Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена разложение

    Карбены. — Карбеном, или метиленом, называется соединение СНа, т. е. метиленовая группа с неподеленной парой электронов. Если кетен облучать светом с длиной волны 300—370 ммк, то он разлагается, и в качестве главных конечных продуктов получаются этилен и окись углерода в соотношении приблизительно 1 2 (Нор-риш, 1933). Проведенные Кистяковским (1933—1961) подробные исследования искрового фотохимического разложения кетена в газовой фазе показали, что в данном случае первичными продуктами реакции являются карбен и окись углерода  [c.15]


    Гомогенное окисление метана водяным паром или двуокисью углерода является в высшей степени эндотермической и относительно медленной реакцией. Скорость ее хорошо измерима при температуре около 1000° С, когда со значительной скоростью происходит также термическое разложение метана. Действительно, один из экспериментаторов [6] утверждает, что при температуре около 1000° С пар и метан непосредственно ые вступают в реакцию друг с другом, а в реакции участвуют более реакционно-способные продукты термического разложения мотана, которые и образуют окись углерода и водород. Среди легко выделяемых и идентифицируемых продуктов пиролиза метана следует отметить этилен и ацетилен [25, 26, 27 . Последние могут реагировать с водяным паром, образуя спирты, которые затем разлагаются с образованием окиси углерода, метана и водорода. Все это носит лишь предположительный характер, так как нет данных, подтверн дающих этот механизм. Реакция метана с двуокисью углерода является, по-видимому, еще более сложной, чем с водяным парол]. [c.311]

    При разложении этиленхлоргидрина гидроокисью кальция в аппарате соответствующей конструкции (минимальное время пребывания жидкости в реакционной зоне и возможность быстрого отвода образующейся окиси этилена из этой зоны) выход окиси этилена может достигнуть 96%, считая на превращенный этилен-хлоргидрин . Выход окиси этилена зависит от качества извести, применяемой для разложения этиленхлоргидрина, и от условий ее гашения. Нежелательные примеси (глина, карбонат магния) замедляют гашение извести и ухудшают взаимодействие полученного известкового молока с этилен.хлоргидрином. Известковое молоко готовят путем гашения предварительно раздробленной извести горячей водой (80—85 °С) в специальных аппаратах-гасителях. Для приготовления медленно расслаивающегося и быстро реагирующего с этиленхлоргидрином известкового молока очень важно, чтобы известь была надлежащим образом обожжена. Понижение температуры обжига приводит к тому, что в извести остается необожженный известняк, так называемый недопал при слишком высокой температуре обжига получается пережженная окись кальция, трудно поддающаяся гашению. После гашения известковое молоко отделяется от шлама и стекает в емкости, в которых оно перемешивается во избежание расслаивания при хранении. [c.179]

    Изучение окисления окиси этилена на серебре показало, что она превращается в двуокись углерода и воду, но количества СО2 и Н2О не эквивалентны израсходованной окиси этилена, и это заставило предположить образование органического остатка X на поверхностя серебра. Кроме того, при пропускании окиси этилена над серебром в продуктах реакции был обнаружен этилен, который мог образоваться при разложении окиси этилена. По приведенной выше схеме предполагаются разные пути превращения этилена этилен окисляется в окись этилена (реакция 3), которая изомеризуется в ацетальдегид (реакция 6) и адсорбированный остаток X (реакция 7). Последний разлагается на этилен и кислород (3) и окисляется в СО2 и Н2О (10). Этилен может превратиться в продукты глубокого окисления, минуя стадию окиси этилена,— путем образования (2) и разложения (5) формальдегида. Ацетальдегид, образующийся из окиси этилена, также превращается в продукты глубокого окисления (9). [c.76]


    Перхлорат аммония Этилен Пропилен Бутен-1 Изобутилен-1 Продукты разложения Дегид Высший олефин, этан Высший олефин, пропан Высший олефин, бутан Высший олефин, изобутан МпО [45] рирование Мп и его окись на - -А1 0з в протоке, 200—500° С [46] [c.884]

