Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Снова о поглощении

    Прокаленные катализаторы не обладают активностью по отношению к этим реакциям, и скорости реакции сильно зависят от количества воды [НгО или DgO в опытах с обменом], снова поглощенного катализатором острый максимум был найден для очень малых количеств (например, для 0,05%). Это можно истолковать как указание на роль бренстедовской кислотности (разд. И.З.Б). [c.176]


    Реабсорбция. Обычно наибольшее значение для аналитических задач имеет уширение спектральных линий, связанное с тем, что кванты, излученные внутренними частями плазмы, могут быть поглощены внешними ее частями. Рассмотрим этот процесс более детально. Допустим, что мы имеем однородную сферическую плазму, состоящую из атомов одного сорта, п наблюдаем ее свечение вдоль линии АВ (рис. 4). Квант, излученный в точке А в направлении В, может дойти до наблюдателя, но может оказаться поглощенным в какой-либо точке (напрпмер, С). Однако результатом поглощения кванта может быть только переход атома в верхнее возбужденное состояние, следствием чего будет новый акт излучения теперь уже из точки С (считаем атомы покоящимися) и не обязательно в направлении В. Судьба вторично излученного кванта может быть различной он может быть снова поглощен плазмой, либо [c.27]

    При этом поступают следующим образом. Прежде всего взвешивают в бюксе на технических весах около 2—3 г кристаллического К1 и растворяют его в возможно меньшем количестве воды. После того как раствор примет температуру окружающей среды (при растворении К1 происходит поглощение тепла), закрыв бюкс крышкой, точно взвешивают его на аналитических весах. После этого в вытяжном шкафу пересыпают с часового стекла в бюкс с раствором необходимое количество ( 0,6 г) возогнанного иода н снова, сейчас же закрыв крышку, точно взвешивают бюкс. Разность между результатами обоих взвешиваний дает величину навески иода. Осторожным перемешиванием раствора в закрытом бюксе добиваются полного растворения кристаллов иода , после чего переливают раствор через воронку в мерную колбу емкостью 250 мл. Тщательно смывают туда же остатки раствора из бюкса и с воронки, разбавляют раствор водой до метки и, закрыв колбу стеклянной пробкой, хорошо перемешивают его. [c.403]

    Затем приступают к поглощению О 2 щелочным раствором пирогаллола в сосуде 4. Реакция поглощения О2 идет крайне медленно, и требуется многократное перекачивание газа из сосуда в бюретку, причем желательно, чтобы температура раствора была не ниже 16° С. При более низкой температуре поглотительная способность раствора резко падает. После первых 5—6 качаний делают замер, затем после стольких же качаний снова замеряют и т. д. Поглощение считается законченным при достижении постоянного объема, который записывается в рабочую тетрадь. [c.245]

    В данном случае нас не интересует характер различных взаимодействий. Достаточно представлять разницу между рассеянием и поглощением. Если нейтрон при первом столкновении рассеется, он потеряет часть энергии и изменит направление своего движения. При этом имеется определенная вероятность того, что, двигаясь в этом новом направлении, нейтрон либо достигнет границ и покинет систему, либо снова столкнется с ядром, в результате чего произойдет его поглощение или рассеяние с соответствующей потерей энергии п изменением направления движения. Траектория отдельного нейтрона в пространстве имеет вид сложной ломаной линии, которая имеет начало в точке, где нейтрон родился, и конец в точке, где он будет поглощен или покинет пределы реактора (рпс. 2.1). [c.24]


    Сравнением этого уравнения с (13.29) можно установить в уравнении для вычисления сопряженной плотности замедления, что, кроме изменения знака при производной, спектр деления и сечение деления поменялись местами. Нахождение сопряженной плотности замедления походит на обратное вычисление плотности замедления вычисление сопряженной функции начинается с тепловых энергий, где она имеет наибольшее значение, причем сечение деления играет роль источника. Сопряженные нейтроны как бы следуют затем вверх по энергии (из-за отрицательной производной) с потерями, обусловленными поглощением точно так же, как и в случае плотности замедления. При больших энергиях величина произведения спектра деления на сопряженную функцию определяет число сопряженных нейтронов , начинающих свой путь снова из тепловой области. Это свойство летаргии сопряженных функций дало повод к использованию выражения прямой счет в случае вычисления плотности замедления или потока с помощью уравнения замедления (13.29) в противоположность обратному счету для сопряженной функции согласно уравнению (13.37). [c.572]

