Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация волн

    ГЛАВА 14. ВОЛНЫ В ОКЕАНАХ И МОРЯХ 50. Классификация волн [c.109]

    Границы каждой зоны характеризуются значениями избыточных давлений по фронту ударной волны (Ар) и, соответственно, безразмерным коэффициентом (К). Классификация зон приведена ниже  [c.272]

    Основные методы акустического неразрушающего контроля. Методы акустического контроля (АК) делят на две большие группы активные, использующие излучение и прием акустических колебаний и волн, и пассивные, основанные только на приеме колебаний и волн. В каждой группе выделяют методы, основанные на возникновении в объекте контроля бегущих и стоячих волн (или колебаний), объекта в целом или его части. На рис. B.I приведена классификация большинства рассматриваемых в литературе методов АК. В дальнейших разделах книги более подробно рассмотрены эти методы, а также другие методы, не вошедшие в схему рис. В.1. [c.8]


    Классификация спектроскопии по свойствам излучения. В порядке уменьшения энергии излучения различают -излучение, рентгеновское, ультрафиолетовое (УФ) и видимого диапазона, инфракрасное (ИК) излучение, радиоволны. Эн гию излучения характеризуют частотой (V), волновым числом (у) и длиной волны ( ), которые связаны соотношением [c.214]

    В этой главе будет произведена классификация различных типов бесконечных установившихся плоских одномерных, однородных при ж —>- + оо течений с экзотермическими химическими реакциями. В рамках этой классификации могут быть изучены волны дефлаграции (обычное горение) и детонации. В главах 5 и 6 описаны условия, в которых можно наблюдать эти волны в эксперименте там же проводится подробный анализ обеих типов волн. [c.38]

    Зоной разрушения считается площадь с границами, определяемыми радиусом К, центром которой является рассматриваемый технологический блок или наиболее вероятное место разгерметизации технологической системы. Границы каждой зоны характеризуются значениями избыточных давлений по фронту ударной волны ДР и безразмерным коэффициентом К для оценки степени разрушения зданий и сооружений. Классификация зон разрушений приведена в табл. 2.7. [c.88]

    Предварительная классификация кривых. В табл. 13 приведены данные для типичных кривых. Указанные ниже обобщения, касающиеся зависимости типа волны от строения [c.325]

    В основе всех спектроскопических методов лежит измерение зависимости интенсивности поглощения, испускания или рассеяния света веществом от частоты света (или длины волны). В оптической спектроскопии используются спектры поглощения в инфракрасной, видимой или ультрафиолетовой областях в, интервале длин волн от 10 1 до 10 см , а также спектры комбинационного рассеяния света и спектры люминесценции (менее важный и общий метод спектров люминесценции здесь не рассматривается). На рис. 70 приведена классификация спектров в зависимости от длины волны (или частоты). Разделение оптического спектра на эти участки связано с возможностями приборов, а также с природой поглощения света в разных областях. Для химиков-органиков наибольшее [c.607]

Таблица 11.2. Классификация методов спектрометрии по способам разделения волн Таблица 11.2. <a href="/info/1566703">Классификация методов спектрометрии</a> по <a href="/info/358990">способам разделения</a> волн

    Классификация дефекта, т.е. отнесение его к тому или иному виду (трещина, включение, непровар, пора и т.д.), является частным случаем решения общей задачи распознавания образов. Для классификации дефекта после его обнаружения необходимо получить дополнительную информацию о нем, для чего обычно изучают изменение информативных признаков эхо-сигнала при изменении условий контроля положения преобразователей, угла ввода УЗ-волн, частоты и др. Трещину, являющуюся плоским дефектом, можно отличить от объемного дефекта (например, поры, шлакового включения) по более направленному отраженному пучку, вследствие чего эхо-сигналы будут обнаруживаться в меньшей по размерам зоне на поверхности объекта контроля. [c.141]

    Г рафик показывает, что изотерма сорбции по форме близка к изотерме Лэнгмюра (тип I по классификации БЭТ). Кривая равновесия является выпуклой по отношению к оси парциальных давлений (концентраций) загрязнителя в газовой фазе. Это позволяет, в соответствии с рекомендациями [40], использовать с достаточной точностью метод расчета, основанный на допущении о постоянстве скорости волны адсорбции в слое адсорбента. Пересчитываем концентрации загрязнителя на концентрации стандартного вещества (в данном примере - бензола) по соотнощению [37]  [c.403]