    Разложение этилового эфира при 700—1000° на метан, этилен и окись углерода. Действие катализатора по общему мнению сводится к конденсации активных молекул Платина и вольфрам ЗЗП [c.102]

    Очень широко, как уже указывалось ранее, используются в данном случае сложные катализаторы, в состав которых входит окись хрома. При этом многочисленными исследованиями, главным образом Баландина с сотрудниками, установлено, что кроме алюмо-хромовых катализаторов высокими дегидрирующими свойствами обладают также медно-хромовые контакты, предварительно восстановленные водородом. Согласно данным рентгеноструктурного анализа, медно-хромовый катализатор обладает кристаллической структурой и линии его рентгеновского спектра принадлежат решеткам металлической меди и окиси хрома при этом грань (111) решетки меди полностью укладывается на слой кислородных атомов окиси хрома [137]. Дегидрирующее влияние медно-хромового катализатора исследовалось в широком ряду алкилбензолов и алкилфенолов. Найдено, что при нормальном давлении и температуре 650° С выход стирола в присутствии медно-хромового контакта доходит до 40% на пропущенный и около 60% на разложенный этилбензол (скорость пропускания этилбензола 450 г на 1 л катализатора в час). В качестве побочных продуктов получалось 7% толуола и 4% бензола имело место также некоторое разложение на газы (метан, этан, этилен) и углеотложение [1381. При снижении парциального давления этилбензола разбавлением углекислым газом (этилбензол С02 =1 2 (мол.)) выход стирола на пропущенный этилбензол и селективность [c.166]

    Большинство катализаторов окисления представляет собой окислы таких металлов, которые могут существовать более чем в одном валентном состоянии. Исключения, по-видимому, составляют серебро, которое окисляет этилен в окись этилена [2], и платина, известная как хороший катализатор окисления аммиака [5, 6]. Однако имеются некоторые данные [9, 10], показывающие, что обе последние реакции происходят благодаря образованию хемосорбированного слоя кислорода на поверхности металла. Стоун [11] изучил реакцию разложения закиси азота на ряде окиснометаллических катализаторов. Эта реакция содержит четко выраженные стадии хемосорбции и десорбции, которые имеют место также в реакциях окисления. В связи с этим было высказано предположение (см. разд. 5.3.2.2), что закись азота быстро адсорбируется, присоединяя квазисвободный электрон поверхности  [c.315]

    Основными вредными веществами при производстве полиэтилена и его переработке являются этилен, пары метилового спирта и бензина, триэтилалюминий, четыреххлористый титан и продукты разложения катализатора — окись алюминия, гидроокись титана, хлористый водород [82, 83, 84]. [c.179]

    При высоких Т этилен почти нацело разлагается на ацетилен и водород, но ниже ок. 1000°, наоборот, его можно получать синтетически из ацетилена (ускоряя реакцию соответствующими катализаторами). Что же касается до расщепления этилена с образованием метана, то оно возможно при любых Т. Образованию углерода при этом разложении надо приписать сильно коптящее пламя как этилена, так и бензола (см. выше). [c.270]

    Данные позволяют сделать вывод, что при разложении полиэтилена в условиях пожара наряду с другими продуктами разложения будет выделяться окись углерода и этилен. [c.18]

    Процесс термического разложения масла начинается с температуры 350—450 °С, и скорость разложения возрастает по мере повышения температуры. Основные газообразные продукты — легкие углеводороды (метан, этан, этилен) и водород. При температуре свыше 600 °С газовая смесь в основном состоит из метана и водорода. При термическом разложении пропитанной маслом целлюлозной изоляции в основном образуется углекислый газ, в меньшей степени — окись углерода, и при температуре свыше 500 °С накапливается водород. [c.150]