    Передача тепла лучеиспусканием происходит путем переноса энергии в виде электромагнитных волн. В этом случае тепловая энергия превращается в лучистую энергию (излучение), которая проходит через пространство и затем снова превращается в тепловую при поглощении энергии другим телом (поглощение). [c.364]

    В дальнейшем рассматривается лишь так называемое тепловое излучение, которому соответствуют длины волн от 0,4 до 40 мк. Такие лучи поглощаются телами, причем при поглощении их лучистая энергия снова переходит в тепловую. [c.402]

    Для проведения адсорбции непрерывным способом применяют установки, состоящие из двух или более адсорберов, которые поочередно включаются для адсорбции газа. На установке из двух адсорберов (рис. 20-6) после насыщения адсорбента в адсорбере / подачу газа переключают в адсорбер 2, а в адсорбере / проводят десорбцию, сушку и охлаждение, после чего адсорбер I снова переключают на цикл поглощения, а адсорбер 2 —на десорбцию, сушку и охлаждение. При таком переключении достигается непрерывная адсорбция газа (хотя каждый из адсорберов работает периодически), так как все циклы процесса в адсорберах проводятся последовательно друг за другом. [c.723]

    Исследования показали, что основным источником канцерогенности газойля каталитического крекинга является наиболее высокомолекулярная его часть, выкипающая нри температуре выше 370° С. Канцерогенная активность газойлей каталитического крекинга возрастает пропорционально увеличению содержания в нем тяжелой фракции (выше 370 С). Каталитическое гидрирование фракции газойля каталитического крекинга, выкипающей выше 370° С, сопровождалось резким снижением ее канцерогенности. Когда поглощение водорода фракцией газойля достигало 2—3 молей на 1 моль сырья (130—190 л водорода на 1 л сырья), канцерогенность сырья исчезала. Стоило, однако, этот канцерогенно-неактивный гидрогенизат подвергнуть каталитическому крекингу, чтобы в газойле каталитического крекинга снова образова.лась фракция, выкипающая [c.290]

    Период интенсивного образования кислых веществ сопровождается выделением тепла за счет разложения перекисей. Наблюдаемое далее образование продуктов конденсации протекает с поглощением тепла [6]. В результате конечная стадия окисления при данных постоянных условиях ведения процесса характеризуется интенсивным поглощением тепла, ведущим к замедлению образования новых первичных продуктов окисления. Повышение температуры или изменение других условий окисления приводит снова к образованию первичных продуктов и углублению процесса окисления [7]. [c.261]

    Для количественного определения содержания нормальных алканов в бензинах применяют молекулярные сита типа 0,5 нм (см. стр. 220). Анализ проводится в колонке, снабженной электрообогревателем (рис. 5). О количестве алканов судят по привесу колонки после их поглощения молекулярными ситами. Освобождение пор адсорбента для следующего анализа (регенерация) проводится в токе абсолютно сухого водорода при 375 °С в течение 1 ч. Пробу в количестве 0,2—1,5 см вводят шприцем в предварительно взвешенную колонку, после чего колонку с пробой вновь взвешивают. Поглощение алканов осуществляется в токе водорода (один пузырек в 2 с) при температуре на 10—20 °С превышающей температуру конца кипения исследуемой фракции. Следовательно, поглощение происходит в паровой фазе. Нагревание колонки регулируют так, чтобы время от начала опыта до достижения рабочей температуры составляло 15—20 мин. При рабочей температуре колонку выдерживают 5 мин, после охлаждения ее снова взвеши- [c.66]


    Образование смога протекает при довольно низких температурах, важным фактором активации молекул является солнечный свет. При поглощении света изменяется электронная, вращательная и колебательная энергия молекул, что приводит к возбужденному состоянию. Электронно-возбужденные молекулы могут вступать в такие реакции, которые при данной температуре им не свойственны. Так, например, продукты фотолиза озона, кислорода, воды, оксидов азота могут в верхних слоях атмосферы (свыше 80 км) атаковать молекулярный кислород с образованием кислорода в виде одноатомных молекул. Несколько ниже (16—32 км) снова образуется озон. Именно здесь слой [c.331]

