Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты биоЛогически важные реакции

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    Заслуживает особого внимания реакция ацилирования аминокислот. Другие реакции аминокислот также имеют важное биологическое значение. Папример, как будет показано позднее, в основе всех реакций витамина Вб лежит образование оснований Шиффа (взаимодействие амино- и альдегидной групп гл. 7). Однако именно ацилирование аминогрунны одной аминокислоты карбоксильной (активированной) группой другой аминокислоты приводит к образованию пептидной связи и затем к образованию полимерной молекулы—белка. Для химика-биооргаиика весьма интересно сопоставить синтез наиболее сложных макромолекул в пробирке и в организме. [c.52]

    Обратимый характер реакции образования иминов имеет важное биологическое значение и реализуется при метаболизме аминокислот в биосистемах в процессах пере-аминирования с участием пиридоксальфосфата и амино-трансфераз [c.831]

    Благодаря тому что амины — хорошие нуклеофилы, алкилирование аминокислот представляет собой важную и широко распространенную реакцию и в органических, и в биологических системах. Простая реакция метилирования может протекать следующим образом  [c.45]

    Замещение протона на триметилсилильную (ТМС)-группу (термин силилирование обычно используется именно в этом контексте) успешно применялось для приготовления летучих производных таких биологически важных соединений, как сахара [124], пуриновые и пиримидиновые основания, нуклеозиды и нуклеотиды [42], стероиды [126], амины [63] и аминокислоты. В настоящее время имеется целый ряд реагентов и огромное число методов силилирования, причем выбор конкретных условий определяется исследуемым соединением и масштабами проводимой реакции. Соответствующие методы рассматриваются в появившемся недавно обзоре [94]. [c.100]

    Выше отмечалось, что белки играют исключительно важную биологическую роль. В связи с этим зачастую возникает необходимость открытия белков в тех или иных биологических жидкостях. Для открытия белков используются две группы реакций, разработанных на основе описанных выше общих свойств белков, а также и на основе свойств отдельных аминокислот, входящих в состав природных белков реакции осаждения и цветные реакции. [c.277]

    Гидролиз амидов и сложных эфиров — это жизненно важные-реакции в биологических системах. Например, одной из основных реакций, происходящих в процессе пищеварения, является гидролиз пищевого белка (смеси полиамидов) до составляющих его аминокислот (гл. 12). [c.177]


    В такой книге, как эта, неизбежно приходится воздерживаться, иногда по субъективным мотивам, от рассмотрения некоторых вопросов, сопредельных с основной темой или перекликающихся с ней. Так, например, химические и физические свойства аминокислот рассмотрены нами лишь поверхностно. Не уделено достаточного места и биохимии белков — области, наиболее тесно примыкающей к биохимии аминокислот. Этот предмет прекрасно изложен в недавно опубликованном четырехтомном труде Белки под ред. Г. Нейрата и К. Бэйли Ч Хотя количество данных, касающихся белков, весьма велико, наши познания о механизме биологического синтеза белков еще крайне недостаточны. К числу наиболее важных реакций, свойственных аминокислотам, следует, очевидно, отнести те, которые приводят к синтезу белков решение этой проблемы ознаменует наступление нового этапа исследований. [c.8]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Элементарной структурной единицей белков являются а-аминокислоты. Они представляют собой бесцветные кристаллические вещества, горьковатые на вкус. Водные растворы их имеют либо нейтральную, либо слабокислую или слабощелочную реакцию. По своему химическому строению биологически важные аминокислоты представляют собой амфотерные соединения и являются производными жирных или ароматических кислот, содержащих одновременно аминные (NN2) и карбоксильные (СООН) группы. Схематически формула любой аминокислоты, входящей в состав белка, может быть изображена в следующем виде  [c.19]


    Свободная энергия используется не только для того, чтобы реагирующие молекулы могли преодолеть активационный барьер она может также запасаться в стабильных продуктах реакций, в которых содержание энергии выше, чем в исходных газообразных реагентах. Это особенно существенно в связи с возможным образованием биологически важных соединений, поскольку даже самые простые из них, например а-аминокислоты, имеют значительно более высокие стандартные свободные энергии образования (в расчете на атом), чем исходные газообразные реагенты (табл. 3). Необходимо также, чтобы в реакционном сосуде имелись участки с более низкой температурой, где могли бы сохраняться образую- [c.103]