    Процесс проводят при 375—440° С. При этом основная реакция сопровождается рядом побочных. В результате наряду с дивинилом образуются и другие продукты. В газовой смеси на выходе из реактора содержится свыще 30 веществ в соизмеримых количествах. Теоретический выход бутадиена-1,3 из 100%-ного спирта составляет 58,7% (воды 39,1% и водорода 2,2%).. В качестве побочных продуктов при контактном разложении этилового спирта получаются водород, окись углерода, метан, этан, этилен, псевдобутилен, высшие олефины, толуол, ксилол, диэтиловый эфир и т. п., а также спирты, альдегиды, кетоны и углерод в виде сажи, отлагающейся в значительном количестве на катализаторе. При отщеплении воды и водорода в присутствии дегидратирующей и дегидрирующей частей катализатора соответственно получаются этилен и уксусный альдегид. Именно уксусный альдегид является основный промежуточным продуктом, из которого затем получается бутадиен-1,3. Действие катализатора в этом процессе заключается в селективном разложении этанола с образованием целевых конечных продуктов бутадиена, воды и водорода. В отсутствие катализатора при 450—500° С одновременно (и примерно с одинаковой скоростью) протекают реакции дегидрирования спирта с образованием уксусного альдегида  [c.162]


    Согласно самым ранним исследованиям, проведенным с не очень чистыми металлическими поверхностями, хемосорбция протекает медленно и продолжается с постепенно уменьшающейся скоростью в течение многих дней. Таким образом, нельзя быть полностью уверенным в том, что в системе установилось окончательное равновесие. Обычно количество адсорбированного вещества определяют на той стадии процесса, при которой скорость поглощения газа становится очень малой. Как уже указывалось в предыдущем разделе, на чистых металлических поверхностях хемосорбция заканчивается полностью в определенный момент времени. Однако даже в этих случаях очень важно убедиться в том, что достигнуто истинное равновесие и не имеют места явления адсорбционного гистерезиса или разложения адсорбата. Известно, что аммиак, окись углерода и этилен в определенном ин-. тервале температур и давлений после начальной быстрой адсорбции подвергаются каталитическому разложению на металлических поверхностях. [c.324]

    Из данных табл. 28 видно, что основртым продуктом разложения этилен.хлоргидрина гидроокисями натрия, кальция и бария является окись этилена ацетальдегид при этом образуется в незначительном количестве. При использовании гидроокиси натрия ис- [c.178]

    Хлористый винил образуется также из хлористого этила, если смесь паров последнего с кислородом пропускать через окись меди при температуре 300—500° [994]. Реакция, которая на первый взгляд напоминает гидрогенизацию, протекает, очевидно, так, что сначала происходит разложение хлористого этила на этилен и хлористый водород. Атомарный хлор, образуюш,ийся при окислении хлористого водорода, реагирует затем с олефином, в результате чего получается хлористый винил. [c.240]

    В результате пиролиза побочно образуются этилен, окись углерода, водород и углерод. Чтобы предотвратить значительное разложение образующегося кетена, продолжительность пребывания разлагаемых паров ацетона в зоне высоких температур не должна превышать 0,25—0,75 сек. В этих условиях степень превращения ацетона за один проход через реакционный аппарат достигает 10—25%. [c.460]

    Под действием ультрафиолетовых лучей окись этилена разла-гается . Продуктами фотосенсибилизированного распада окиси этилена в присутствии ртути при комнатной температуре являются окись углерода, водород, альдегиды (в основном уксусный и высшие), метан, этан, пропан и небольшое количество радикалов СН. —СО. Добавки этилена и бутилена-1 сильно ингибируют выход альдегидов. Этилен увеличивает выход пропана и радикала СНл—СО. Бутилен-1, напротив, почти полностью ингибирует образование пропана, но индуцирует образование этилена и высших парафинов (до октана). При разложении сдмесей дейтерирс-ванной и недейтерированной окиси этилена наряду с Из и Оз образуется НО. В продуктах ингибированного этиленом распада такой смеси НО практически отсутствует, а количество Ог и Н-2 уменьшается до некоторого предела. Основным первичным актом, по-видимому, является распад возбужденной молекулы окиси этилена на -СНз и -СНО, причем далее из -СНОобразуются Н- и СО. Добавки олефинов связывают атомы Н, а алкильные радикалы частично связывают радикалы -СНО, образуя высшие альдегиды и парафины. Кроме того, возможен менее значительный распад окиси этилена на молекулу водорода и кетен, а также на циклический бирадикал и атомарный водород. [c.61]

