Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильная следов

    Химически связанный кислород в окисленном битуме распределяется следующим образом от 40 до 60 % (масс.) в виде сложноэфирных групп (—СООК), остальное количество примерно поровну между гидроксильными (—ОН), карбоксильными (—СООН) и карбонильными (- СО) группами. [c.106]

    Следующими по реакционной способности являются мономеры, имеющие в сопряжении с двойной связью карбонильную связь, и другие аналогичные мономеры, реакционноспособность их снижается в следующем порядке  [c.147]


    В работе цехов синтеза метанола весьма важной задачей является защита оборудования от карбонильной коррозии, обусловленной применением высоких давлений и СО-содержащих газов. Помимо корродирующего действия, образование карбонилов железа опасно по следующей причине. Карбонилы железа (в основном, пентакарбонил), попадая в колонну синтеза, разлагаются, насыщая катализатор активным железом, которое, в свою очередь, является катализатором реакций метанирования. Развитие этих реакций может привести к нарушению температурного режима в зоне катализа. [c.9]

    На основании рассмотренных работ механизм образования дифенилолпропана в случае кислотного катализа можно представить следующим образом. Роль кислоты (точнее, протона) заключается в активации ацетона — повышении реакционной способности электрофильного углерода карбонильной группы  [c.88]

    При нагреве гидроперекиси бурно распадаются по механизму свободных радикалов или, в присутствии кислоты, — по ионному механизму. В каждом случае образуются специфичные карбонильные и гидроксильные соединения. Третичные алкильные гидроперекиси разлагаются но связи 0—0, за которой следует разрыв слабейшей связи С—С. Вторичные алкильные гидроперекиси образуют кетоны, а первичные.— альдегиды. При высоких температурах первичные и вторичные перекиси в паровой фазе бурно разлагаются при этом образуется цепь размножающихся радикалов [15, 16]. [c.70]

    Дополнительным источником самоторможения окисления на глубоких стадиях является образование ингибиторов окисления, таких, как фенолы, непредельные соединения с карбонильными группами и др. Фенолы образуются как побочные продукты при окислении алкилароматических углеводородов по следующим реакциям. [c.52]

    Поскольку спирты не обладают ингибирующим действием, природные ингибиторы в топливах нафтенового основания представляют собой, очевидно, фенолы. Следует отметить, что в дифференциальных спектрах остатка смеси фракций и фракции 3 обнаружена довольно широкая полоса, которую можно отнести к карбонильной группе сложных эфиров (v=1740 см ). В дифференциальном спектре остатка, определенного относительно исходного топлива эта полоса отсутствует, т. е. по содержанию сложных эфиров топливо и остаток различаются мало. Вместе с тем по окисляемости топливо и остаток существенно различны. Кроме того, интенсивности пика, соответст- [c.85]


    Белковая цепь приобретает чрезвычайную устойчивость, сворачиваясь в правостороннюю а-спираль (рис. 21-17). В такой структуре аминокислотные остатки направлены наружу от оси спирали, а группы С=0 одного витка спирали связаны с группами Н—N следующего витка водородными связями. Водородные связи образуются между сильно электроотрицательными атомами, например Р или О, и атомами водорода с небольшим локальным избытком положительного заряда. Такие связи имеют главным образом электростатическое происхождение и зависят от способности двух атомов к тесному сближению. Атомы О и Р, имеющие небольшие размеры, способны давать такие связи более крупные атомы О обычно не могут образовать водородных связей. В белках водородные связи играют очень важную роль они возникают между кислородным атомом карбонильной группы и атомом водорода аминогруппы, принадлежащими полипептидной цепи. Как видно из рис. 21-13, частично двоесвязный характер пептидной связи С—N не только обеспечивает плоскостность пептидного звена, но также делает атом кислорода несколько отрицательным, а атом азота с присоединенным к нему атомом водорода несколько положительными. Это и создает благоприятные условия для образования водородных связей. [c.316]