    Общие сведения. Транса минирование играет важную роль в процессах биологического распада и синтеза аминокислот. Реакция переаминирования, открытая советскими учеными Л. Е, Браунштейном и М, Г. Крицман,. заключается п переносе аминогруппы с аминокислоты на кетокислоту, которая таким образом преобразуется в аминокислоту, Аминокислота - донатор аминогруппы, кетокислота—ее акцептор. Реакция катализируется [c.153]

    Книга представляет собой руководство к практическим работам по органической химии для студентов биологического профиля. В I главе изложены важнейшие методы и приемы работы с органическими веш,ествами. И глава посвящена аналитической органической химии. В ней приведены современные хроматографические методы разделения, определения констант, идентификация, качественные реакции на функциональные группы. Детально описана задача на определение строения неизвестного органического вещества. В П1 главе описаны синтетические задачи по основным для биологов разделам органической химии сахарам, аминокислотам, жирам, гетероциклам. Рассмотрено выделение веществ из природных объектов. IV глава содержит условия задач для решения на семинарах. В большом приложении даны примерные планы коллоквиумов и семинаров, основы техники безопасности, организация работы со справочной и реферативной литературой, номенклатура ЮПАК, возможности ИК и УФ спектроскопии для определения строения неизвестного вещества. В книге много разнообразных справочных данных. [c.2]

    Имины играют важную роль во многих биологических реакциях, в частности при взаимопревращении аминокислот и карбонильных соединений — производных белков — и при метаболизме углеводов (разд. 8.4,В и гл. 15). [c.155]

    Реакцию, в результате которой из аминокислот образуются белки, можно, вероятно, считать наиболее важной из всех обменных реакций, в которых участвуют аминокислоты. Об этом свидетельствует присутствие в белке больщинства природных аминокислот, а также огромное число данных о биологической роли самого белка. Между тем о механизме синтеза белков, осуществляемого почти всеми живыми клетками, известно очень мало. Опыты на животных различных видов с применением искусственных рационов ясно показали, что для осуществления синтеза белка должны быть налицо все необходимые аминокислоты. Это обстоятельство, а также недостаток сведений о последовательности аминокислот в пептидных цепях и о пространственном размещении последних в белках серьезно затрудняют дальнейшее продвижение. Тем не менее целый ряд искусных и остроумных подходов к этой проблеме позволил расширить наши познания в области синтеза пептидных связей некоторые из этих подходов обсуждаются ниже. [c.259]

    ЮТ СВОЮ особую конфигурацию, а также обычно и способность к катализу в биохимических реакциях. Из двадцати важнейших аминокислот, перечисленных в табл. 40.1, лишь две — цистеин и метионин — содержат атомы серы. Из них только цистеин может легко использовать свою серу для образования дисульфид-ных мостиков. Поэтому одна из важнейших функций цистеина в биологических системах состоит в образовании этих мостиков. [c.53]

    Рассмотрим прежде всего некоторые аспекты использования оксредметрии в биологических исследованиях это, вероятно, наиболее важный и сложный пример. Само существо таких важнейших процессов как брожение (окисление углеводов, жирных кислот и аминокислот до спиртов, карбоновых кислот и т. п.) и дыхание (более глубокое окисление органических веществ кислородом до СО2 и Н2О), а также обратного по своему смыслу процесса восстановления СО2 до сложных органических соединений в реакциях фотосинтеза (хемосинтеза) указывало на то, что количественное описание редокс-процес-сов должно занимать центральное место в науках, посвященных изучению живого. [c.131]

    В течение последних лет были накоплены данные, свидетельствующие о том, что многие биологически важные реакции ацилирования связаны с промежуточным образованием ацилфосфатов (смещанных эфиров фосфорной и карбоновой кислот). К этим реакциям относится и активация карбоксильной группы аминокислот на одной из стадий биосинтеза белка [201, 311]. В связи с этим полезно кратко обсудить методы получения ацилфосфатов. Вследствие большой нey foйчивo ти они в известной мере отличаются от эфиров фосфорной кислоты. Как смешанные ангидриды кислот ацилфосфаты гидролитически неустойчивы и по реакциднной способности напоминают пирофосфаты и ангидриды фосфатов с другими сильными кислотами. Как и ожидалось, в трех группах ацилфосфатов устойчивость возрастает в порядке СЬХXXVIII СХС- [c.142]

