Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флори распределение по степеням полимеризации

    Из этой формулы видно, что в системе присутствуют два типа макромолекул, содержащих по одной и по две активные концевые группы, ММР каждого из которых описывается наиболее вероятным распределением Флори. Среднечисловая степень полимеризации, вычисленная исходя из (4.55), определяется, как и в отсутствие монофункциональной добавки, формулой (4.14). Однако значение величины 9 = = (1 — а) в этой формуле [c.94]


    На основании этих наблюдений в 1942 г. Флори [238] отчетливо изобразил протекание равновесной поликонденсации. На обе реакции (полиэтерификацию и разложение эфира образовавшимся при поликонденсации спиртом.— В. К.) катализатор и температура действуют аналогичным образом. После того как полиэтерификация подойдет к точке, где средний молекулярный вес велик, свободные карбоксилы настолько переполнены превосходящими их по количеству эфирными группами, что скорость реакции свободных гидроксилов с эфирными группами (т. е. алкоголиза.—5. К.) будет превышать их скорость с карбоксильными группами... Таким образом, можно предположить, что эфирное взаимодействие (обратная реакция.— В. К.) может оказать значительное влияние на распределение видов молекул, полученных при полиэтерификации [238, стр. 2206]. Тем самым Флори в определенной степени ставил под сомнение правомерность пренебрежения влиянием воды на характер поликонденсации, на чем основывался вывод им кинетического уравнения в работе 1939 г. [239]. Более того, в этой же статье 1942 г. Флори отметил, что в смеси, полученной при равновесной поликонденсации, идут реакции, меняющие распределение по видам молекул [238, стр. 2212]. В 1944 г. он конкретизировал это утверждение. Состояние равновесия для полифункциональной конденсации,— отмечал Флори,— рассматривается как реакция между функциональными группами, на которую не влияет степень полимеризации реагентов (подчеркнуто мной.— В. К.), положение равновесия должно быть тем же самым, [c.98]

    Допустим также, что степень полимеризации ответвлений подчиняется распределению Флори [c.146]

    Следуя Флори , можно вывести функцию распределения для простого случая поликонденсации, при которой не происходит изменения реакционной способности функциональных групп в зависимости от длины цепи. В качестве модели удобно выбрать соединение НО—Я—СООН, при конденсации которого образуются молекулы типа Н—[—О—К—СО—ОН, где л —степень полимеризации. Однако природа функциональных групп не влияет на конечный результат. [c.165]

    Т. е. при равновесии, достигаемом в результате межцепного обмена, устанавливается наиболее вероятное молекулярно-весовое распределение Флори [42]. Видно, что равновесное распределение определяется только параметрами системы (общим числом цепей и средней степенью полимеризации) и не зависит от исходного распределения. [c.26]

    Методом фракционирования (около 30 фракций) показано, что молекулярно-весовое распределение полиэтилентерефталата, полученного методом поликонденсации в открытой системе, до и после частичной деструкции в интервале степеней полимеризации 25,4—136 подчиняется уравнению Флори [55]. Прямое измерение [c.29]


    Из приведенных данных видно, что наблюдается хорошее совпадение с распределением Флори. При этом оказалось [64], что характер молекулярно-весового распределения не зависит от средней степени полимеризации, как это видно из рис. 1.2. Константа равновесия межцепного обмена полидиметилсилоксанов также не изменяется при изменении средней степени полимеризации [64]  [c.30]

    Как показали исследования [185], чем выше средняя степень полимеризации поликапроамида, тем меньше однородность по молекулярной массе и тем больше кривая распределения приближается к кривой Гаусса. По Флори, причиной этого является рост вязкости реакционной среды, затрудняющий рост макромолекул и увеличивающий вероятность обрыва цепей. [c.68]

    По Флори, молекулярновесовое распределение в продуктах поли конденсации является статистическим [10]. Теоретически рассчитанная функция распределения подтверждается экспериментальными данными. Функция распределения была определена Тейлором для полигексаметиленадипамида (найлон 66) [11] и Грилем и Люккертом [12] для поликапроамида (найлон 6). Рассчитанное по Флори молекулярновесовое распределение должно быть тем шире, чем выше степень полимеризации. В противоположность этой точке зрения Коршак на основании полученных им экспериментальных данных считает, что выдвинутый Флори механизм реакции поли конденсации и рассчитанная на его основе функция распределения справедливы только при отсутствии в системе реакций деструкции и перераспределения связей. Как было установлено Коршаком [5], реакции деструкции и перераспределения происходят при поликонденсации в результате взаимодействия растущих цепей с молекулами исходных мономеров (например, диамина или дикарбоновой кислоты при синтезе полиамидов) или с другими молекулами аналогичного химического состава (реакции перераспределения между макромолекулами). Участвующие в этих реакциях соединения образуются в процессе поликонденсации либо представляют собой примеси или специально введенные стабилизаторы. [c.26]

