Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биологические мембраны Структура, свойства

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]


    Специфические свойства биологических мембран. Благодаря указанным особенностям биологические мембраны имеют присущие им характерные черты. Они образуют протяженные бислойные структуры малой толщины (6-10 нм), объединяющие белковые и липидные компоненты с различными свойствами. [c.302]

    ГЛАВА 1. БИОЛОГИЧЕСКИЕ МЕМБРАНЫ. СТРУКТУРА, СВОЙСТВА [c.8]

    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]

    В отношении разнообразия объектов исследования биофизика — одна из наиболее широких биологических дисциплин. Биофизики изучают физические свойства и явления на уровне сложных систем (например, организм — среда), отдельных органов, тканей, отдельных клеток, субклеточных структур, таких, например, как биологические мембраны или миофибриллы, на уровне макромолекул, например молекул белков или нуклеиновых кислот, и, наконец, на уровне электронной структуры биологически важных молекул. К области биофизики относят авиационную и космическую биомеханику или действие [c.5]


    В этой главе мы сначала рассмотрим фундаментальные термодинамические законы, в соответствии с которыми происходит распределение малых молекул по разные стороны полупроницаемой мембраны, и обсудим, как с их помощью можно подойти к рещению некоторых интересных проблем. Эти законы лежат в основе поведения всех полупроницаемых перегородок, в том числе и сложных биологических мембран. Затем мы рассмотрим свойства искусственных биологических мембран — фосфолипидных бислоев, с тем чтобы понять термодинамические принципы, в соответствии с которыми формируются такие слои, и чтобы установить взаимосвязь между структурой и функцией бислоев. Мы не ставим своей целью охватить сколько-нибудь существенную часть работ в этой области, а лишь суммируем основные принципы. Анализ свойств искусственных мембран поможет нам понять, как функционируют естественные биологические мембраны, о которых шла речь в гл. 4. [c.444]

    Изучение свойств бислоев служит основой для понимания строения биологических мембран. У биологической мембраны в бислой обычно погружены белковые молекулы. Это могут быть ферменты или рецепторы, специфичные для определенных молекул некоторые из них могут играть роль в активном транспорте или в регуляции проницаемости мембраны для отдельных веществ. Функционирование этих белков зависит от структурных и динамических свойств бислоев, описанных в настоящей главе. Более подробно структура и функции биологических мембран рассмотрены в гл. 4. [c.480]

    Биологические мембраны имеют, как правило, очень сложную структуру и отличаются сравнительно низкой устойчивостью к м-еханическим, химическим и электрическим воздействиям. Поэтому для изучения основных физико-химических свойств клеточных мембран широко используются различные искусственные системы, которые моделируют процессы, протекающие в биомембранах. Искусственные мембраны имеют довольно простую структуру и отличаются высокой устойчивостью, что позволяет широко варьировать условия проведения экспериментов и получать важную информацию о возможных механизмах функционирования биологических мембран. [c.127]

    Сравнивая рис. 105, а и 135, можно видеть, что биологическая мембрана представляет собой антипод оболочке мыльного пузыря. Это и неудивительно, так как клетка функционирует в жидкой среде, а мыльный пузырь живет в воздухе, удерживая воду внутри своей оболочки. В то же время периодическая слоистая структура, показанная на рис. 129, содержит в себе основной элемент мембраны — двойной липидный слой. А достаточно ли этого сходства, чтобы считать мембрану жидким кристаллом По-видимому, нет — ведь молекулы ее могут, в принципе, образовывать и кристаллическую упаковку, показанную на рис. 131. Были, однако, проведены специальные эксперименты (на искусственных двуслойных мембранах), показавшие, что длинные молекулярные хвосты внутри мембраны находятся в неупорядоченном состоянии, характерном для жидкого кристалла. В таких экспериментах используются специальные молекулярные метки, которые вводятся внутрь мембраны. Тонкие оптические и радиотехнические методы позво я-ют следить за движением этих меток и тем самым изучать свойства мембраны. Наблюдение за метками показало, что хвостатые молекулы фосфолипидов сравнительно свободно перемещаются вдоль поверхности мембраны, оста- [c.188]