    В биологических системах универсальным донором метильных групп является сульфониевое соединение S-аденозилметионин (SAM). В свою очередь SAM синтезируется из аминокислоты метионина и другого биологически важного соединения — адеио-зинтрифосфата (АТР), высокоэнергетического соединения (форма хранения биологической энергии). Как и вообще все химические реакции, протекающие в организме, эта реакция также катализируется ферментом. Реакция термодинамически выгодна и в отсутствие белкового катализатора, однако фермент катализирует ее определенное направление. Без катализатора возможны и другие реакции, например разрыв трифосфатной цепи катализатор же связывает и ориентирует нуклеофильный атом серы таким образом, что становится возможной атака только по метиленовому атому углерода. Позже подробно обсуждается важность такого связывания и эффектов сближения сейчас следует отметить, что, хотя аденозин в составе АТР и не участвует в химическом преврап енин, он служит для узнавания АТР ферментом Фермент узнает молекулу АТР и затем связывается с ней. [c.46]

    ДЕКАРБОКСИЛИРОВАНИЕ. Декарбоксилирование — еще одна общая биологическая реакция а-аминокислот, катализируемая ферментами — декарбоксилазами, которые встречаются у самых различных организмов. Некоторые амины обладают ярко выраженной биологической активностью, и декарбоксилирование аминокислот служит важным источником их возникновения. Особенно существенным является образование дофамина при декарбоксилировании диоксифенил а лапина, поскольку дофамин — это биологический предшественник адреналина. [c.397]

    Реакция Дэкина — Веста открыла простые пути перехода от доступных а-аминокислот через промежуточные а-ациламинокетоны к гетероциклическим соединениям ряда имидазола , пиррола , пиразина , оксазола , тиазола " , а также к биологически важным веществам, например дестиобиотину б-аминолевулино-вой кислоте и дигидросфингозину > [c.9]

    Пиридоксальфосфат замечателен тем, что с его участием протекает множество различных ферментативных реакций. Почти все эти реакции связаны с превращениями аминокислот. В исследованиях по физиологии питания животных и в опытах на микроорганизмах было показано, что недостаточность пиридоксаля (пиридоксина) — биохимического предшественника пиридоксальфосфата — вызывает ряд нарушений белкового обмена. Первые сведения о реакциях, для которых необходим пиридоксальфосфат, были получены в 1934 г., когда обнаружилось, что с помощью особого пищевого фактора можно излечить специфический дерматит, вызванный у молодых крыс неполноценной диетой. Дьёрди назвал этот фактор витамином Bg. (В настоящее время этот термин употребляется для обозначения целой группы биологически важных веществ, структурно родственных пиридоксальфосфату.) Было установлено, что витамин Ве представляет собой 3-окси- [c.219]

    В реакциях 8е электрофил направляется преимущественно в положения 4 и 5 (нитрование) или 2, 4 и 5 (бромирование). Так же как и пиразолы, имидазолы относительно устойчивы к окислению и восстановлению. Имидазольный цикл играет важную роль для проявления биологической активности таких соединений, как аминокислота гистидин и биогенньш амин гистамин, [c.28]

    В настоящее время в разных лабораториях осуществлен абиогенный синтез многих биологически важных мономеров. Большая информация получена относительно абиогенного синтеза аминокислот (табл. 16). Перечисленные в таблице аминокислоты образуются в простых по составу газовых или водных смесях в результате воздей-СТВ1ИЯ на них разными источниками энергии. При некотором усложнении реакционной смеси введением в нее С2-, Сз-углеводородов, уксусного альдегида, гидроксил амина, гидразина и других соединений, образование которых легко происходит в условиях первобытной Земли, синтезируется значительно большее число аминокислот, в том числе и таких, которые не были обнаружены в качестве продуктов реакции в газообразных и водных смесях простого состава. К настоящему времени экспериментально доказано, что почти все аминокислоты, входящие в состав природных белков, можно получить в лаборатории при имитации условий первобытной Земли. [c.166]