    Термическое разложение диацетилперекиси при 80° С в отсутствие растворителей дает газообразные продукты двуокись углерода (60%), метан (29—34%), этан (3,5—4,5%), этилен (1,1—1,6%), кислород (2%) и окись углерода (1,6—3%)2 . При распаде твердой иерекиси под действием ультрафиолетового света состав продуктов сушественно не меняется основными продуктами разложения являются двуокись углерода (67—68%) и этан (23,6-25,1%). [c.390]

    Разложение спиртов, температура 320° Гель окиси алюмини сушится в токе азота, воздуха или водорода, этилен применяется в различные промежутки времени при 150—300°) окись, приготовленная в токе азота, содержала наименьшее количество 316O [c.95]

    Щелочные металлы обычно используются в реакциях изомеризации, полимеризации, присоединения, замещения и разложения. Более 40 лет назад в работе [133] исследовалась гидрирующая способность щелочных металлов и была сделана попытка объяснить механизм их действия с точки зрения теории промежуточных соединений. Отмечалась слабая гидрирующая способность металлического цезия по отношению к этилену при комнатной температуре и давлении 1 бар. При этом легко образовывался S2 2H4, который не являлся промежуточным соединением, а тормозил реакцию, блокируя активную поверхность. При повышении температуры гидрирование ускорялось. Высокодисперсный цезий в этом же температурном интервале, согласно [134], являлся катализатором средней активности. Окись углерода и водород реагируют на s при комнатной температуре [133]. [c.68]

    Уже много лет тому назад было известно также, что при термическом разложении или дегидратации низших алифатических спиртов образуются ди-олефины. Лебедев предложил производить дегидратацию метилового, этилового или пропилового спиртов при 400° в присутствии таких катализаторов, как глинозем или окись цинка. Получаемые продукты можно пропускать через бром, и образующийся при этом тетрабромид бутадиена выделять отгонкой жидких бромидов и восстановлением превращать его в бутадиен. Для получения бутадиена было предложено также использовать 1,3-бутиленгликоль Дегидратация последнего осуществляется таким образом, чтО пары гликоля вместе с парами воды пропускают над нагретыми катализаторами (кислый орто-фосфат висмута, нейтральные пиро- или ортофосфаты магния или щелочноземельных металлов, смесь фосфатов кальция и аммония, или первичного фосфата натрия с графитом или с фосфорной кислотой). В результате дегидратации из этилового спирта можно получить этилен, из циклогексанола — циклогексан и из 2-м тил-1,3-бутиленгл иколя — изопрен. Было предложено также применять для подобной реакции непредельные спирты [c.179]

    Wiheeler и Blair проводили медленное окисление паров гексана при 480—590° в стеклянных трубках в отсутствии катализаторов. Из продуктов реакции были выделены высшие альдегиды, формальдегид, ненасыщенные углеводороды, кислоты Св малых количествах), окись углерода и углекислота, вода и водород (при более высоких температурах). Было найдено, что избыток кислорода повышает содержание высших альдегидов, так же как и углекислоты. Повышение температуры понижает процент образующихся высших альдегидов, но повышает содержание форма.тьдегида и ненасыщенных углеводородов, большую часть которых составляет этилен. Количество окиеи углерода и углекислоты также возрастает с повышением температуры. Было установлено, что насыщенные углеводороды при это м не образуются это указывает на отсутствие термического разложения гексана (которое дало бы значительное количество метана) на протяжении всего температурного интервала этих опытов. [c.938]

