Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос вещества, движущая сила

    Допустим, что в мембране одновременно происходят два необратимых и взаимосвязанных процесса, движущие силы которых и Х2. Величина Х1 соответствует движущей силе векторного процесса транспорта -го компонента газовой смеси, в качестве которой принимают отрицательную разность химических потенциалов на границе мембран ( 1 = —Ац,). Сопряженный процесс с движущей силой Ха может быть векторным, как например, перенос у-го компонента, или скалярным, как процессы сорбции и химические превращения. Феноменологическое описание этих процессов идентично, сорбцию можно рассматри-вать как отток массы диффундирующего компонента из аморфной фазы в кристаллическую, где миграция вещества незначительна. В качестве движущей силы скалярного процесса примем химическое сродство Х2=Аг. Заметим, что, согласно принципу Кюри — Пригожина, сопряжение скалярных и векторных процессов при линейных режимах возможно в анизотропных средах (например, в мембранах гетерофазной структуры) или даже в локально-изотропных, но имеющих неоднородное распределение реакционных параметров [1, 5]. [c.17]


    Коэффициенты массоотдачи и г характеризуют одновременный перенос вещества за счет молекулярной и конвективной диффузии и равны тому количеству диффундирующего компонента, которое передается в расчете на единицу межфазовой поверхности в единицу времени при единице движущей силы. Как видно из уравнения (111.146), последняя может выражаться по-разному. [c.211]

    Как отмечалось выше, продольный перенос является одним из основных факторов, увеличивающих пределы времени пребывания реагирующих веществ в зоне реакции, что во многих случаях является нежелательным. Физически это выражается прежде всего в выравнивании поля концентраций, а для неизотермических процессов и поля температур. Проследим более подробно, как влияет продольный перенос на движущую силу процесса и распределение времени пребывания частиц в реакторе. [c.72]

    Поведение зернистых композиций и процессе их уплотнения обычно связывают с механизмом переноса вещества, движущей силой которого является поверхностная энергия. В дисперсных системах с большими поверхностями и развитыми границами раздела фаз наличие поверхностной энергии приводит к возникновению разницы. давления в среде под разными участками искривленной поверхности. [c.11]

    Гидродинамические особенности турбулентного потока в канале были рассмотрены в гл. 3. Здесь же следует отметить влияние гидродинамических условий на перенос вещества. В пограничном слое толщиной 8 (рис. 15-2) происходит резкое, близкое к линейному изменение концентраций поскольку в этой области потока скорость процесса определяется молекулярной диффузией, роль конвективной диффузии мала. Это объясняется тем, что на границе раздела фаз усиливается тормозящее действие сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Образование гидродинамического пограничного слоя вблизи поверхности раздела фаз ведет к возникновению в нем диффузионного пограничного слоя толщиной 5д, обычно не совпадающей с 5 . В ядре потока массоперенос осуществляется в основном турбулентными пульсациями, поэтому концентрация распределяемого вещества в ядре потока практически постоянна. Как отмечалось выше, перенос вещества движущимися частицами, участвующими в турбулентных пульсациях, называют турбулентной диффузией. Перенос вещества турбулентной диффузией описывается уравнением, аналогичным уравнению (15.14а)  [c.16]


    Как известно, в случае пассивной диффузии вещества движущей силой служит только фадиент его концентрации (Ац) вне и внутри клетки. Если подобный фадиент существует и в процессе активного транспорта вещества, он может вносить определенный вклад в общую движущую силу процесса, однако этот вклад не является определяющим. В большинстве случаев перенос вещества по механизму активного транспорта происходит против концентрационного фадиента этого вещества. [c.103]

    Физическая сущность абсорбции и десорбции заключается в достижении равновесия между взаимодействующими потоками газа и жидкости. Достижение состояния равновесия в системе газ — жидкость зависит от диффузии (переноса) вещества из одной фазы в другую. Движущая сила диффузии определяется разностью парциальных давлений извлекаемого компонента в газовой и жидкой фазах. Если парциальное давление компонента в газовой фазе выше, чем в жидкой, то происходит процесс абсорбции (поглощение газа жидкостью) и наоборот, если парциальное давление извлекаемого компонента в газовой фазе ниже, чем в жидкой, то происходит десорбция (выделение газа из жидкости). [c.83]