    Вполне понятно, что процессы ионизации весьма разнообразны и играют важную роль в реакциях, протекающих в водной (биологической) среде. Однако ионизация не единственный химический процесс, который может иметь место в биологической системе (организме). Аминокислоты — органические молекулы, способные участвовать в реакциях, хорошо известных химику-орга-нику. Можно поэтому ожидать, что подобные реакции протекают и в биологических системах, знакомых биохимикам. Однако проблема заключается в том, что обычные условия проведения химических реакций (высокая температура, безводные органические растворители и т. д.) нельзя переносить на биохимические системы, где все процессы протекают в водной среде при температуре живого тела, с использованием биологических катализаторов— ферментов. Тем не менее для химика-биоорганика интересно сравнить пути реакций, протекающих in vitro, т. е. при химическом синтезе, и in vivo, т. е. в организме. Различия и сходство, преимущества и недостатки моделирования лучше всего видны при параллельном рассмотрении этих процессов, начиная с химии аминокислот и кончая органическим синтезом и биосинтезом белков. [c.45]

    Реакции катализируемого циклопропанирования используют в промышленности в основном для получения инсектицидов на основе эфиров хризантемовой кислоты (1). Эти соединения являются одними из наиболее эффективных известных пестицидов. Для соединения (1) возможно существование четырех изомеров, из которых только один обладает высокой биологической активностью. В исследованиях, направленных на селективное получение этого изомера, важную роль играет асимметрическое циклопропанирование [16]. Поскольку переходный металл входит в переходное состояние, лигандное окружение каталитического центра может влиять на стереохимию реакции. Реакция Симмонса — Смита с использованием хиральных субстратов и циклопропанирование диизосоединениями в присутствии хиральных комплексов меди обычно дают низкие оптические выходы (<10%). Однако в результате тщательного подбора катализатора, лиганда и диазосоединения при использовании медного катализатора был достигнут прекрасный оптический выход одного из изомеров [17]. Так, из этилдиазоацетата в присутствии хирального медного катализатора (2), полученного из оптически активной а-аминокислоты, хризантемовый эфир образуется с приемлемым оптическим выходом (60—70%). При использовании хирального диазосоединения (например, -ментил-диазоацетата) оптический выход существенно возрастает (80— 90%) [схема (3.14)]. [c.77]

    Белки представляют собой полимеры аминокислот. Они играют роль главного структурного элемента в организмах животных. Ферменты, катализаторы биохимических реакций, по своей природе принадлежат к белкам. Все встречающиеся в природе белки образованы приблизительно 20 аминокислотами. Аминокислоты хиральны, т.е. способны существовать в виде несовместимых друг с другом изомерных форм, являющихся зеркальными отражениями друг друга,-энантиомеров. Обычно биологической активностью обладает только одна из двух энантиомерных форм. Структура белков определяется последовательностью аминокислот в полимерной цепи, скручиванием или растяжением цепи, а также общей формой молекулы. Все эти аспекты белковой структуры оказывают важное влияние на их биологическую активность. Нагревание или другие виды обработки могут инактивировать, или денатурировать, белок. [c.464]

    Оксигеназы играют важную роль в процессах биосинтеза, деградации и трансформации клеточных метаболитов ароматических аминокислот, липидов, сахаров, порфиринов, витаминов. Субстратами, на которые воздействуют оксигеназы, часто служат сильно восстановленные не растворимые в воде соединения их окисление приводит к тому, что продукты реакции становятся более растворимыми в воде и, следовательно, биологически активными, что важно для их последующего метаболизирования. У строго анаэробных прокариот кислород, включаемый в молекулу субстрата, происходит не из О2, а из других соединений, например воды. [c.347]

    Биологическая функция каталазы состоит в освобождении клетки от избытка перекиси водорода, образующейся при многих окислительно-восстановительных процессах, как, например, при действии ксантиноксидазы, уриказы, оксидазы -а-аминокислот, диаминооксидазы, и при ряде других ферментативных процессов. Образующаяся перекись водорода или расходуется в процессах, катализируемых пероксидазой, или же разрушается каталазой, причем образующийся кислород снова может быть использован в окислительных реакциях клетки. Таким образом, каталаза является важным элементом общей окислительно-вос-становительной системы клетки. [c.66]