    Берестовский с соавт. [121, 232] провел сравнение оптических свойств мембран нервных клеток и модифицированных черных пленок. При развитии потенциала действия в возбудимой биологической мембране наблюдаются изменения двулучепреломления, которые авторы работ [121, 232] связывают с изменением структуры мембраны. Такие же изменения двулучепреломления наблюдались у модифицированных пленок, имеющих М-образную вольтампер-ную характеристику на участке отрицательного сопротивления. Молекулярный механизм этих явлений не ясен. [c.169]

    Интерес к макроциклическим соединениям возник тогда, когда было обнаружено, что они подобны по своей структуре и свойствам природным биологически активным молекулам, таким как антибиотики, энзимы, рецепторы лекарственных препаратов, и способны к селективному комплексообразованию с ионами металлов и с различными низкомолекулярными соединениями [13-15]. Благодаря этому свойству они нашли широкое применение в качестве моделей ферментов при изучении рецептор-субстратного комплексообразования. Макроциклические лиганды играют значительную роль в таких биологических процессах, как иммунный ответ и транспорт через мембраны. Поэтому важность изучения их способности к узнаванию модельных биомолекул очевидна. Для обсуждения нами выбраны лиганды, имеющие диаметрально противоположные гидратационные свойства своих полостей. Это сделано с целью описать влияние сольватирующих свойств растворителя на термодинамику взаимодействия выбранных биомолекул, а также роль энтальпийно и энтропийно стабилизирующих вкладов на процесс комплексообразования. [c.189]


    Приведенные примеры указывают на важное биологическое значение олигомерных ассоциатов мембранных белков, состоящее в том, что при изменении физико-химических свойств мембраны соответственно изменяется и характер взаимодействия мембранных структур. Таким образом формируются обратные связи для приспособления обмена веществ к потребностям организма. [c.317]

    Молекулы белков — самые сложные из известных науке. Их биологически функциональная пространственная структура, а также структура надмолекулярных систем, содержащих белки (мембраны и др.), определяются как химическими связями в белковых цепях, так и целой гаммой слабых взаимодействий. Нативные белки никогда не являются статистическими клубками. Белковые глобулы — апериодические кристаллы сложной структуры. Это не-статистические, но динамические системы, своего рода машины,, поведение которых зависит от положения и свойств всех их элементов. Наряду с глобулярными существуют фибриллярные белки — сократительные и опорные. [c.88]

    Итак, нам предстоит выяснить еще очень многое о молекулярных компонентах и о свойствах энергопреобразующих мембран в митохондриях, бактериальных клетках и хлоропластах. Когда-нибудь, после проведения многих экспериментов и проверки новых идей, мы получим ответы на эти вопросы, но пока их у нас еще нет и виной тому в значительной мере сложная структура внутренней мембраны. Таков путь научного поиска исследователи строят свои гипотезы, отталкиваясь от экспериментальных наблюдений, а затем проверяют их вновь и вновь, чтобы удостовериться в том, что ни один обнаруженный факт не остался без надлежащего объяснения. В известном смысле можно сказать, что биологическое исследование по-настоящему никогда не кончается. Нередко то, что представлялось нам твердо установленным, оказывается всего лишь неким приближением к истине, только шагом на пути к лучшему пониманию, открывающемуся с появлением новых фактов и новых представлений. Исследование молекулярной логики живых клеток-поистине безграничная область. [c.533]

    Рассмотрены мембраны различных типов монолитные (непористые), пористые, жидкие и биологические (природные и синтетические), асимметричные и композиционные, а также области их применения. Подытожен опыт интенсивного развития мембранных процессов за последнюю четверть века. Основное внимание уделено влиянию структуры мембраны на характеристики различных мембранных процессов. Обсуждены особенности полимеров, определяющие свойства мембран. Даны рекомендации для изготовления мембран определенной структуры. [c.4]

    Как указывалось, в настоящее время известны биологические функции некоторых гликопротеинов лишь в некоторых случаях выяснена взаимосвязь между их молекулярной структурой и биологической функцией в других случаях, например для гонадотропина, пока еще неясно, каким образом содержащиеся в его молекуле углеводы влияют на гормональные свойства. Функции большинства гликопротеинов, в том числе и многих гликопротеинов плазмы, пока не установлены. Некоторые из этих веществ, несомненно, выполняют определенные функции в клетке. Например, они могут быть связаны с переносом воды или других соединений через клеточные мембраны. Эту функцию могут выполнять, очевидно, и многие кислые гликопротеины. [c.296]