    Правильнее этот вид химического анализа называть абсорбционным спектральным анализом, так как он, в сущности, основан на измерении ослабления светового потока, происходящего вследствие избирательного поглощения света определяемым веществом. Различают спектрофотометрический и фотометрический методы абсорбционного анализа. Спектрофотометрический метод основан на измерении в монохроматическом потоке света (света определенной длины волны). Фотометрический метод основан на измерениях в не строго монохроматическом пучке света. При такой классификации колориметрией называют метод, основанный на измерении в видимой части спектра. Однако очень часто термином колориметрия называют все методы определения концентрации вещества в растворе по поглощению света. В этом смысле колориметрия и рассматривается в настоящем руководстве. [c.11]

    В случае импульсных колебаний прием ультразвуковой волны может осуществляться как отдельным приемником, так и самим излучателем после отражения импульса от отражателя. Наиболее распространенными являются методы переменного и фиксированного расстояний между излучателем и приемником (или отражателем). Для жидких и твердых сред сравнительно реже применяются реверберационные методы. В соответствии с изложенной классификацией методов измерения затухания ультразвука в табл. 2-2 приведены основные характерные особенности методов. Знаком -Ь или — отмечается применимость или неприменимость этих особенностей. [c.136]

    На рис. 32.1—32.7 — приведены диаграммы энергетических уровней нейтральных атомов Ы, Н, Ыа, Не, К, Сб и Hg. На диаграммах указаны наиболее интенсивные переходы и соответствующие им длины волн А, НМ. в табл. 32.4—32.7 представлены наиболее яркие линии излучения благородных газов Ые, Аг, Кг и Хе и дана их классификация. При составлении диаграмм и таблиц использовались работы [5—7]. Звездочками отмечены линии, рекомендуемые в работе [3] в качестве стандартов длин воли. Символами и обозначены соответственно значения энергии нижнего и верхнего уровней, между которыми происходит переход. [c.654]

    Дальнейшая классификация стандартов длин в олн выделяется сравнительно небольшая группа линий класса А, длины волн которых воспроизводятся с высокой точностью. Они могут заменить первичный стандарт и тем облегчить интерферометрические измерения [c.661]

    Классификация спектрофотометров. Классификация автоматических спектрофотометров, работающих в видимой, ультрафиолетовой и ближней инфракрасной областях, по точности измерения длин волн и пропускания очень затруднительна вследствие большого разнообразия приборов и недостатка данных, приводимых в каталогах. По фотометрической точности лучшие и худшие приборы отличаются в 2—4 раза (от 0,5—1,0 до 1—2%) при воспроизводимости по пропусканию равной приблизительно половине ошибки измерения пропускания. По разрешению классификацию следует давать раздельно для призменных и дифракционных приборов, причем всю упомянутую выше спектральную область следует разбить на ряд отдельных спектральных диапазонов. Для видимой области условно можно считать приборами первого класса приборы с разрешающей силой равной 4000 при длине волны 4000 А, приборами второго, третьего, четвертого и пятого классов — приборы с разрешающей силой равной 2000, 1000, 500 и 250 соответственно при той же длине волны (табл. 30.1). [c.252]

    Нормальная импульсная полярография. Вышеприведенные уравнения и обсуждение показывают, что диагностические критерии обратимости в нормальной импульсной полярографии подобны критериям в постояннотоковой полярографии. Так, графики Е—lg[(ii—1)/1] в нормальной импульсной полярографии должны быть прямолинейными и иметь наклон 2,303 кТ1пЕ. Для необратимого восстановления в нормальной импульсной полярографии 1/2, как это следует из уравнения (6.6), является функцией значит, периоду капания, который определяет временную шкалу в постояннотоковой полярографии, в нормальной импульсной полярографии эквивалентен параметр tm Поэтому классификация волн на обратимые, квазиобратимые и необратимые одинаково применима и к классическим, и к импульсным полярографическим волнам. Однако степень обратимости данного электродного процесса может быть различной в том смысле, что реакция, обратимая в постояннотоковой полярографии, может оказаться квазиобратимой при исследовании ее методом импульсной полярографии, а квазиобратимая — как полностью необратимая вследствие более короткой временной шкалы в импульсной полярографии. Однако нормальная импульсная полярография обладает некоторыми уникальными особенностями, которые не имеют прямой аналогии с постояннотоковой полярографией, и они позволяют легко охарактеризовать обратимость электродного процесса. Это достигается в методе импульсной полярографии с обращением развертки потенциала [29]. [c.406]