    Тепловое излучение — это процесс распространения электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать энергию, которая поглощается другими телами и снова превращается в тепло. Таким образом, осуществляется лучистый теплообмен он складывается из процессов лучеиспускания и луче-поглощения. [c.260]

    Катионит после поглощения катионов металлов можно регенерировать, т. е. снова перевести в исходную Н-форму путем обработки 3 М раствором соляной кислоты. [c.326]

    Для поглощения СО поднимают уравнительную склянку и открывают кран 7 сосуда/, в котором находится раствор едкого кали. Весь газ из бюретки вытесняют в сосуд затем опускают уравнительную склянку до тех пор, пока уровень поглотительной жидкости в сосуде не поднимется до метки, сделанной под краном, и закрывают кран. Уравнительную склянку ставят в такое положение, чтобы уровень воды в склянке и бюретке был одинаков, и делают отсчет по шкале. Затем повторяют вытеснение газа в сосуд / и обратно и снова делают отсчет. Поглощение заканчивают после того, как при повторном вытеснении газа в сосуд и обратно в бюретку отсчет б дет оставаться постоянным. [c.452]

    Получение активированного угля, 3—4 г (кусочки) древесного угля поместите в стакан с водой и нагрейте его на пламени горелки. При нагревании поры угля постепенно заполняются водой и он оседает на дно стакана. Уголь извлеките из стакана, слегка промокните его поверхность фильтровальной бумагой и взвесьте. Определите объем угля методом вытеснения, после чего снова промокните поверхность угля. Рассчитайте массовый и объемный процент поглощения воды. [c.203]

    Отмерить по 9,9 мл раствора уриказы в нужное число пробирок. На каждой навесить по чашечке (если пробу прямо отмеривать в пробирку, действие уриказы начнется слишком рано и цифры будут занижены). В первую чашечку отмеривают 100 мкл Н2О, во вторую— 100 мкл стандартного раствора мочевой кислоты, а в остальные — по 100 мкл анализов. Когда подготовлена вся серия, каждую чашечку спустить в соответствующую пробирку, перемешать трясением, быстро перенести в кварцевую кювету и замерить начальное поглощение. Затем перенести обратно в пробирки и оставить на 2—16 часов при комнатной температуре (если оставить на ночь при 45°, часто развивается муть). Через 2—16 часов измерить снова поглощение. Отдельно измерить поглощение холостого опыта без сыворотки, только с уриказой. Изменение абсорбции сопоставляют на кривой с содержанием мочевой кислоты или просто делят на фактор к, который отвечает наклону кривой величина его близка к 0,075. [c.139]

    Если работу приходится прерывать, бюкс оставляют в эксикаторе. Это удобно в том отношении, что высушивание вещества будет продоллоться в нем вследствие поглощения водяных паров хлоридом кальция. Разумеется, высушивание в эксикаторе будет происходить только в том случае, если шлиф его хорошо смазан. Однако перед взвешиванием бюкс с веществом следует снова высушить в сушильном шкафу. [c.163]

    Измеренный объем газа из измерительной бюретки перепускают в сосуд 1 с раствором КОН, поднимая напорную склянку при открытых кранах вилки и поглотительного сосуда. Напорную жидкость в бюретке доводят до крана I гребенки, затем напорную склянку опускают, и газ из поглотительного сосуда перетекает обратно в бюретку, причем в сосуде реактив поднимают до метки. Так как левая и правая части бюретки имеют разные диаметры, то жидкость по ним движется с различной скоростью. Поэтому когда в правой бюретке жидкость поднимается до крана I, кран правой бюретки перекрывают во избежание попадания жидкости в гребенку, а оттуда в поглощающие растворы. В сосуд 1 с раствором КОН газ перепускают не более 5—6 раз до полного поглощения СО д. После пятикратного промывания раствором КОН газ снова переводят в бюретку, раствор в поглотительном сосуде доводят до прежней метки и замеряют объем газа в бюретке замер производится после минутного стекания. Показание бюретки записывают в тетрадь, одновременно [c.244]