    Сообщалось [18, 19] о МБ-спектрах карбонильных соединений железа Ее(СО)5, Ее2(СО)9 и Еез(СО)12. В случае Ее(СО)5 и Ее2(СО)д они имеют такой вид, как следует ожидать из их известных структур. Структура Ее,(СО),,, установленная на основании МБ-спектра. не согласуется с данными ИК-спектроскопии и предварительными результатами рентгеноструктурных исследований. Как видно из рис. 15.9, А, МБ-спектр [c.302]

    В подогревателе частично происходило гидрирование карбонильных групп глюкозы и фруктозы (оставалось 30—40% непревращенных моносахаридов) и начинался гидрогенолиз углеводов, при котором накапливалось 15—20% продуктов гидрогеиолиза. В гидрогенизате после реактора содержание остаточных моносахаридов, определяемых в виде редуцирующих веществ (РВ) по Бертрану, составляло около 0,37о к исходным. Состав полиолов в гидрогенизате после его обезвоживания был следующим гекситов 17% пентитов 1,5% эритрита 5% глицерина 43% этиленгликоля 16%, 1,2-пропиленгликоля 17% суммы спиртов 99,5%. [c.109]

    В составе полученных спиртов преобладают вторичные — до 83% (масс.). Смесь спиртов характеризуется следующими показателями кислотное число — 0 эфирное число — 8 карбонильное число — 25 йодное число — 10 гидроксильное число — 220 содержание углеводородов — 2—5% (масс.) содержание полифункциональных соединений — 15—20% (масс.). [c.180]

    На следующей стадии при температуре около 50 °С происходит доокисление карбонильной группы в молекуле продукта озонолиза в карбоксильную. Окисление проводится надуксусной кислотой, которую получают предварительно в отдельном аппарате действием перекиси водорода на уксусную кислоту. [c.191]

    В реакциях карбонильных соединений можно выделить следующие три группы атакующих реагентов. [c.329]

    Каждый реактор снабжен котлом-утилизатором 4, пройдя который контактный газ дополнительно охлаждается и очищается в системе из двух скрубберов 5 и 6, первый из которых орошается дизельным топливом (соляровым маслом), а второй — водой. В скрубберах полностью конденсируется водяной пар, поданный в реактор в качестве разбавителя-теплоносителя. Поскольку водный конденсат не содержит практически никаких примесей, кроме следов углеводородов и карбонильных соединений, он после отделения от органической фазы в отстойнике 7 возвращается в систему для последующего испарения и использования при контактировании. [c.355]

    В качестве названий соединений-основ использованы также следующие тривиальные названия карбонильных соединений Формальдегид, Ацетальдегид, Бензаль-дегид, Ацетофенон, Бензофенон, Халкон. [c.10]

    Ацетали, кетали, азины, гидразоны, семикарбазоны, имины размещены в таблице как производные соответствующих карбонильных соединений по функциональной группе и расположены следом за названием альдегида или кетона. [c.10]

    Увеличение кисл. числа 4.0 макс. разница в карбонильной полосе поглощении 0.75 макс. уплотнение из витона должно удовлетворять требованиям медные вкладыши не должны иметь механических повреждений детали без следов шлама и лаковых отложений [c.145]

    Этот процесс протекает быстро (около 1 мин.), в результате чего в начальный период окисления заметно повышается концентрация свободных радикалов, а следовательно, и вероятность их встречи с кислородом. Б битуме повышается содержание перекисных, карбонильных и карбоксильных групп. При последующем окислении незначительно возрастает концентрация водорастворимых соединений, содержащих Fe " ", что можно объяснить следующей реакцией  [c.144]

    Типичный распад выделенных из окисленного продукта гидроперекисей при чисто термическом воздействии протекает с образованием главным образом спиртов и карбонильных соединений. При этом первичные гидроперекиси дают альдегиды, вторичные и третичные — кетоны и спирты по следующим схемам  [c.263]