    Применение газовой хроматографии позволило изучить механизм побочных реакций разложения перекиси трет-бушла, объяснить появление в реакционной среде таких продуктов, как m le 7г-бyтилoвый эфир и окись изобутилена, а в газообразной фазе—этан и этилен, пропан и пропилен, изобутан. Подробное изучение продуктов газо-хроматографическим методом дало возможность количественно оценить все направления расхода перекиси трет-бутила. Применение хроматографического метода позволило также выяснить ряд кинетических закономерностей [c.104]

    Л Вместо ожидаемого кетена при высокотемпературном пиро-лизе ацетона образуются этилен и окись углерода [24]. Штаудин- гер [25] объяснил это термическим разложением кетена [c.17]

    Анализ газов, образующихся в ударной трубе, может быть ошибочным вследствие весьма значительного разбавления водородом (рабочим газом), так что вычисленные константы скорости, возможно, неточны. Скорости в ударной трубе могут быть ниже вследствие добавки этилена к сырьевой смеси, поскольку, как было установлено другими упоминавшимися выше [54] исследованиями, проводившимися в ударной трубе, этилен подавляет разложение этана. Опыты в ударной трубе при максимальной температуре проводились, кроме того, с высокими степенями превращения, что могло замедлять реакцию вследствие торможения ее образующимися продуктами. Наконец, механизм реакции при значительно более высоких температурах может быть иным в связи с тем, что энергетически важное значение могут приобрести другие реакции обрыва цепи. На это указывает сравнительно хорошее совпадение с результатами опытов [25] по пиролизу этан при 1040 и 1370 °С. В противоположность результатам предыдущих опытов, проведенных в обычных реакторах при более низких температурах, в этих исследованиях [25] было обнаружено, что окись азота, по-види-мо1му, не тормозит разложения этана в области высоких температур. [c.318]

    Результаты, полученные при изучепии продуктов гидроконденсацни окиси углерода с этиленом, пропиленом, бутиленом, изобутиленом и гексиленом, показывают, что реакция с участием всех этих олефинов протекает по единому механизму. Сюда, помимо образования метиленовых радикалов [17] из окиси углерода и водорода и всех приведенных выше процессов гидрополимеризации, относятся реакции постепенного присоединения метиленовых радикалов к молекулам олефина с получением последующих гомологов, адсорбированных на поверхности катализатора, повидимому, на двух центрах. Таким образом, из метилена и этилена возникает пропилен, из метилена и пропилена — бутилен и т. д. Поскольку в основе реакции каталитической гидрокопдепсацип лежит действие метиленовых радикалов, получающихся из окиси углерода и водорода, следовало ожидать, что подобное действие произведет любое соединение, способное в условиях этой реакции разлагаться на окись углерода и водород или метиленовый радикал. Действительно, было показано [18], что подобно окиси углерода метиловый и этиловый спирты оказывают конденсирующее действие иа смесь этилена и водорода, вступая одновременно в реакцию гидроконденсации с этиленом. Общий выход гидроконденсата составляет 17—35 мл/л катализатора час. Процесс протекает, повидимому, таким образом, что предварительно происходит разложение указанных спиртов с образованием окиси углерода и водорода. Последние далее вступают, как обычно, в реакцию гидроконденсации с этиленом с промежуточным образованием метиленовых радикалов. [c.621]

    Динд и Реджис [14] описали связь выходов из строя трансформатора с химическим разложением изолирующих веществ — трансформаторного масла, сопровождающимся образованием газа. Обнаружение и анализ растворенного в трансформаторном масле газа дает существенную полезную информацию о зарождающихся неполадках. Контрольные измерения, сделанные вовремя, могут сберечь значительные средства. Конкретно, пробы масла периодически отбираются и анализируются на водород, метан, ацетилен, этилен, этан, кислород, азот, окись углерода и двуокись углерода. В табл. П6.1.1 приведено интегральное частотное распределение по каждому газу для 190 трансформаторов с масляным погружением, показывающих удовлетворительную работу. [c.229]