    Ранее предполагалось, что свойства биологических мембран во многом определяются структурой именно липидного бислоя, так что общая замкнутая фаница живой клетки подобна мыльному пузырю. За последние 20 лет в результате детального исследования строения и подвижности компонентов, входящих в состав биологических мембран, произошли существенные изменения в представлениях о структуре и функциях клеточной мембраны. Функциональное значение липидного бислоя оказалось значительно шире, чем значение гидрофобной перегородки между внутренним пространством клетки и внешней средой. [c.110]

    При всех способах, которые сейчас применяют на практике для низкотемпературного консервирования биологических объектов, в них (на перечисленных выше этапах) происходят глубокие изменения, в том числе кардинальная перестройка структуры системы, изменение ее агрегатного состояния, состава и других физико-химических свойств. Основная масса повреждений клеточных структур в период замораживания прямо или косвенно связана с образованием кристаллов льда. Для того чтобы в первом приближении оценить, в каких крайне неблагоприятных условиях оказываются клетки (мембраны) при осуществлении процедуры их низкотемпературного консервирования, необходимо кратко рассмотреть некоторые физико-химические процессы, протекающие в консервируемой клеточной суспензии на этапе замораживания. [c.8]

    Перспективы развития мембранной технологии в большой мере связаны с надеждалП на воспромзведеннс и практическое использование свойств биологических мембран, важнейшим из которых является способность осуществлять селективный обмен молекулами различных веществ. Уже сейчас промышленность располагает значительным набором мембран с селективными свойствами. Однако разработка и использование селективных мембранных материалов сталкивается до сих пор со значительными трудностями. Это связано главным образом с тем, что механизмы проницаемости как биологических, так и многих искусственных мембран окончательно не выяснены и не существует общего подхода к их описанию. Создание универсальной математической модели, адекватно описывающей мембранный транспорт, осложняется разнообразием процессов переноса через мембраны. В биологических мембранах выделяется пассивный транспорт (обычная диффузия), активный транспорт (перенос вещества против градиента концентрации) и облегченная диффузия (перенос вещества по градиенту концентрации с аномально высокой скоростью). В формировании реального процесса переноса могут принимать участие все механизмы в различных соотношениях. Одной из характерных особенностей многих селективных мембран является аномальная зависимость потока переноса от градиента концентрации [30—32]. В силу специфических свойств мембран, больших трансмембранных градиентов и активного взаимодействия потока переноса со структурой мембраны наблюдаются значительные отклонения от закона Фика. При этом линейная зависимость потока переноса от градиента концентрации оказывается справедливой только для малых трансмембранных градиентов. Наблюдается замедление роста потока переноса или даже насыщение при больших значениях трансмембранного градиента. [c.123]

    До сих пор в центре нашего внимания были термодинамические аспекты образования мицелл и двойных слоев. Чтобы получить представление о структуре бислоя на молекулярном уровне и установить ее связь с функциями мембраны, необходимо использовать структурные и кинетические методы, которые позволяют понять особенности упаковки отдельных углеводородных цепей и их динамических свойств. Наиболее ценными методами являются рентгеноструктурный анализ, ЭПР и ЯМР. Результаты, полученные этими методами, позволили построить достаточно детальную модель липидных бислоев, которая лежит в основе наших представлений о функционировании природных биологических мембран. (В гл. 4 описана структура фосфолипидов, о которых пойдет речь ниже.) [c.462]

    Вторая группа пептидов гораздо более разнообразна структурно и Заключает в себе все соединения, содержащие две или более аминокислот, связанных амидной связью, но которые обладают некоторыми структурными свойствами, не характерными для белков. В нее входят такие необычные аминокислоты, которые не найдены в белках, как аминокислоты с D-конфигурацией или в более окисленном состоянии, связанные необычной амидной связью, например Глутамилпептиды, связанные сложноэфирной связью (депсипептиды), и различные циклические структуры. Эти пептиды в основном выделены из микроорганизмов, и многие из них обладают значительной биологической активностью. Некоторые из них токсичны для растений и животных, в то время как другие нащли применение в качестве антибактериальных, противоопухолевых и противовирусных агентов. Ионофорные пептиды нащли применение в качестве мощного средства при изучении транспорта ионов через природные и искусственные мембраны. Вероятно, в будущем с помощью более утонченных биологических эксперимен- [c.285]