    Рассматривая равновесие между мономером и живущим полимером, следует отметить два аспекта проблемы 1) установление равновесия, или, более точно, стационарного состояния, между мономером и растущими концами 2) установление равновесия между всеми растущими макромолекулами. Первое равновесное состояние достигается довольно быстро, в то время как второе — значительно медленнее. Окончательное равновесное распределение устанавливается через длительный промежуток времени. В работе [25] было показано, что в растворах живущих полимеров устанавливается конечное равновесное МВР типа Флори [26], т. е. мольная доля ( о + /)-меров равна КМ. 1 (1 — КМ ), если все константы равновесия одинаковы. В соответствии с нашими обозначениями Рп., — полимер минимального молекулярного веса, о-мер, который способен только присоединять молекулы мономера, но не может деполимеризоваться. Его мольная доля в равновесной смеси должна быть равна (1 — КМ ). Для больших средних степеней полимеризации (1 — 1, и поэтому только [c.133]

    Необходимо отметить, что в рассмотренных теоретических выводах не учтены полидисперсность полимера, сжатие системы при смешении, неравномерность распределения макромолекул и их звеньев (се1 ментов) по объему раствора Кроме того, теория П. Флори и М. Хаггинса, использующая упрощенную физическую модель, не предсказывает существования нижней критической температуры смешения и связанной с ней второй 0-температуры. Тем не менее, если концентрация раствора не слишком низка, указанная теория достаточно хорошо описывает термодинамику растворов высокомолекулярных соединений. В частности, она правильно отражает зависимость от степени полимеризации х< в этом можно убедиться, продифференцировав уравнение (XI 13) и приравняв к нулю первую и вторую производные ЛР . по Фд (условия в критической точке с учетом того, что Ф1-1-Ф2=П1+П2= 1 см выше), что после преобразований приводит к следующим выражениям для критических значений объемной доли и параметра [c.497]

    Молекулярный вес бутилкаучука очень чувствителен к условиям реакции, что вообще характерно для катионной полимеризации (например, чистота реагентов, влага, колебания температуры, равномерность перемешивания и т. д.). Используя хорошо очищенные реактивы, можно получить в данных условиях полимеризации желаемое молекулярно-весовое распределение. Получение при —78° полимера с молекулярным весом ниже 130 000 свидетельствует об ошибках в эксперименте. Молекулярный вес мало зависит от степени превращения (в пределах 10—90%). Молекулярные веса рассчитывают по уравнению Флори [6] на основании значения характеристической вязкости по одной точке, определенной для 0,1%-ных растворов полимера в диизобутилене при 20°. Вместо диизобутилена можно использовать циклогексан. [c.79]


    Характер кривых ММР поликапроамида в значительной степени зависит от числа фракций, взятых для анализа [52]. При увеличении этого числа до 33—63 полидисперсность поликапроамида как с блокированными, так и с неблокированными концевыми группами приближается к ожидаемой по теории Флори—Шульца. В этой связи интересно сопоставление с изменением молекулярномассового распределения расплавленного поликапроамида, полученного по анионному способу полимеризации. В последнем случае сразу же, по завершении процесса конверсии капролактама образуется полимер с очень широким ММР, а после выдерживания расплава 3—4 ч распределение становится очень узким и затем спустя еще 2—3 ч оно достигает величины, ожидаемой по теории Флори— Шульца. Причиной такого значительного изменения характера ММР является деструкция поликапроамида под влиянием катализаторов анионной полимеризации. Полимер становится стабильным только через 4—6 ч, когда катализатор почти полностью инактивируется. [c.34]

    Существующие точки зрения на характер изменения формы кривой распределения в зависимости от степени завершенности реакции прямо противоположны (см. часть I, раздел 2.1). Согласно теории Флори, подтвержденной результатами многочисленных фундаментальных экспериментов, с увеличением степени завершенности реакции значение стремится к 1 Коршак с сотрудниками считает, что величина и приближается к нулю. Коршак обосновывает математически свою точку зрения и приводит в подтверждение ее экспериментальный материал. Недавно советскими авторами была найдена кривая распределения, занимающая промежуточное положение [196]. Все эти дискуссии имеют в основном теоретическое значение, прежде всего для понимания механизма реакции. Для практики важно знать, что при полимеризации в автоклаве в присутствии активаторов получаются продукты с примерно одинаковой кривой распределения. [c.260]