    Этилен и окись этилена сополимеризуются при повышенной температуре (200—250°) под высоким давлением (350—800 ат) в присутствии бензалазина в качестве инициатора [141]. В результате образуется липкий, воскообразный сополимер. Его структуру исследовали путем разложения в избытке бромистоводородной кислоты V анализа продуктов разложения. Установлено, что звенья окиси этилена не распределены равномерно, а образуют блочные участки. Описана также эмульсионная сополимеризация винилиденхлорида с окисью этилена и окисью пропилена [142] (см. также гл. VII). [c.274]

    Этилен, метан, окись этилена, продукты разложения окислав азота Ацетилен [c.117]

    Продукты мгновенного пиролиза полиэтилена и полипропилена содержали метан, водород, окись углерода, этан, двуокись углерода, этилен и ацетилен, причем превалировали метан и водород. При пиролизе полиэтилен давал большее количество С1- и Сз- фракций (они составляли 80% от всех газообразных продуктов), чем полипропилен (50% газообразных продуктов) (Нильсон и Кублер, 1961). Изучение токсических веществ, выделявшихся при термоокислительном разложении 18 образцов различных полимерных материалов (меламиновые смолы, целлюлоза, каучук, полиакрилонптрил, натуральный шелк и др.) показало, что прп распаде полимеров, не содержащих азота и атомов галогенов, основную опасность представляют окись углерода и углекислый газ при этом всегда отмечается резкий недостаток кислорода (Колеман, 1960). [c.134]

    Ненасыщенные соединения обычно легко реагируют с кислородом фотохимически, но и здесь реакцию трудно контролировать. Так, этилен дает углекислый газ, окись углерода, муравьиную кислоту и, вероятно, некоторые другие вещества [85]. Толуол образует бепзальдегид, бензойную кислоту и некоторые вещества, такие, как уксусная кислота, которые указывают на далеко идущее разложение исходной молекулы [86]. [c.57]

    Класс В. Этот класс содер 1Кит в основном окислитель и горючее только как раздельные составляющие. Энергия разложения получается вследствие химически неустойчивых расположений атомов в молекуле. По этой причине все соединения этой группы имеют положительные значения стандартной теплоты образования (табл. 27). Примерами соединений этой группы, некоторые из которых используются в качестве однокомнонентного топлива, являются гидразин (N2X 4), ацетилен (С2Н2), этилен (С2Н4) и окись азота (N0). [c.410]

    Этилен образуется в результате пиролитического разложения ацетона нри температуре свыше 600° [120], однако эта реакция по представляет собой декарбонилирования в прямом смысле этого слова. Первичным продуктом реакции наряду с метаном и окисью углерода является кетон, который можно получить, если процесс вести ири температуре около 500°. По в этом случае выход кетена составляет лишь Ю —14%, так как значительная его часть разлагается далее на окись углерода и этилен. Чем выше температура, тем большая часть кетена подвергается разложению. При температуре 1000° он разлагается полностью [121]. Реакциям расщепления присущ радикальный игеханизм  [c.34]

    Пиролитическое разложение протекает в отсутствие катализатора при температуре около 400°. В случае простого винилового эфира первичным продуктом этой реакции наряду с ацетальдегидом, который частично разлагается далее на окись углерода и метан [1601, 16021, является этилен. Механизм этой реакции выяснен еще недостаточно. Авторы двух цитированных выше работ считают, что механизм заключается в простой нерестаповке связей и в разложении па радикалы, которые тотчас же соединяются указанным способом. [c.338]


Смотреть страницы где упоминается термин Окись этилена разложение: [c.85]    [c.13]    [c.32]    [c.32]    [c.157]    [c.107]    [c.551]    [c.532]    [c.552]    [c.919]    [c.263]    [c.111]    [c.418]   
Окись этилена (1967) -- [ c.0 ]

Катализ в промышленности Том 1 (1986) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись



© 2024 chem21.info Реклама на сайте