    Жизнедеятельность клеток (и естественно, организма) во многом определяется структурой, физиологическими свойствами и функциональным состоянием их мембранных структур. Кроме обеспечения целостности и гетерогенности клетки мембраны принимают участие во всех физио-лого-биохимических процессах. Как справедливо отмечает акад. Е. М. Крепе, мембраны — это арена, на которой разыгрываются важнейшие биохимические, физические и химические процессы. Эти процессы проявляются в транспорте веществ, функционировании ферментативных комплексов, миграции энергии, синтезе белка, нуклеиновых кислот и делении клетки, восприятии энергии внешней среды и трансформации ее в энергию биологического возбуждения, передаче нервного импульса, дыхании, пищеварении, иммунитете, секреторной деятельности, узнавании и взаимодействии клеток и др. [c.9]

    По биологической роли мембранные белки разделяют на три группы обладающие ферментативными свойствами, специфически связывающие те или иные вещества (т. е. рецепторные) и структурные белки. Выражение структурный белок следует понимать не только как образующий структуру мембраны, но и как агент, структурирующий полиферментный комплекс, что было установлено, например, на мутантах Е. соИ. [c.29]

    Первые исследования свойств устойчивых черных липидных пленок в водной среде явились хорошим экспериментальным подтверждением гипотезы Даниэлли и Дэвсона согласно которой бимолекулярный липидный слой служит основным структурным элементом биологических мембран. Уже первое сравнение свойств черных пленок и биологических мембран показало их большое сходство. Так, черные углеводородные нленки и биологические мембраны дают подобные электронно-микроскопические фотографии при наблюдении их поперечных срезов (трехслойная структура), имеют близкие значения толш ин, удельной электрической емкости, водной проницаемости и т. д. [c.167]

    Глюкозо-6-фосфатаза — интегральный белок микросомальных мембран, Активный центр фермента обращен внутрь везикул, поэтому для полного выявления его активности и изучения кинетических свойств необходима обработка мембранного препарата поверхностноактивными веществами — детергентами. Детергенты представляют собой специальную группу липидов, относящихся к классу растворимых амфифиль-ных соединений, т. е. соединений, имеющих в своей структуре как гидрофильные, так и гидрофобные участки. В зависимости от пространственной структуры, соотношения гидрофильной и гидрофобной зон, наличия заряженных групп детергенты обладают различным характером действия на биологические мембраны от мягкого, вызывающего лишь дезориентацию структурных компонентов мембран, до значительно выраженной их солюбилизации и растворения мембран. [c.370]

    Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липвдное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физикохимические свойства упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее больщинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое димеры (Са -АТФаза), тетрамеры (Ка /К -АТФаза) или даже более высокоорганизованные надмолекулярные комплексы. [c.316]

    Структура и действие биологических мембран стали ключевым вопросом биофизики с тех пор, как стало ясно, что эти мембраны играют очень важную роль в функционировании биологических систем. Характерное свойство биологических мембран — их проницаемость для отдельных ионов. Почти все вещества, которые действуют как избирательные переносчики ионов в биологических системах, являются антибиотиками со структурой тетроли-дов или циклических депсипептидов они известмы как ионофоры. В их число входят, в частности, валиномицин и нонактин, описанные в разд. 1.3. [c.266]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Мембранология — современная, стремительно развивающаяся междисциплинарная область естественных наук, находящаяся на стыке биофизики, биохимии, молекулярной биологии, иммунологии, физиологии, генетики, физической и коллоидной химии и др. Она изучает состав, структуру, свойства, функции, локализацию компонентов биологических мембран, их молекулярную и динамическую организацию, особенности межмоле-кулярных взаимодействий и фазовые переходы липидов и белков в мембране, транспорт веществ через мембраны, участие биомембран в осуществлении и регулировании метаболических процессов в клетке, механизмы действия различных физико-химических факторов на мембранные системы и другие вопросы, связанные с исследованием состояния компонентов биомембран и отдельных клеток. [c.7]