    II и III гребенки и забирают весь газ, оставшийся после поглощения СО, причем сначала небольшую порцию его, примерно 5—10 см , расходуют для промывки гребенки. После забора и замера газа, взятого для сжигания, приступают к самой операции сжпгания Из-Поворотом кранов II и III гребенки снова включают петлю и газ из бюретки медленно переводят через петлю в сосуд 3 с серной кислотой. При этом происходит окисление водорода с одновременным восстановлением окиси меди по реакции [c.246]

    Есл -.выделение поглощенных компонентов иа насы.- щенного абсорбента намечается производить путем десорбции, абсорбент предварительно подогревается теплом отходящих потоков или паром, а затем подается на верх десорбера, в нижкюю часть которого вдувается десорбирующий агент (например, чистый компонент разделяемой смеси). Отпаренный компонент вместе с десорбирующим агентом направляется на дальнейшую переработку, а ненасыщенный абсорбент охлаждается в теп/ообмелнике и снова подается в абсорбер. [c.38]

    Сырой газ ИЗ газопровода подается в первый абсорбер, который орошается абсорбентом. Насыщенный абсорбент поступает в выветриватель (эксианзер), где из него выделяются легкие углеводороды. В выветривателе поддерживается давление 35 ати. Выделившиеся углеводороды снова сжимают и направляют во второй абсорбер, в секцию, расположенную ппже ввода основного потока газа. В этой секции метан абсорбента вытесняется этаном и пропаном, содержащимися в сжатом газе. Таким образом, секция выполняет роль этановой колонны и служит абсорбером для поглощения этана и пропана. [c.27]

    Перед насыщением ацетиленом адсорбенты высушивали до постоянной массы (веса). Высушенные об-)азцы имели следующую насыпную массу силикагель <СК —0,43 г см , силикагель КСМ — 0,72 г см , активный глинозем— 0,86 г/см . Образцы адсорбентов насыщали техническим ацетиленом из баллона в течение 8 ч при скорости потока ацетилена 20 см 1мин, после чего их рассыпали тонким слоем на листы бумаги, чтобы удалить ацетилен, накопившийся между зернами. После перемешивания адсорбент снова засыпали в сосуды и охлаждали сначала до 203° К, а затем до 90 К По мере испарения хладоагента происходило медленное отогревание до комнатной температуры. Такой способ насыщения был необходим для того, чтобы избежать образования твердого ацетилена на поверхности зере адсорбента. Количество поглощенного ацетилена в пробах образцов адсорбентов определяли десорбцией ацетилена с последующим определением его с помощью реактива Илосвая. Количество ацетилена в различных образцах составляло 0,3—1,2% (по массе). [c.62]

    Раствор антрахинона оставляется затем на 12 час. во влажном воздухе для поглощения воды, после чего к нему приливают 200 см воды и по охлаждении отфильтровывают антрахипон и промывают на фильтре, как уже было описано, водой. Окончательно продукт смывается в чашечку, высушивается при 100°, и взвешивается. При нагревании на горелке алтрахинон удаляют испарением и снова взвешивают остаток примесей. Разница в весе соответствует весу антрахинона, одна часть которого отвечает 0,855 части антрацена, см. также (399). [c.427]

    Следовательно, можно пользоваться приблиисенным условием на экстраполированной границе — равенства нулю нейтронного потока, — вместо точного — равенства нулю составляющей плотности потока из вакуума,— если сечение поглощения много меньше сечения рассеяния (заметим, что для большинства ядер 2, 2,, согласно формуле (5.33)) и, кроме того, значение свободного пробега на рассеяние (снова используем должно быть много меньше размеров системы. Это условие применимости диффузионной теории. [c.135]