    Кетоны. Соединения с карбонильной группой сосредотачивались в отгоне, полученном при выделении борных эфиров спиртов. Такой отгон из топлива Т-5 имел следующую характеристику  [c.245]

    Следует иметь в виду, что в отгоне, кроме карбонильных соединений, собираются примеси углеводороды, а также сернистые и азотистые соединения. Поэтому в такой смеси кетонов содержится всего 30%. Тем не менее отгон исследовали при помощи ИК-спектроскопии. Сильная полоса поглощения в области 1700 см (толщина слоя 0,02 мм), характерная для группы>С=О указывала на присутствие кетонов (рис. 36). [c.245]

    Кислород. В нефтяных остатках кислород в основном концентрируется в смолисто-асфальтеновых компонентах. Содержание его в остатках различных нефтей находится в пределах 0,1-0,6% и входит он в состав ароматических и гетероциклических кетонов (типа хинона и флуоре-на), а также в карбоновых кислотах и кольцах фурана [22]. Установлено, что в смолисто-асфальтеновых соединениях кислород преимущественно входит в состав функциональных групп (карбонильной, карбоксильной, гидроксильной и сложноэфирной). Эти группы в основном определяют поверхностную активность смол и асфальтенов. В асфальтенах, вьщелен-ных из гудронов, большая часть кислорода входит в состав гидроксильных и карбонильных групп (около 80%). По относительному содержанию гетероатомов в смолах и асфальтенах наблюдается следующая закономерность в асфальтенах содержание серы выше, чем кислорода, а кислорода аыше, чем азота в смолах содержится кислорр а больше, чем серы, а серы больше чем азота [22]. [c.18]

    Шебекинском комбинате кубовый остаток направляется в термическую печь цеха СЖК для извлечения и облагораживания кислот. На каждую тонну высших спиртов получается свыше 200 кг смеси жирных кислот, из которых более половины представлено кислотами мыловаренной фракции. По качественной характеристике кислоты, выделенные из кубового остатка, значительно уступают кислотам, полученным по обычным схемам окисления парафинов до синтетических жирных кислот. Согласно опубликованным данным, кислоты кубового остатка после термической обработки и отгонки неомыляемых имели следующие показатели кислотное число 213, эфирное число 4,5, йодное число 39,3, карбонильное число 43,5 и содержали 9,6% неомыляемых [86]. Таким образом, раздельная переработка кубового остатка не обеспечивает производство синтетических кислот, соответствующих действующим техническим условиям. Кубовый остаток может быть переработан только совместно с омыленным продуктом цеха СЖК, хотя и в этом случае качество товарных кислот, естественно, несколько понизится. [c.165]

    Сажа представляет собой твердый тонкодисперсный углеродистый продукт неполного сгорания или термического распада углеводородов. В зависимости от характера применяемого сырья и технологии производства сажа имеет следующий состав углерода 89—99,0%, водорода 0,3—0,5% и кислорода от 0,1% до нескольких процентов. Кислород пребывает в виде функциональных групп гидроксильной, карбонильной, карбоксильной и др. Помимо этого в саже находится от 0,1 до 1,1% серы и от 0,1 до 0,5% золы. Источйиком золы главным образом является вода, используемая для охлаждения горячих частиц сажи при ее производстве и грануляции. [c.145]

    Следует упомянуть две работы о применении оснований более сильных, чем гидроксид натрия в одной из них описано получение растворимых литиевых, натриевых и калиевых енолятов циклогексанона при действии твердых ЫН, NaH и КН, которое становится возможным или ускоряется в присутствии криптандов. Полученные активированные еноляты способны отрывать протоны даже от эфиров, служаи их растворителем [1309]. В другой работе отмечено, что бутиллитий не реагирует с карбонильными соединениями или карбоксилатами в присутствии криптанда [2.1.1] вместо этого идет депротонирование в а-поло-жение [1482]. [c.194]