    Биологические мембраны способны преобразовывать энергию в форму, необходимую клетке для осуществления метаболизма, механической работы, осмотических функций, выработки тепла для терморегуляции и ряда других энергетических процессов. Биомембраны, обладающие такими свойствами, называются энергопреобразующими. Они способны превращать химическую энергию или энергию квантов света в электрическую через формирование разности потенциалов (ДЧ ) и энергию разности концентрации веществ, содержащихся в разделенных мембраной растворах. К энергопреобразующим мембранам относятся следующие структуры клеток гетеротрофных животных внутренняя мембрана митохондрий, внутренняя (цитоплазматическая) мембрана бактерий, внешняя мембрана клеток эукариот, а также мембраны аутотрофов, способные преобразовывать энергию света, — мембрана бактериальных хроматофоров, тилакоидов хлоропластов и цианобактерий, вакуолярная мембрана (тонопласт) растений и грибов. [c.118]

    Несмотря на большие трудности, современная биофизика достигла крупных успехов в объяснении ряда биологических явлений. Мы узнали многое о строении и свойствах биологически функциональных молекул, о свойствах и механизмах действия клеточных структур, таких, как мембраны, биоэнергетические органоиды, механохимические системы. Успешно разрабатываются физико-математические модели биологических процессов, вплоть до онтогенеза и филогенеза. Реализованы общетеоретические подходы к явлениям жизни, основанные на термодинамике, теории информации, теории автоматического регулирования. Все эти вопросы будут с той или иной степенью детализации рассмотрены в книге. При этом, в соответствии с пониманием биофизики как физики явлении жизни, мы будем исходить из физических закономерностей, а не из физиологической классификации. Так, например, рецепция внешних воздействий органами чувств рассматривается в различных разделах книги — зрение в главе, посвященной фотобиологическим явлениям, слух и осязание в связи с механохпмическими процессами, обоняние — в связи с физикой молекулярного узнавания. [c.10]

    Мембранология как самостоятельная наука, изучающая строение, свойства, механизмы функционирования биологических мембран, сформировалась сравнительно недавно (1950—1970 гг.). Однако сам термин мембрана используется вот уже почти 150 лет для обозначения клеточной фаницы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой — полупроницаемой перегородкой, через которую могут проходить вода и растворенные в ней вещества. Однако мембраны представляют собой не только статически организованные поверхности раздела. Быстрое развитие биохимии мембран и прежде всего широкое исследование мембранных белков и липидов обусловили прогресс в понимании структуры и функций биологических мембран. [c.301]

    Использование мицелл в качестве систем, моделирующих мембраны и в связи с некоторыми аспектами энзимологии очень важно для биологических приложений. Сходство основных свойств структуры мембран и мицелл показано на рис. 1.1. В последние годы была установлена важная роль мицелл и смешанных мицепп в транспорте и адсор6щ и липидов и как солюбилизаторов холестерина в физиологических системах [13, 26, 38]. Самоассоциация и совместная ассоциация гидрофобных молекул в целом имеет огромное значение ДЛЯ многих физиологических молекул, пищевых ингредиентов и лекарств. [c.23]

    Плоские бислойные липидные мембраны. Липиды, спонтанно образующие ламеллярные слои, обычно способны формировать бислойные структуры (БЛМ или черные пленки) на небольших отверстиях в тонких гидрофобных материалах. Это явление впервые было описано О. Мюллером и соавторами (1962), которые получили БЛМ из фосфолипидов мозга на небольших отверстиях (0,5-5,0мм ) в тефлоновой перегородке, разделяющей две водные фазы. Доказав бислойность сформированных мембран, авторы с помощью простой электроизмерительной техники охарактеризовали важнейшие электрические параметры этих мембран. Относительная простота получения БЛМ, широкий спектр применения разнообразных электроизмерительных методов исследования, возможность изменять в широких пределах липидный состав БЛМ и состав омывающих растворов, включать в БЛМ разнообразные модификаторы барьерных свойств мембран, функционально активные элементы биологических мембран — все это быстро обеспечило этим искусственным мембранным системам центральное место в современной экспериментальной мембранологии. [c.15]