    Этот пример был выбран не только для иллюстрации уравнения (22), но также и для пояснения такого важного понятия, как самопоглощение. В численном примере ядро газа между tf l и I—/д =9 в основном непрозрачно. В этом случае плотность потока падающего излучения q на внешней стороне пограничного слоя равна полной величине В -=С Т, а плотность потока эф< )ек-тивного излучения на стенке 7% составляет (0,5) = =0,0625 от излучения газа. Однако плотность потока результирующего излучения на стенке составляет лишь 0,4945 от разности С Т —С Тш, а не 1—0,0625. В пограничном слое плотность потока падающего излучения на стенке уменьигается в результате поглощения, которое превосходит испускание. При фиксированном отношении будем увеличивать i = л дL от нуля до бесконечности. При Sд /L=0 степень чер ноты канала возрастает как 1—2 з( /.), т. е, сначала линейно, как 2 (среднегеометрическая длина пути луча равна 2), а затем более медленно, достигая максимального значения 1. При бдг,//- 0 из уравнения (23в) находим, что степень черноты капала возрастает сначала линейно, как (2—Ь[ц1Ь)(1, затем более медлсиио до достижения максимального значения и далее при стремлении оо снова приближается к нулю, как 2/[3 (бд /L)i ]. Качественно такой же эффект наблюдается в сажистых пламенах горящей нефти и в камерах сгорания это означает, что с увеличением размера пламеии сначала возрастает радиационный поток [c.504]

    Газовая (паровоздушная) смесь подается в корпус I адсорбера (рис. 20-2), проходит сквозь находящийся на решетке 2 слой адсорбента (на рисунке заштрихован), после чего удаляется через выхлопной штуцер. По завершении адсорбции для вытеснения поглощенного вещества из адсорбента в аппарат подается перегретый водяной пар (или другой вытесняющий агент), который движется в направлении, обратном движению газа. Паровая смесь (смесь паров воды и изв лекаемого компонента) удаляется из аппарата и поступает на разделение в отстойник непрерывного действия или в ректификационную колонну. После десорбции сквозь слой адсорбента пропускают для его сушки горячий воздух, который входит через паровой штуцер и удаляется через тот же штуцер, что и паровая смесь. Высушенный адсорбент охлаждается холодным воздухом, движущимся по тому же пути, что и водяной пар, после чего цикл поглощения повторяется снова. [c.718]

    На пути левого светового луча устанавливают кювету, заполненную дисперсионной средой. В правый кюветодержатель помещают две кюветы одну с дисперсионной средой, другую — с исследуемой системой (золем) и вращением рукоятки на правой панели прибора на пути правого светового луча устанавливают кювету с золем. Индексы правого и левого барабанов устг1навливают на О по шкале оптической плотности (нанесена красными цифрами). Затем шторку, перекрывающую световые лучи, переводят в положение открыто . Вследствие поглощения или рассеяния света исследуемой системой (в данном случае — рассеяния) на правый фотоэлемент будет падать световой поток меньшей интенсивности, чем на левый фотоэлемент, и стрелка микроамперметра будет отклоняться от нулевого положения. Вращая барабан левой раздвижной диафрагмы, стрелку микроамперметра возвращают на О (уравнивают интенслвности обоих световых потоков). Затем поворотом рукоятки на правой панели прибора по ходу правого луча устанавливают кювету с дисперсионной средой. При этом стрелка микроамперметра. установленная на О , смещается, так как фотометрическое равновесие снова нарушается (дисперсионная среда прозрачнее, и интенсивность светового потока, падающего на правый фотоэлемент, увеличивается). Вращением правого барабана добиваются первоначального нулевого положения стрелки и отсчитывают по шкале правого барабана значение оптической плотности исследуемой системы. [c.115]

    В начале периодического процесса абсорбции этилена серная кислота поглощает его относительно плохо, поскольку величина, определяющая скорость реакции, а именно растворимость этилена, в 38%-иой кислоте еще незначительна. По мере накопления этилсериой кислоты в растворе поглощение олефина растет до максимума, отвечающего 30%-ному насыщению, после чего снова падает, хотя способность реакционной смеси растворять этилен продолжает увеличиваться. Уменьшение скорости абсорбции этилена объясняется нонгокением концентрации свободной серной кислоты, так как поглощение олефина моноэтилсульфатом протекает значительно медленнее, чем свободной кислотой. [c.454]