    Было установлено, что полидисперсность поливинилового спирта и характер молекулярно-весового распределения резко зависят от метода полимеризации винилацетата и условий этого процесса [20, 33—37]. При полимеризации в растворителе (лаковый метод) процесс протекает гомогенно и при малых степенях конверсии образуется полимер, имеющий молеку-лярно-весовое распределение (МБР) с одним максимумом, удовлетворяющее теории Флори-Шульца. [c.173]

    Синтез углеводородов из СО и Н2 по сути своей является реакцией полимеризации. Распределение образующихся продуктов подчиняется кинетике полимеризации и может быть описано уравнениями Шульца (для процесса полимеризации) или Флори (для процесса поликонденсации). При высоких величинах степени полимеризации эти уравнения практически совпадают. Андерсоном показана применимость этих уравнений для описания продуктов синтеза Фишера-Тропша. [c.13]

    В ЭТИХ уравнениях N — концентрация исходного полимера, (в основных молях), р = г/г и X — вероятность того, что любое звено первичных цепей примет участие в образовании сетки. Среднечисленное значение степени полимеризации исходных цепей обозначено через г. Если принять, что х<С11, то эффект насыщения сшивания ничтожен. При этом уравнение (7. 104а) эквивалентно уравнению, выведенному Флори [18]. Каждый член суммы уравнения (7.1046) представляет собой концентрацию молекул, имеющих с поперечных связей. Уравнение (7.1046) применимо к полимеризации диенов, так как при постоянной концентрации мономера и значительной скорости передаче цепи для начального полимера характерно случайное (или наиболее вероятное) распределение (см. стр. 311, 315). Величину х для любого данного расхода мономера можно рассчитать методом, аналогичным применявшемуся при выводе уравнения (1.46), и конечное распределение можно затем рассчитать по уравнению (7.1046). Если при полимеризации имеет место гель-эффект (гл. 3), то распределение в исходном полимере отклоняется от случайного, и уравнение (7.1046) точно не соблюдается. Однако Гордон и Ро [31] нашли, что реакция обрыва в системе метилметакрилат-этилендиметакрилат не определяется диффузией вплоть до точки гелеобразования. [c.342]

    Молекулярно-массовому распределению поликапроамида, синтезированного методом гидролитической полимеризации, посвящено много работ. Отмечается [45, 48—54], что поликапроамид, полученный гидролитической полимеризацией, имеет более узкое молекул ярио-массовое распределение, чем это следует из теории Флори—Шульца. Это объясняется процессами поликонденсации и переамидирования, протекающими в полимере, или термодинамическими причинами [52]. Притом отмечается, что менее полиди-спероным является продукт с блокированными концевыми группами. Но поликапроамид становится более однородным, и с увеличением продолжительности выдерживания его в расплаве под вакуумом средняя молекулярная масса снижается за счет увеличения содержания фракций со средней степенью полимеризации. [c.34]

    Методы, использованные до настоящего времени для смещения равновесия, заключаются в удалении побочного продукта реакции из реакционной среды. На основании основных принципов химической статики можно утверждать, что сдвиг равновесия должен происходить в желательном направлении, если другие продукты реакции, например растущие макромолекулы, можно также удалять из сферы реакции. Можно предположить, что в равновесном состоянии может образоваться полимер с молекулярновесовым распределением, отвечающим наиболее вероятному распределению при практически полном израсходовании исходных веществ. Если в рассматриваемую систему ввести такое количество осадителя, чтобы оно вызывало осаждение макромолекул, имеющих степень полимеризации (Р) более высокую, чем выбранное достаточно высокое значение Рд, то осаждение любой такой макромолекулы вызовет удаление двух концевых групп из реакционной среды и (Р—1) связей, образовавшихся в результате поликонденсации. На основании теоретических выкладок Флори [1] и предположений, что концентрация побочного продукта после начальной ста.ции реакции постоянна и определяется его растворимостью, уравнение равновесия может быть записано в следующем виде  [c.240]

    Так как значение п в молекуле каждого типа однозначно определяет ее степень полимеризации, то выражения (4.28) одновременно определяют распределение молекул по числу в них мономерных звеньев. Соотношения (4.28) впервые были получены Флори [11 статистическим методом. Концентрации молекул каждого из трех типов, определяющие РТФ продуктов гетероноли-конденсации, находятся по следующим формулам [c.88]