    Для массообменных процессов, по аналогии с процессами переноса тепла, принимают, что количество переносимого вещества пропорционально поверхности раздела фаз и движущей силе. Движущая сила характеризуется степенью отклонения системы от состояния динамического равновесия, выражаемой наиболее точно разностью химических потенциалов распределяемого вещества. Диффундирующее в пределах фазы вещество перемещается от точки с большей к точке с меньшей концентра-цией, и в расчетах движущую силу процессов массопереноса выражают приближенно через разность концентраций подобно тому, как в процессах теплопереноса ее выражают разностью температур. Расчетные выражения движущей силы не одинаковы для процессов массоотдачи и массопередачи и будут рассмотрены ниже для каждого из этих процессов. [c.383]

    Диффузия молекул растворенного вещества в жидкость осуществляется путем беспорядочных тепловых движений этих молекул. При диффузии происходит перераспределение молекул, благодаря которому возможен их перенос из областей более высоких концентраций в области более низких. Обычно говорят о концентрационной движущей силе , вызывающей этот перенос, но в действительности диффундирующие молекулы не подвергаются действию силы в направлении градиента концентрации. Любая молекула в каждый момент может равновероятно иметь любое направление движения. Но беспорядочное перераспределение молекул при неодинаковости концентраций приводит к уменьшению разности концентраций и таким образом — к переносу массы в направлении понижения концентрадии. [c.21]

    На рис. П1-21 показано парциальное давление исходного вещества и продукта в отдельных точках реактора. По оси ординат откладывается давление, а по оси абсцисс — высота слоя катализатора. Величина dz обозначает высоту элемента катализатора, а 2г — толщину пленки потока, прилегающего к катализатору, рА — парциальное давление вещества А в потоке рс — продукта С. Движущей силой, обусловливающей перенос вещества из газового потока к поверхности катализатора, является разность парциальных давлений (р — рм)л- [c.256]

    Перенос вещества в процессе диффузии происходит необратимо в направлении от большей локальной концентрации вещества к меньшей до полного их выравнивания. Движущая сила процесса,. заключающаяся в разности локальных концентраций вещества в системе, называется градиентом концентраций. Градиент концентрации одновременно косвенно выражает изменение концентрации в зависимости от расстояния между двумя локальными объемами в системе. [c.19]

    Соотношения для движущих сил массопереноса вещества внутри сплошной (несущей) фазы (1.169) (прямой эффект) и через границу раздела фаз (1.198) существенно отличаются друг от друга. Достаточно сказать, что соотношение (1.198) не содержит перекрестных эффектов, а является прямым эффектом в общем потоке переноса массы через поверхность раздела фаз, в то время как наличие градиента температур в сплошной фазе служит появлению перекрестного эффекта в потоке массопереноса внутри сплошной фазы (1.181). [c.68]

    Приведены формулы для расчета распределения скоростей потока, набегающего на зернистый слой, по длине радиального реактора, Течение в зернистом слое рассмотрено как марковский процесс, усредненные параметры которого заданы плотностью вероятности обнаружения некоторого свойства или состояния движущейся среды в данной области пространства. Приведены уравнения для расчета коэффициентов переноса вещества, энергии и импульса в подвижной фазе, а также инерционной составляющей среднеобъемной силы сопротивления. Табл. 3. Библиогр. 16. [c.176]


    Скорость переноса вещества из одной фазы в другую <1М пропорциональна движущей силе процесса А, характеризующей степень отклонения системы от состояния равновесия, и поверхности контакта фаз с1Р. Следовательно [c.222]

    Число единиц переноса (т или Шх) имеет определенный физический смысл, так как дробь под интегралом показывает, какое число единиц массы вещества переходит из одной фазы в другую ((1у или с1х) при величине движущей силы (у — у или X — X ), равной единице. [c.675]