    Для гидрирования нафталина в тетралин ИJШ декалин очень удобен метод Шретера [48]. По этому методу 512 г (4 г-мол) очищенного от сернистых соединений нафталина загружают в автоклав с 15—20 гN 0 или N 03, поднимают давление водорода до 12—15 ат и, размешивая, смесь нагревают при 180—200°. Давление сперва поднимается, а затем быстро падает на 1 ат в течение 45—60 сек. При понижении давления до 5—8 ат снова поднимают его добавкой водорода до 12—15 ат, пока не присоединится 178 л водорода. После образования тетралина падение давления до 1 ат происходит в течение лишь 1 мин. Гидрирование продолжают до полного прекращения поглощения водорода. Тетралин или декалин легко разгоняются. [c.366]

    Многие безводные альдегиды реагируют со спиртами уже при простом смешении продуктами этой экзотермической реакции являются полуацетали НСЬЬСН (ОН)0С Н2 +1. Они довольно неустойчивы и при нагревании снова расщепляются. Спектры поглощения альдегидов в спиртовом растворе также указывают на то, что они соединяются со спиртами с образованием полуацеталей, причем связь С=0 исчезает. [c.203]

    Обе составные части гемоглобина связаны непрочно. В организме гемоглобин в результате поглощения кислорода легко превращается в о к с и г е м о г л о б и н, а последний, отдавая кислород, снова переходит в гемоглобин. На этом об.мене основан в организ.ме перенос кислорода кровью. [c.974]

    В стальной вращающийся автоклав емкостью 2 л помещают раствор 198г Е-капролактама в 200 мл толуола и катализатор, полученный взаимодействием 28 г Е-капролактама с 9,7 г металлического калия в 150 мл толуола при 60—80°. Затем в автоклав подают ацетилен и нагревают при 100° начинается энергичное поглощение ацетилена. Через некоторое время температуру повышают до 125°, после чего нагревание прекращают, автоклав охлаждают, подают в него новую порцию ацетилена и снова нагревают до 100—125°. Эту операцию повторяют несколько раз до тех пор, пока не прекратится поглощение ацетилена. [c.281]

    Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвижной фазы поступает в хроматографическую колонку. При контакте, с поверхностью неподвижной фазы каждый из компонентов разделяемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемо-стью или растворимостью. Вследствие непрерывного движения подвижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же егО часть продвигается дальше в направлении потока и вступает всу взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы толькО при достаточно медленном движении подвижной фазы. Поглощенные неподвижной фазой компоненты смеси не участвуют в перемещении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке потребуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают различной степенью сродства к неподвижной фазе (различной адсор-бируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колонке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компоненты. [c.8]

    Ионный обмен обычно является обратимым процессом. Вытесненный с поверхности ион остается в растворе и в той или другой степени снова поглощается поверхностью зерен ионообменной массы, вытесняя другой (поглощенный) ион. Поэтому обмен не проходит количественно, хотя чаете он вцолне достаточен для практических целей. [c.73]

    Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]

    Жидкости легко можно обезводить, вводя в них подходящие осушители. Смесь тщательно перемешивают при встряхивании и после длительного контакта с осушителем фильтруют или перегоняют. Многие осушители (например, СаСЬ или Ыа2304) при нагревании снова выделяют поглощенную ими воду, так что перегонку следует проводить только после их отфильтровывания. Осушители выбирают таким образом, чтобы они не реагировали с осушаемой жидкостью и не растворялись в ней. В табл. Е.З дан обзор свойств наиболее распространенных осушителей. [c.499]

    Таким образом, дисперсионные кривые Пг(м) и Л/(ш) будут иметь одинаковый характер, но смещены по оси абсцисс. На рис. Х1У.5 представлены кривые ((о), Пг(а)) и п/(со)—Пг(и>) в широкой области со, включающей поглощение. Эти кривые могут быть получены из уравнений с учетом поглощения. В связи со сдвигом вправо по оси со для кривой и/(со) для области (оСсоо имеем П1—Пг<0, т. е. вращение влево. Однако в области поглощения П1>Пт, Т. е. вращение положительное. Затем снова вращение становится отрицательным. [c.254]


Смотреть страницы где упоминается термин Снова о поглощении: [c.204]    [c.183]    [c.165]    [c.30]    [c.228]    [c.19]    [c.306]    [c.177]    [c.299]    [c.544]    [c.151]   
Смотреть главы в:

Как исследуют вещества -> Снова о поглощении




ПОИСК







© 2024 chem21.info Реклама на сайте