    Другой статистический подход к расчету точки гелеобразования и ММР поликонденсационных систем предложил Стокмайер [26—29]. Несмотря на то, что он рассматривал только необратимую, а следовательно, неравновесную поликонденсацию, разработанный им метод нахождения наиболее вероятного распределения макромолекул но степени полимеризации напоминает хорошо известный в статистической физике диаграммный метод Майера [30]. Используя те же исходные предположения, что и Флори, Стокмайер рассмотрел поликонденсацию произвольного числа мономеров различной функциональности, но при этом ограничился только случаем, когда каждый мономер имеет одинаковые группы и в системе протекает лишь одна элементарная реакция. [c.161]

    Существует достаточно большое количество данных, подтверждающих постулат о независимости реакционной способности макромолекулы от длины цепи [45, с. 102]. Так, например, справедливость распределения Флори для поликонденсационных процессов может быть проиллюстрирована на примере полигексаметиленадип-амида [53]. На рис. 1.1 приведены кривые молекулярно-весово-го распределения, рассчитанные по уравнению Флори, и экспериментальные данные [54] для по-лиэтиленадипината различной степени полимеризации. Видно хорошее совпадение экспериментальных и расчетных данных. [c.29]

    Основываясь на этом предположении, Флори [1] впервые рассчитал функцию распределения для таких полимеров. Если принять, что константы скорости реакции ииициирования и роста одинаковы, то получается распределение Пуассона. В качестве примера взято инициирование полимеризации окиси этилена этиленгликолем. Для средней степени полимеризации 20 средневесовое значение молекулярного веса больше среднечисленного лишь на 5% и ассимптотически приближается к нему по мере повышения степени полимеризации. [c.330]

    После этого необходимо убедиться, что рассчитанные параметры действительно описывают молекулярновесовое распределение. Для этого по вычисленным из моментов кривой параметрам аир строится теоретическая кривая распределения, которая и сравнивается с экспериментальной. Если обе кривые совпадают, анализ закончен. На рис. 81 и 82 приведены некоторые характерные примеры. Для полиметилметакрилата расчет дает функцию распределения Флори в чистом виде, что указывает на отсутствие рекомбинационного обрыва и полностью согласуется с приведенными ранее данными Шульца [39], в которых показана преимуш е-ственная роль обрыва путем диспропорционирования при полимеризации метилметакрилата выше 70°. Наоборот, для полистирола при полимеризации в близких условиях установлена чисто рекомбинационная функция распределения. В полном соответствии с этим при использовании для полимеризации стирола радиоактивного инициатора показано, что на одну образуюш,уюся макромолекулу приходятся два радиоактивных радикала [13]. Распределение, установленное для полистирола, полученного при 4000 ат и 60° (степень конверсии 10%), оказалось промежуточного типа в этом случае имеет место обрыв [c.281]

    Мы пока не делали никаких предположений о т, допуская, что константа скорости обрыва цепи не зависит от длины цепочки. Это не вполне очевидное предположение было сделано Флори [15] на следующих основаниях акт обрыва кинетической цепи состоит из сближения двух цепочек (если обрыв происходит за счет модификатора, постоянство kf не нуждается в доказательствах) и их взаимодействия, на которое требуется некоторое время. В целом это процесс диффузионно-управляемый. Но так как коэффициент диффузии коротких цепей больше, чем длинных, то, хотя короткие цепи быстрее сближаются, для них повышена вероятность того, что они разойдутся, не успев прореагировать. Длинные же цепи, напротив, сближаются медленно, но зато и вероятность того, что они разойдутся, не успев прореагировать, меньше. Поэтому сте-рические факторы копстант скорости обрыва длинных и коротких цепей должны быть одинаковы. Что же касается энергий активации, то они определяются только природой взаимодействующих активных центров. Опыт подтверждает это предположение, и именно поэтому любая гомогенная система, где сосуществуют реакции обрыва и роста цепей, может характеризоваться постоянным (в ограниченном диапазоне степеней конверсии) средним временем жизни т, а следовательно, распределением растущих цепей вида (1.1). При этом совершенно безразлично, какова детальная природа полнмеризационного процесса — радикальная или каталитическая полимеризация или поликонденсация. В частности, соотношение вида q (р) = было впервые выведено Флори при рассмотрении равновесной подиконденсации [16] и [c.18]


Смотреть страницы где упоминается термин Флори распределение по степеням полимеризации: [c.287]    [c.78]    [c.38]    [c.150]    [c.179]   
Химическое строение и физические свойства полимеров (1983) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация степень полимеризации

Распределение степенное

Степень полимеризации

Флори



© 2024 chem21.info Реклама на сайте