    Присоединение дикетена к карбонильным соединениям в толуоле катализируется К4МХ в присутствии твердого К2СО3. Предполагается следующий механизм этой реакции [1766]  [c.236]

    В этой реакции, родственной реакции Виттига, вместо илидов фосфора используются фосфонатные карбанионы [489]. Эта реакция обладает следующими преимуществами во-первых, фосфонатный карбанион более нуклеофилен и реагирует в мягких условиях с самыми разнообразными альдегидами и кетона-ми во-вторых, растворимость фосфонатов в воде облегчает выделение продуктов реакции из реакционной смеси при обработке в-третьих, фосфонаты, которые получают по реакции Арбузова, дешевле и более доступны. Обычные фосфонаты, с успехом используемые в реакции Хорнера, включают заместитель К , резонансно стабилизирующий карбанион. Если Кз = Н или алкил, то олефины образуются с низким выходом. С точки зрения стереохимии образованию гранс-олефинов благоприятствуют небольшие заместители у а-углерода фосфоната. Стерические затруднения как в фосфонате, так и в карбонильном реактанте способствуют промежуточному образованию бетаина, что приводит к чис-олефинам [490, 491]. [c.257]

    До сих пор ничего не говорилось о специфичности ферментов. Если трипсин, химотрипсин и эластаза обладают идентичным каталитическим механизмом, то чем они отличаются друг от друга Ответ заключается в том, что они селективны к характеру боковой цепи, следующей за той, в которой они разрывают пептидную связь. В уравнениях (21-1)-(21-3) соответствующие радикалы обозначены К и находятся непосредственно перед карбонильной группой связи, подлежащей разрыву. Каждый из трех рассматриваемых ферментов имеет на своей поверхности карман специфичности , в который входит указанный радикал при связывании субстрата. Этот карман специфичности в трипсине длинный и глубокий, с отрицательным зарядом на дне от ионизованной аспарагиновой кислоты (рис. 21-19, а). Благодаря этому трипсин благоприятствует разрыву белковой пептидной цепи по связи, следующей за положительно заряженными радикалами лизина или аргинина. В химотри тсине карман специфичности шире (рис. 21-19, б) и образован исключительно гидрофобными радикалами, поэтому химотрипсин благоприятствует разрыву пептидной связи, следующей за объемистым ароматическим радикалом, как, например, [c.322]

    В обзоре [35] проанализированы данные по стабильности а-связи металл—углерод, образованной атомом переходного металла. Из опубликованных данных следует, что стабильность а-комплексов возрастает с увеличением степени окисления металла (для л-комплексов наоборот) дает стабильные а-комплек-сы, а такие же комплексы Р 2+могут быть получены лишь при введении стабилизируюш,их лигандов. о-Комплексы за 1етно стабилизируются галогенами, карбонильными и циклопентадиенильными группами, а также электронодонорными молекулами — эфирами, аминами и особенно фосфинами. Например, чистый (СНз)4Т1 стабилен лишь при —78 °С, а его зфират стабилен до О С. [c.103]

    Спирты и карбонильные соединения являются следующими продуктами окисления углеводородов. Спирты получаются в значительном количестве только при окислении парафинов и нафтенов, но не из алкилароматических соединений. Согласно традиционной схеме Лангебека—Притцкова, эти продукты образуются при окислении через гидропероксид  [c.358]

    Селективное гидрирование двойной углерод-углеродной связг( с сохранением карбонильной группы легко осуществить для кетонов, функциональная группа которых менее реакцнонносиособна, чем в альдегидах. Катализаторами могут служить платина, никель, медь н другие металлические, но не оксидные контакты. Условия процесса существенно не отличаются от применяемых при гидрировании олефинов, но при выборе условий следует учитывать возм Жное побочное восстановление кетонной группы. В случае ненасыщенных альдегидов гидрирование только этиленовой связи пред тавляет собой более сложную задачу. Для этого необходимы возможно более мягкие условия и катализаторы, мало активные в отнощении гидрирования карбонильных групп. Сообщается, что с мерным катализатором при ограниченном количестве водорода даже из акролеина получается проиионовый альдегид с выходом 70% [c.503]