    Процессы массообмена, проводимые в противоточных аппаратах, на практике обычно сопровождаются продольным перемешиванием, которое уменьшает величину движущей силы переноса вещества из фазы в фазу, что приводит к снижению числа единиц, переноса массы, рассчитанного на основе чистого противотока. Исследования показали, что в некоторых промышленных аппаратах. 60—75% их эффективной высоты теряется вследствие продольного перемешивания. [c.59]

    Массообмен — диффузионный процесс переноса распределенного вещества из одной фазы в другую через разделяющую их границу или внутри одной фазы в неоднородном поле концентраций. Движущей силой служат градиенты концентраций, парциальных давлений, химических потенциалов или температур (при термодиффузии). [c.24]

    Эффективность разделительных аппаратов колонного типа с непрерывным контактом фаз, к каковым относятся насадочные и пленочные ректификационные колонны, часто выражают также через высоту единицы переноса — ВЕП и соответственно через число единиц переноса — ЧЕП. В основе этих характеристик лежит рассмотренное выше понятие о движущей силе массообмена, обусловливающей перенос вещества в колонне отсюда и термин единица переноса . Высоте единицы переноса соответствует высота такого участка разделительной части колонны, для воображаемых концов которого разница в составах входящего (выходящего) и выходящего (входящего) потоков одной из фаз равна средней движущей силе на этом участке. Поскольку применительно к ректификации движущая сила в принципе может быть представлена в виде разности [у—у ) или х —л ), то по отношению к соответствующей разности высоту единицы переноса обозначают как (ВЕП)ог/ или (ВЕП)ох. [c.72]

    Движущей силой процесса молекулярной диффузии является градиент концентраций (1с/(1п, который в общем случае изменяется в направлении переноса вещества. Средний градиент концентраций в первом приближении равен / [c.25]

    При переносе вещества в пределах одной фазы движущей силой является разность концентраций с — с,.р в ядре потока и на границе раздела фаз. [c.29]

    Процесс спекания можно определить как самопроизвольный процесс ликвидации дефектов и заполнения пор, протекающий в порошках и пористых телах. Главная движущая сила этого процесса — избыточная поверхностная энергия. Спекание начинается при небольших температурах со стадии протекания химических реакций на поверхностях и границах раздела твердофазных реакций. У металлических порошков обычно происходит восстановление оксидных пленок, что обеспечивает непосредственный контакт между частицами металла. С повышением температуры увеличивается давление паров вещества, которые конденсируются в соответствии с уравнением Кельвина в зонах контактов частиц, где имеется отрицательная кривизна поверхности. Скорость переноса вещества в этом случае определяется различными видами диффузии, характерными для пористых тел. [c.390]

    В первом приближении можно считать, что результат процесса, характеризуемый, например, массой М перенесенного вещества или количеством переданного тепла, пропорционален движущей силе (обозначаемой в общем виде через Д), времени т и некоторой величине А, к которой относят интенсивность процесса. Такой величиной может быть рабочая поверхность, через которую происходит перенос энергии или массы, рабочий объем, в котором осуществляется процесс, и т. п. Следовательно, уравнение любого процесса может быть представлено в общем виде  [c.17]

    Как было показано в разделе П1. 1, вследствие упаковки элементов слоя в группы с различным коэффициентом пустот газ движется по слою с флуктуациями скорости. Такие флуктуации должны вызвать колебания в интенсивности массоотдачи по отдельным зернам. Действительно, наши опыты с определением убыли массы каждого отдельного зерна показали, что эта убыль рааглична с колебанием 4% вокруг среднего значения (в области Кеэ > 100). При обработке опытов коэффициент массоотдачи рассчитывали как усредненный по суммарной убыли массы на весь ряд. Проверкой корректности метода локального моделирования массообмена одним рядом возгоняемых шариков являются опыты с двумя рядами таких шариков, уложенными один на другой. Движущая сила переноса вещества, определяемая с учетом наличия нафталина в газе на входе в слой, для второго ряда меньше, чем для первого. Расчеты коэффициентов массоотдачи р в этих опытах показали, что в обоих рядах р практически одинаков. [c.149]

