низкомолекулярных продуктов называется олигомеризацией. [c.16]

    П.-особый тип цепных реакции в ней развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы. Процесс включает неск. осн. стадий, т. наз. элементарных актов инициирование-превращ. небольшой доли молекул мономера в активные центры под действием специально вводимых в-в (инициаторы радикальные и катализаторы полимеризации), излучения высоких энергий (радиационная полимеризация), света (фотополимеризация) или электрич. тока рост цепи-последоват. присоединение молекул мономера (М) к активному центру (М )  [c.637]

    В окисл.-восстановит. р-циях небольшая скорость м. б. обусловлена тем, что числа электронов, отдаваемых одной частицей восстановителя и принимаемых одной частицей окислителя, не совпадают. При этом катализатором м. б. частица, способная чпереключать одноэлектронный механизм р-ции на двухэлектронный (см. Окислительновосстановительный катализ). Большие возможности для Г. к. открываются при использ. в кач-ве катализаторов комплексных соед. переходных металлов (см. Катализ комплексными соединениями). А. Е. Шилов. ГОМОЛИТИЧЕСКИЕ РЕАКЦИИ, происходят в результате разрыва одной или неск. электронных пар, образующих хим. связь, и (или) образования новой связи при взаимод. частиц, каждая из к-рых обладает неспаренным электроном. В Г. р. участвуют или образуются атомы или своб. радикалы. Типичные Г. р. мономолекулярный и бимолекулярный распады молекул с образованием своб. радикалов р-ции отрыва, замещения и присоед. с участием своб. радикалов рекомбинация и диспропорционирование своб. радикалов. К Г. р. часто относят также окисл.-восстановит. р-ции с переносом одного электрона. При Г. р. атомов (радикалов) с молекулами выполняется принцип неуничтожимости своб. валентности. Г. р.— элементарные акты мн. цепных р-ций, вапр. радикальной и анионной полимеризации, хлорирования и нитрования алиф. соединений. L-ГОМОСЕРИН (Ь-а-амино-у-оксимасляная к-та) НОСН2СНгСН(ЫНг)СООН, крист. раств. в воде. Легко образует 7-лактон. Содержится в соке ряда растений, в белки не включается. Предшественник треонина. Биосинтез — последоват. восстановлением группы Э-СООН аспарагиновой к-ты. Получ. галогенированием и послед, аминированием бутиролактона. Образуется из метионина при специфич. расщеплении пептидной цепи белков бромцианом эта р-ция использ. для определения первичной структуры белка. [c.141]

    Благодаря этим свойствам перясиси ппфоко используются в качестве источников радакалов - инициаторов различных цепных радикальных реакций (в частности, промышленных процессов полимеризации). [c.65]

    Кроме того, в кислотно-основных каталитических реакциях катализаторы несомненно обменивают протоны с исходными веществами и растворителем, как показано в изотопных исследованиях с применением дейтерокислот или окиси дейтерия. При окислении окиси углерода или разложении закиси азота, катализируемом окислами металлов, применение подобным же образом указало на кислородный обмен между газами и поверхностью окислов [15]. При полимеризации замещенных олефинов типа изобутена, катализируемой трехфтористым бором с окисью дейтерия, присутствующей как сокатализатор , в полимере [16] возникают связи D — С эти реакции полимеризации протекают по ионному цепному механизму, и когда цепь обрывается, а построение молекулы полимера уже завершено, происходит регенерация катализатора, и сокатализатор содержит атомы водорода, перешедшие из мономера. Формально аналогичные свободно-радикальные реакции полимеризации ненасыщенных производных углеводородов можно инициировать фрагментами, получающимися при термическом разложении веществ типа перекиси бензоила и азо-бис-изобутиронитрила. Эти фрагменты действительно появляются в молекуле полимера, как было показано при использовании инициатора, меченного [17, 18]. [c.24]

    Период полупревращения для первой стадии реакции, определяющей скорость процесса, составляет примерно 20 час нри 120 и 1 час при 150. Б. п. применяется для генерирования радикалов, в частности для нннциировання цепной полимеризации и других радикальных реакций в интервале температур 120—150". [c.145]

    В кинетическом отношении процессы полимеризации характеризуются как реакции, обладающие цепным или каталитическим механизмом . Роль цепного механизма в процессах полимеризации была показана в работах С. С. Медведева. В качестве возбудителей (инициаторов) процесса применяют некоторые перекиси или катализаторы типа ВРз, А1С1з и др. Одни из них возбуждают образование из молекул мономера радикалов со свободной валентностью, и последующая полимеризация происходит через образование новых радикалов другие способствуют течению процесса через образование не радикалов, а ионов того или другого знака. В соответствии с этим различают радикальную и ионную полимеризации, с подразделением последней на катионную и анионную. [c.554]


Смотреть страницы где упоминается термин Радикальные реакции цепной полимеризации: [c.63]    [c.266]    [c.697]    [c.141]    [c.101]    [c.240]   
Введение в электронную теорию органических реакций (1977) -- [ c.621 , c.626 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация радикальная цепная

Полимеризация радикально-цепная

Радикальная полимеризация

Радикальные реакции

Радикальные реакции и реакции полимеризации

Радикальные реакции полимеризация

Реакции полимеризации

Цепная полимеризация

Цепные реакции

Цепные реакции Реакции цепные



© 2025 chem21.info Реклама на сайте