    Для взаимодействия аммиака с карбонильными соединениями не требуются специальные катализаторы, поэтому реакцию гидро-аммололиза следует проводить только с катализаторами гидрирующего типа. Для этой цели предложены никель (80—150°С и [c.511]

    Вс реакции конденсации по карбонильной группе экзотермичны, нс по величине теплового эффекта их можно разделить на две большие группы. К первой относятся сильно экзотермические и практически необратимые реакции конденсации карбонильных соединений с ароматическими веществами и олефинами (тепловой эффект 104—106 кДж/моль, нли 25—35 ккал/моль). Ко второй принадлежат обратимые процессы образования ацеталей и циангидринов, собственно альдольные конденсации и реакции с азотистыми основаниями. Стадия присоединения в этих обратимых реакциях имеет сравнительно небольшой тепловой эффект (21 — 63 кДж/моль, или 5—15 ккал/моль), но нз-за последующих реакций конденсации или дегидратации он может значительно изменяться в ту нли другую сторону, определяя равновесные отношения суммарного процесса. Обычно равновесие значительно смещается вправо, когда за присоединением следует дегидратация или когда образуются сравнительно стабильные вещества с ияти-ше-стичлгнными циклами. [c.549]

    Преимущественное гидрирование карбонильной группы и гид-рогенолиз связей С—С в глюкозе протекает при существенно различных потенциалах катализатора (относительно обратимого водородного потенциала). Отмечено, что гидрирова иие глюкозы идет лучше при относительно слабой адсорбции глюкозы на поверхности. катализатора (Дф 70 мВ) гидрогенолиз, напротив, интенсивно протекает при большем заполнении поверхности катализатора глюкозой (Аф 200 мВ). Однако и в последнем случае необходим оптимум по соотношению реагирующих веществ если Дф оказывается больше 200 мВ, то на катализаторе (по-видимому, из-за отсутствия необходимого количества водорода) начинают быстро протекать процессы кислотообразования, а сам катализатор при этом окисляется и дезактивируется. Этот факт следует иметь [c.81]

    Следует также отметить, что Мейзенгеймор изучал механизм гриньярова синтеза почти исключительно иа неспособных к эно-лизации (бензойный, коричный, кротоновый альдегиды) и лишь вскользь на поддающихся ей карбонильных соединениях. При действии Mg-бромэтила па ацетон, даже после 3-часового кипячения в бензоле (по отгонке эфира), он не смог выделить изопропилового спирта. Между тем, как известно Сабатье и Мейль [5], даже в обычных температурных условиях, в среде эфира, [c.222]

    Данные анализа и исследования, произведенные Рихе и Гитцем [24], а также Фуимото [25], позволили детализировать механизм образования и распада перекисей следующими гипотетическими схемами (предусматривающими образование не только карбонильных соединений, но также спиртов и кио.пот)  [c.345]

    Ациклические кетоны, а также такие, в которых карбонильная группа вкдо-чена в цикл, названы с использованием суффикса -он. Следующие примеры иллюстрируют построение названий кетонов в других случаях  [c.10]

    Изучение элементарного состава смол различной степени окисления, а такясе их спектров поглощения в инфракрасной области показало, что имеется прямая зависимость между количественным содержанием кислорода и интенсивностью максимума поглощения в инфракрасной области, характерной для карбонильной группы О-С = 0) 5,8 —6,2)0,. Так, например, у свежевыделенной из нефти смолы, а также у первых двух фракций смолы (извлеченных ССЦ и СвНв) этот максимум практически отсутствует, тогда как у двух следующих фракцпй смолы (ацетоновая и спирто-бензольная) он становится достаточно ясным. Все смолы, хранившиеся длительное время или подвергавшиеся прямому окислению кислородом, показывают отчетливый максимум поглощения в этой области. [c.468]