    Елассификация режимов по волне огибающей. Для понимания процедуры классификации волну огибающей одномерного волнового пакета (рис. 6.4) и одну из его составляющих представим в виде [c.404]

    Однако в определенном смысле подобные исследования ограничены. Они дают значительные расхождения в результатах даже при соответствующем соотнесении уровня избыточного давления и расстояния от места взрыва (для зарядов ВВ различной мощности, или, что то же самое, с учетом импульса положительной фазы воздушной ударной волны. - Перев.) в случае плоского открытого пространства. Таким образом, даже для этой наиболее "научной" области исследований находимые зависимости имеют статистическую природу, что и иллюстрируется в работе [Baker, 1973]. Сложности увеличиваются, когда исследование затрагивает взаимосвязь уровня избыточного давления и степени разрушения. Так, например, едва ли можно считать здание калиброванным научным инструментом, хотя оно содержит в себе множество структурных элементов, обладающих различной способностью выдерживать избыточное давление. К сожалению, здания могут значительно различаться по строительным нормам. Большая разница может быть между изолированным зданием, находящимся в зоне военных действий, и зданием, расположенным на улице города. К тому же как точно можно выразить степень разрушения В работе [Неа1у,1965] представлена классификация разрушения жилых домов, существовавшая во время второй мировой войны, - от категории А (полное [c.288]

    Здесь необходимо сделать несколько существенных замечаний. Во-первых, во избежание путаницы при классификации взрывов на "ограниченные" и "неограниченные" целесообразно основываться на различии в физической стороне этих процессов. Для "ограниченного" взрыва характерно значительное увеличение давления в смеси даже при относительно низкой скорости химического превращения, что может иметь место только при большой степени ограниченности пространства - взрывы в замкнутых сосудах, помещениях и т. д. Взрывы паровых облаков в условиях промышленной застройки следует рассматривать как "неограниченные , но с большим количеством препятствий, способных приводить лишь к локальному росту давления и турбулизации течения. Во-вторых, дефлаграционные процессы с высокими видимыми скоростями пламени (свыше 100 м/с) также являются взрывами, поскольку они приводят к формированию воздушных ударных волн. В-третьих, возникновение мощных взрывных процессов (вплоть до детонации) в паровых облаках не обязательно требует ограничения пространства и мощных источников инициирования. Неоднородность температуры и/или концентрации смеси, центры турбулизации могут являться причиной появления таких процессов. Подобный сценарий событий тем вероятнее, чем больше облако [Гельфанд, 1988 Berman, 1986]. - Прим. ред. [c.302]

    Для опытов использовали три фракции угля со средним диаметром частиц 0,35 0,53 и 0,71 мм, полученных путем классификации угля на виброфракцион-ной установке. Уголь предварительно отмывался от пыли и в виде суспензии загружался в колонки с целью предотвращения попадания воздуха м жду гранулами угля. Б процессе опыта отбирались пробы сточных вод, цветность которых определялась на лабораторном фотоэлектрическом нефелометре (по калибровочной кривой, выражающей зависимость оптической плотности от концентрации пла-тино-кобальтового раствора нри определенной длине волны) и выражалась в ПКШ. [c.486]

    Классификация отходов проводится по ряду признаков. Наиболее общим является деление по форме материальной субстанции, в которой они находятся. По этому признаку отходы разделяют на веи ествен-ные и энергетические. К последним относятся механические колебания и волны, электромагнитные поля (Авт. Экология...). [c.8]