    Другими авторами [49] был предложен способ решения уравнений Ходжкина и Хаксли численными методами на ЭВМ без каких-либо упрощений также и для неустановившихся режимов проведения возбуждения по однородному волокну. Этот способ оказалось возможным применить и для моделирования процессов проведения возбуждения по геометрически (или функционально) нео 1ЮрЬдпому волокну. Уравнения Ходжкина — Хаксли описывают возбудимые свойства мембраны аксона кальмара. Однако сходство процессов возбуждеиия в различных биологических структурах, осуществляющихся посредством одних и тех же [c.23]

    Изучение физико-химических свойств мембран удобно проводить на моделях монослоев, которые получаются при нанесении липидов на поверхность воды. Повышение давления и уплотнение монослоя приводят к тому, что подвижность углеводородных цепочек уменьшается, их взаимодействие друг с другом растет, а полярные головки фиксируются на поверхности раздела фаз. В пределе происходит такое уплотнение монослоя, где плошадь поперечного сечения молекулы липида не зависит от длины углеводородной цепи. Монослой представляет собой лишь половину липидного бислоя мембраны, и более удобной моделью служат различные искусственные бислойные липидные мембраны (БЛМ). Плоские ламеллярные структуры, могут сливаться, образуя замкнутые везикулярные частицы (липосомы), в которых липидные бислои отделяют внутреннюю водную фазу от наружного раствора. В везикулярные частицы можно встраивать белковые молекулы и другие компоненты биологических мембран для изучения механизмов их функционирования в биомембранах. Плоские БЛМ используются для изучения барьерных функций, электромеханических характеристик, а также межмолекулярных взаимодействий в мембранах. Электростатические взаимодействия осуществляются между заряженными группами либо в пределах одного полуслоя (латеральные), либо между разными слоями (трансмембранные). Дисперсионные вандерваальсовы взаимодействия между поверхностями мембран обнаруживаются на расстояниях до 1000 А. Это значительно превышает расстояния, где проявляется [c.131]

    Полисахариды составляют большую и важную в биологическом отношении группу антигенов. Они входят в состав капсулы и клеточной стенки микробов, определяя их антигенную специфичность. Выраженными антигенными свойствами обладают полисахариды растительного пронсхождспия. Будучи составной частью цитоплазматической мембраны клеток животного происхождения, нолисахарнды играют важную роль в формировании их антигенной структуры. В меньшей степенн изучены антигенные свойства углеводных компонентов растворимых глобулярных белков. [c.39]

    Какое отношение имеют мыльные пузыри к развивающейся яйцеклетке Сходство кажется случайным, но на самом деле это далеко не так. Изоморфизм здесь имеет четкую химическую основу. Обсуждая химические функции клеточной мембраны. Де Дюв (De Duve, 1984) указывает Ряд важных свойств биологических мембран, а также мыльных пузырей объясняется структурой их липидных бимолекулярных слоев . Мыльный пузырь состоит из липидного бимолекулярного слоя. Мыла — это соли жирных кислот, молекулы которых называют амфифильными, потому что они состоят из гидрофобного хвоста и гидрофильной головки. Молекулы липидов биомембран (фосфолипидов) сложнее, но и они являются амфифильными. Биомембраны и мыльные пленки благодаря сходным химическим свойствам отличаются большой пластичностью. Они стремятся уравновесить поверхностное натяжение, принимая форму с минимальными объемом и поверхностью — сферическую, и выдерживают деформации, не разрываясь они стремятся образовывать замкнутые структуры. Разрезанный надвое мыльный пузырь, как и клетка, образует два меньших, но целых пузыря (рис. 10.10). [c.160]


Смотреть страницы где упоминается термин Биологические мембраны Структура, свойства: [c.59]    [c.171]    [c.17]    [c.215]    [c.39]    [c.65]    [c.349]    [c.254]    [c.378]    [c.413]    [c.148]   
Смотреть главы в:

Биофизика -> Биологические мембраны Структура, свойства




ПОИСК





Смотрите так же термины и статьи:

Мембрана биологическая

Свойства биологические



© 2024 chem21.info Реклама на сайте