    Другие кислородсодержащие со ед и н е н и я. К кислородным соединениям нейтрального характера следует отнести гидропероксиды, спирты, карбонильные соединения и сложные вфиры. Все эти соединения могут быть выделены из нефти или нефтепродукта в виде сложной смеси — адсорбционных смол. Сй-Двржание адсорбционных смол возрастает при переходе к более [c.261]

    Адсорбционные смолы полимер-дистиллята и легкого масла пиролиза представляли собой кислородные, преимущественно ненасыщенные соединения и продукты их уплотнения. В смолах полимер-дистиллята наряду со спиртами содержалось много карбоновых кислот и соединений с карбонильной группой. Значительная часть спиртов и кислот была связана в виде сложных эфиров. В адсорбционных смолах легкого масла пиролиза больше всего оказалось спиртов, совсем немного карбонильных соединений и не связанных в сложные эфиры кислот. Приблизительное представление охоставе кислородных соединений адсорбционных смол можно получить путем расчета на основе молекулярного веса и функциональных чисел. Условно принимая наличие лишь одной функциональной группы в молекуле соединения, получим следующий состав адсорбционных смол (в вес. %)  [c.239]

    На рис. 37 и 38 представлены ИК-спектры бензольной и метанольной фракций с карбонильными соединениями. Спектры фракций и их растворов в четыреххлористом углероде позволяют сделать следующие выводы. Полоса поглощения 1700 см (в растворе четыреххлористого углерода — 1710 см ) указывает на наличие кетонной группы >С = 0. Интенсивность поглощения кетонной группы в бензольной фракции приблизительно в 1,5 раза выше, чем в метанольной фракции. Альдегиды не обнаружены (отсутствие полосы поглощения вблизи 2720 — 2820 см ). В качестве примеси во фракциях остаются [c.246]

    В качестве примера количественного определения продуктов реакции методом ИК-спектроскопии рассмотрим процесс окисления циклогексана. Для количественного анализа образующихся в ходе реакции циклогексанола и циклогексанона выбирают следующие неналагающиеся полосы 1718 и 749 см" для кетона и 971 и 799 см для спирта. Для данных полос поглощения исследуют влияние спектральной ширины щели на кажущийся коэффициент поглощения. Для узкой и интенсивной полосы поглощения карбонильной группы величина Вк сильно зависит от щели, а для полос в области низких частот изменения Вк незначительны. Поэтому концентрации спирта определяют по полосе 971 см , а кетона — по полосе 749 см . При концентрациях спирта более 0,4 моль/л наблюдаются отклонения от закона Ламберта — Бера, поэтому расчеты следует вести по калибровочному графику. Из-за наличия налагающейся полосы циклогексанола при 799 см низкие концентрации кетона (0,02—0,06 моль/л) следует определять по интенсивной полосе при 1718 см . Совпадение полученных значений концентраций по полосам 1718 и 749 см указывает на то, что в анализируемой пробе присутствует один кетон циклогексанон и что присутствие других продуктов окисления не мешает определению его концентрации. Результаты количественного анализа циклогексанона методом ИК-спектроскопии хорошо согласуются со значениями, иа1"1денными по гидроксиламиновому методу. [c.215]


Смотреть страницы где упоминается термин Карбонильная следов: [c.493]    [c.74]    [c.115]    [c.233]    [c.289]    [c.69]    [c.54]    [c.137]    [c.144]   
Количественный органический анализ по функциональным группам (1983) -- [ c.122 , c.130 ]




ПОИСК





Смотрите так же термины и статьи:

след

след н след



© 2025 chem21.info Реклама на сайте