    К сожалению, экспрессный способ магнитного контроля дефектности алмазов пондермоторным методом не всегда пригоден для классификации синтетических алмазов по качеству, так как экспериментально установлено, что часть макровключений в объеме кристаллов не проявляет ферромагнитных свойств. Поэтому с точки зрения контроля общей дефектности алмазов наиболее универсальным представляется метод измерения диэлектрических параметров кристаллов в СВЧ диапазоне—метод малых возмущений. Причем применение резонаторов с типом волны ою наиболее целесообразно при изучении объектов, содержащих ферромагнитные включения, так как при этом упрощается математический аппарат для обработки экспериментальных данных и повышается точность измерений. [c.450]

    Исторически первыми для целей неразрушающего контроля бьши использованы упругие волны ультразвуковых частот (> 20 кГц). Поэтому естественно появились термины "ультразвуковой метод" и их производные. Однако в дальнейшем были разработаны и широко внедрены методы, основанные на применении более низких частот звукового диапазона (метод собственных колебаний, импедансный метод и др.), которые не охватьшаются термином "ультразвуковой контроль". Для устранения этого противоречия в принятом в 1979 г. ГОСТ 18353-79, регламентирующем классификацию видов и методов неразрушающего контроля, термин "ультразвуковой контроль" и его производные заменены более общим термином "акустический контроль", включающим в себя упругие колебания любых частот. При этом термин "ультразвуковой контроль" сохранен, но имеет уже более узкий смысл, распространяясь на случаи использования частот только ультразвукового диапазона. Принятая в ГОСТ 18353-79 терминология широко использована во всех последующих отечественных публикациях. [c.9]

    В этой книге рассмотрено применение акустических колебаний и волн в качестве средства контроля материалов. В этот том вошли все методы контроля материалов и изделий с помощью акустических (упругих) колебаний и волн, за исключением акустико-эмиссионного, виб-ро- и шумодиагностических, описанных в других томах. Эти методы упомянуты лишь в общей классификации методов акустического контроля. Наиболее полно [c.9]

    Классификация методов спектрометрии баз1фуегся на двух основных признаках — числе каналов и физических методах выделения Я в пространстве или времени. Наиболее распространенными являются методы пространственного разделения Я (селективной фильтрации), которые называются классическими. Контуры шириной ЗЛ символически изображают аппаратные функции. В одноканальных методах применяют сканирование (символ ->), в многоканальных сканирование отсутствует и измерение интенсивности излучения длин волн Я, Я", Я " щюизво-дится одновременно. [c.210]

    В ряде случаев системы АЭ обеспечены специализированными профаммными средствами для классификации источников АЭ, профаммы обработки данных для диагностики фубопроводов, резервуаров, сосудов и других объектов, профаммы регисфации и анализа формы волн. Применение метода АЭ в качестве инсфумента исследований физики и механики разрушения, метода [c.327]

    Сильное коротковолновое излучение водородных пламен впервые обнаружил Стокс еще, в 1852 г., а полосатый ультрафиолетовый спектр сфотографировали независимо друг от друга в- 1880 г. Лайви нг и Дюар, а также Югинс (1924 г.). Детальный анализ вращательной структуры полос, выполненный Уатсоном (1924 г.) и Джеком (1928 г.), показал, что полосы соответствуют электронному переходу в двухатомной молекуле с небольшим моментом инерции. Единственно возможной частицей, ответственной за это излучение, является гидроксильный радикал ОН. Бонгоффер обнаружил радикал 0Н при введении атомного водорода в кислород (1926 г.) и в парах воды, нагретых до 1000—1600°С (1928 г.). Полный анализ спектра радикала 0Н был проведен в 1948 г. Дике и Кроосуайтом, которые дали классификацию всех полос и ветвей и определили длины волн и интенсивности вращательных линий радикала 0Н, наблюдаемых в спектре водород-кислород-ного пламени в области от 281,1 до 354,6 нм. Позднее получили запись спектра радикала 0Н в области 260—352 м [37]. Полосы ОН могут быть легко получены в спектре поглощения. После того как Кондратьевым и Зискиным в 1936 г. был разработан чувствительный спектроскопический метод линейчатого поглощения, стало возможным экспериментальное определение концентрации гидроксильного радикала в пламени. Гидроксильный радикал был обнаружен в пламени водорода также масс-спектроскопическим методом [38] и методом ЭПР [39]. [c.123]