    Алкалоиды — азотсодержащие органические соединения, обладающие основностью, — найдены во многих расте1ниях и биосинтезируются из аминокислот. Они обладают важными биологическими свойствами. Главными предшественниками алкалоидов являются орнитин, лизин, аспарагиновая кислота, фенилаланин, тирозин и триптофан. Например, орнитин и никотиновая кислота дают важный компонент табака никотин (рис. 15.28, а). Из фенилаланина и тирозина образуются относительно простые производные, такие, как эфедрин (рис. 15.28,6), или в результате более сложных реакций изо-хинол иновые алкалоиды, такие, как ретикулин и морфин (рис. 15.28, в разд. 6.9). [c.326]

    ЦИСТЕИН. Аминокислота. НЗСНгСНМНзСООН. Синтезируется в организме животных. Нерастворима в воде. Ц. занимает очень важное место в обмене веществ. Сульфгидрильная группа Ц. 8Н обладает способностью легко окисляться, отдавая водород, идущий на восстановительные биологические реакции. При окислении двух молекул Ц. образуется цистин, обладающий способностью легко восстанавливаться до Ц. Таким образом, система цистеин — цистин является окислительно-восстановительной. В природных белках присутствуют как Д., так и цистин. Являясь важным источником серы, Ц. принимает участие в синтезе многих кератинов [c.355]

    Область органической химии, посвяш нная изучению структуры и химических свойств соединений, синтезируемых живыми организмами, исключительно велика по объему и чрезвычайно разнообразна. Многие типы природных соединений, рассмотренные в предыдущих главах, например углеводы, аминокислоты, белки и пептиды, а также алкалоиды, были исследованы настолько детально, что описанию их распространения в природе, методов выделения и анализа, установления структуры, рассмотрению их химических реакций, способов синтеза, биологических функций и биогенетических реакций, приводящих к их образованию, посвящены (или могут быть посвящены) целые тома или даже серии томов таков объем наиболее важных областей, связанных с исследованием природных соединений. [c.530]

    Витамины являются участниками и биологическими катализаторами химических реакций, протекающих в живых клетках. Присутствуя в тканях в весьма малых количествах, они катализируют реакции превращения аминокислот и бел-"ков, жиров, углеводов, нуклеиновых кислот и стеринов. С участием витаминов осуществляются реакции окисления и восстановления, переноса электронов, пере-аминирования, траисметилирования, карбоксилирования и декарбоксилирования, переноса одноуглеродных и ацильных групп. Витамины необходимы для нормального функционирования всех органов и систем, роста и развития организма в целом, осуществления процесса зрения, кроветворения, кальцйфикации костей, осуществления других жизненно важных функций. [c.20]

    При проведении синтезов с солями аминокислот и пептидов выбор N-защитных групп играет весьма важную роль. Так, в случае фталильной группы возможны побочные реакции, обусловленные частичным расщеплением фталимидного кольца (ср. стр. 39). Хлорангидриды тозиламинокислот легко разлагаются в водно-щелочном растворе, поскольку в этом случае амидная группировка значительно активирована (ср. стр. 43). Реакции конденсации с солями аминокислот и пептидов приобретают в настоящее время все большее значение, несмотря на указанные недостатки этого метода. Правда, иногда выходы достаточно низкие, но это в значительной мере компенсируется тем, что отпадает необходимость гидролиза сложных эфиров. Конечная стадия синтеза высших биологически активных пептидов часто представляет собой реакцию конденсации с соответствующей солью, поскольку гидролиз эфиров высших пептидов всегда сопряжен со значительными трудностями. [c.111]

    Серин часто встречается в биологически активных полипептидах, например в АКТГ, МСГ, глюкагоне, инсулине, эледои-зине, брадикинине. Реакционной способностью гидроксильной группы серина объясняется та большая роль, которую играет эта аминокислота в активных центрах многих ферментов. Главным структурным элементом важного класса фосфопептидов является фосфосерин. Трудности в синтезе серинсодержащих пептидов вызываются высокой реакционной способностью гидроксильной группы, а также лабильностью пептидных связей, образованных серином [589, 948], и склонностью остатка серина к реакциям р-элиминирования и N- O-ацильным миграциям. [c.273]


Смотреть страницы где упоминается термин Аминокислоты биоЛогически важные реакции: [c.314]    [c.45]    [c.15]    [c.688]    [c.574]    [c.415]    [c.115]    [c.127]    [c.40]    [c.84]    [c.260]    [c.218]    [c.220]   
Биоорганическая химия (1991) -- [ c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции биологические



© 2025 chem21.info Реклама на сайте