    Исходя из этой классификации, детонацию, в которой можно нренеб-регать диффузией и теплопроводностью через фронт ударной волны, следует отнести к специальному виду самоеоспламененая, распространяющегося от динамического сжатия. [c.4]

    Классификация диаграмм оптической плотности в квазидвойных системах [3], относящаяся к методу изомолярных серий и к определенной длине волны, предусматривает два основных типа изотерм (рис. XXVII.7), первый из которых (а) характеризует поглощение окрашенного продукта присоединения, характеризующегося бесконечно большой константой равновесия (сингулярная изотерма) второй тип изотерм (б) отвечает случаю, когда реакция образования продукта присоединения протекает не до конца. В последнем случае величина оптической плотности О может быть найдена по точке пересечения касательных, проведенных к точкам кривой в самых начальных ее участках. Тогда степень диссоциации продукта присоединения связана с оптической плотностью простым соотношением [c.425]

    Спектрофотомётрический метод основан на измерении в монохроматическом потоке света (света определенной длины волны). Фотометрический метод основан на измерениях в не строго монохроматическом пучке света. Под колориметрией при такой классификации подразумевают метод, основанный на измерении в видимой части спектра. Однако очень часто термином колориметрия называют все методы определения концентрации вещества в растворе по поглощению света. В этом смысле колориметрия и рассматривается в настоящем руководстве. [c.8]

    Классификация переходов. В ближней УФ-области (200— 400 нм) и видимой области (400—800 нм) значительное поглощение наблюдается главным образом у двух классов соединений. Ими являются сопряженные (в основном органические) соединения и комплексные соединения, в которых в качестве центрального атома выступает ион переходного элемента. В соединениях первого типа поглощение света обусловлено, как правило, переходами между связывающими (л) и разрыхляющими (я ) МО, а также переходами между несвязывающими АО (которые имеются, например, у атома азота в пиридине) и л -орбиталями. Такие переходы принято называть соответственно я->-я -(или Ы У) и п->л -(или Л ->Р)-переходами (см. рис. 13.35, а). Переходы двух указанных типов можно различить экспериментально, например путем изучения влияния относительной диэлектрической проницаемости растворителя на положение полос поглощения. В то время как возрастание относительной диэлектрической проницаемости (например, при переходе от гексана к воде) вызывает сравнительно большой сдвиг в сторону меньших длин волн (гипсохромный сдвиг от 20 до 40 нм) л-+я -полос, для л->п -полос обнаруживается небольшой сдвиг в сторону больших длин волн (батохромный сдвиг, от 3 до 10 нм). Кроме того, интенсивность /г —> я -полос оказывается меньшей [е 10ч- 1000 л/(моль-см)], чем интенсивность я->я -полос [е а 500— 100 000 л/(моль-см)]. [c.385]

    По-видимому, двумя наиболее существенными свойствами, которые могут быть использованы для определения относительных конфигураций, являются вращательная дисперсия и растворимость, т. е. характеристики, использованные первоначально Матье и Вернером. Этот метод может быть легко иллюстрирован примером одной недавней работы. 1-цис-[Соап Л У реагирует со смесью этанола и фтористого водорода (1 1) в присутствии карбоната серебра с образованием (1-цис-[Совп ] [166]. Предполагается, что при асимметрическом синтезе конфигурация сохраняется, так как кривые вращательной дисперсии реагента и продукта реакции очень похожи друг на друга (рис. 26). На рисунке видно также, что, хотя хлористое соединение является правовращающим в отношении линии натрия (590 Л1[д,), оно является левовращающим в отношении красной линии кадмия (644 жц), и, поскольку Вернер использовал в своих первых исследованиях линию кадмия, он приписал комплексу конфигурацию /-формы. Это указывает на необходимость при классификации оптических й- или г-изомеров [или (- -) или (—)] обязательно указывать длину волны. [c.199]

    В принципе можно выделить четыре наиболее вероятных случая, которые встречаются при спектрофотометрическом исследовании образования комплексов состава 1 1 а) молярные коэффициенты погашения М, Ь и МЬ известны или их можно легко определить б) известны молярные коэффициенты погашения каких-либо двух частиц из трех (М, Ь и МЬ), присутствующих в растворе в) известен молярный коэффициент погашения только одной из трех частиц, присутствующих в растворе г) молярные коэффициенты погашения ни одной из частиц не известны. При такой классификации считается, что молярные коэффициенты частиц, не поглощающих при рабочей длине волны, известны. Для случая (а) имеется простое алгебраическое решение. Для случая (б) предложены два метода обработки данных метод экстраполяции прямой линии, по наклону которой и отрезку, отсекаемому на оси, можно рассчитать константу устойчивости и неизвестный молярный коэффициент погашения [12], и метод последовательного приближения, который обсуждается в разд. 9.2. применительно к данным по химическим сдвигам, полученным при ЯМР-спектральных исследованиях [13]. Два примера по применению экстраполяционного метода приведены в гл. 12 при обсуждении третьего примера исследования. Для случая (в) также применимы итерационные методы обработки данных [14], хотя константу устойчивости можно рассчитать ариф-гметически, подобрав соответствующим образом экспериментальные условия [12]. Для системы, соответствующей случаю (г), [c.136]

    Для предприятий, их отдельных зданий и сооружений с технологическими процессами, являющимися источниками производственных вредностей, в зависимости от мощности, условий осуществления технологического процесса, характера и количества выделяемых в окружающую среду вредных и неприятно пахнущих веществ, создаваемого шума, вибраций, электромагнитных волн радиочастот, ультразвука и других вредных факторов, а также с учетом предусматриваемых мер по уменьшению неблагоприятного влияния их на окружающую среду и обеснечиваюищх соблюдение требований разделов 9—14 настоящих норм в соответствии с санитарной классификацией предприятий, производств и объектов, устанавливаются следующие размеры санитарио-защитны с зон для предприятий  [c.13]

    Применяемые системы обозначения электронных полос спектров поглощения в ароматическом ряду весьма удобны для интерпретации электронных спектров соответствующих гетероароматических молекул. Согласно классификации Клара [34], ароматические углеводороды дают три главных типа полос поглощения, обозначаемых как а-, р- и р-полосы. Интенсивность а-полос невелика (емакс 10 ) и сравнима с интенсивностью — -я полос азинов, но, в отличие от последних, на а-полосах почти не сказывается влияние растворителя. р-Полосы обладают средней интенсивностью (Емако 10 ). Они сильно смещзются в длинноволновую область с линейным аннелированием и образованием полиаценов, в то время как ангулярное аннелирование вызывает лишь слабое смещение. р-Полосы обладают высокой интенсивностью (вмакс 10 ) и, подобно а-полосам, они умеренно смещаются в сторону больших длин волн как при линейном, так и при ангулярном анне-лировании. Обычный порядок длин волн а>р>Р, но в полиаценах а-полоса маскируется р-полосой и обнаруживается между р- и р-полосами. В спектрах многоядерных углеводородов имеется вторая область интенсивного поглощения (Р ), расположенная в коротковолновой части системы а-р-р-полос, а в длинноволновой части этой системы в спектрах большого числа ароматических [c.350]

    Если вектор к направлен вдоль высокосимметричного направления (к примеру, вдоль оси симметрии четвертого порядка), то возникают одно продольное колебание, вектор е которого параллелен квазиволновому вектору, и два поперечных, векторы поляризации которых перпендикулярны вектору к. При произвольном направлении квазиволнового вектора столь простая классификация возможных типов поляризации волн нарушается остается лишь взаимная ортогональность трех векторов поляризации (1.29). При наличии нескольких высокосимметричных направлений в кристалле колебание одной и той же ветви, отвечающее определенному значению индекса а, может проявлять себя либо как поперечное, либо как продольное в зависимости от направления вектора 4 . [c.34]


Смотреть страницы где упоминается термин Классификация волн: [c.332]    [c.125]    [c.25]    [c.373]    [c.25]    [c.198]    [c.356]    [c.416]    [c.273]    [c.625]   
Смотреть главы в:

Общая гидрология Изд.2 -> Классификация волн




ПОИСК







© 2025 chem21.info Реклама на сайте