    Высота единиц переноса (ВЕП). Допустим, что массопередача происходит из фазы Фу в фазу и движущая сила выражается в концентрациях фазы Ф . Масса вещества М, переходящего из фазы в фазу, составит  [c.416]

    Обратное перемешивание, уменьшая среднюю движущую силу, тем самым, при прочих равных условиях, снижает эффективность массообмена, характеризуемую массой вещества, переходящего в единицу времени из фазы в фазу [см. уравнение (Х,46) или (Х,46а)]. Это снижение эквивалентно уменьшению числа единиц переноса в аппарате. [c.420]

    Движущая сила, обусловленная разностью химических потенциалов, переносит растворитель через мембрану в трубку. Проникновение растворителя можно объяснить как диффузию под действием градиента концентрации в результате проникновения растворителя в раствор содержание растворителя Х1 увеличивается и постепенно приближается к 1, хотя не может быть ей равным, сколько бы растворителя ни прошло в трубку, так как в растворе остается исходное количество растворенного вещества. Поэтому, для того чтобы система находилась в [c.281]

    Диффузия реагентов, таким образом, играет важную роль в гетерогенных процессах. Диффузия — движение частиц среды. (молекул, атомов, ионов, коллоидных частиц и т. п.), приводящее к переносу вещества и выравниванию концентраций (вернее, активностей) частиц данного сорта в рассматриваемой системе. Тем самым движущей силой диффузии служит разность активностей компонентов системы в разных ее частях. В результате гетерогенной реакции, протекающей в некотором месте реакционной среды, активности исходных компонентов-реагентов здесь уменьшаются, чем и вызывается направленный поток вещества в зону реакции. Одновременно происходит противоположный процесс удаления продуктов реакции из зоны взаимодействия. Оба эти потока осуществляются диффузионным путем. [c.227]

    Здесь основная составляющая переноса теплоты AtAt (она базируется на движущей силе А/) дополнена составляющей тегшово-го потока Л даАд, за счет переноса вещества (движущая сила — А ). Эту дополнительную составляющую переноса теплоты называют эффектом Дюфо. Аналогично основная составляющая переноса вещества А т т (она базируется на движущей силе А ) дополнена составляющей переноса вещества A t за счет разности температур А,. Дополнительная составляющая переноса вещества носит название эффекта Соре. [c.67]

    При диффузионном режиме переноса вещества движущейся силой является разность химических потенциалов ве- цества или разность его кг))ще 1трации. [c.277]

    При тех числах Рейнольдса, которые встречаются обычно на практике, числа Пекле весьма велики. Это означает, что уже при сравнительно малых числах Рейнольдса конвективный перенос вещества в жидкости преобладает над молекулярным. То же можно выразить словами коэффициент диффузии в жидкостях столь мал. что уже при малых скоростях течения перенос вещества движущейся жидкостью начинает преобладать над молекулярной диффузией. Последнее обстоятельство можно использовать для упрощения уравнения конвективной диффузии (8,8). Так как DA , выражающее молекулярную диффузию, в силу сказанного крайне мало по сравнению с конвективным членом уравнени (8,8). то им можно пренебречь. Тогда [c.66]

    Из изложенного очевидно, что число Пекле является единственным параметром, характеризующим продольный перенос вещества и, в конечном счете, определяющим режим в реакторе. С увеличением его движущая сила процесса возрастает. Это особенно хорошо проявляется при анализе функций распределения времени пребывания частиц вещества в реакторе при различных значениях члсел Пекле. [c.74]

    Высота аппарата определяется из заданных начальных и конечных концентраций выделяемых компоненюв, движущей силы и скорости переноса вещества. [c.83]

    Как видно из (1.63), (1.64), по сравнению с перекрестными эффектами, развивающимися в однофазных системах [42] (например, эффекты Соре, Дюфура и др.), в случае многофазных многокомпонентных систем (с химическими реакциями, фазовыми превращениями, тепло- и массообменом), подчиняющихся модели взаимопроникающих континуумов, спектр перекрестных эффектов значительно расширяется. Так, на величину диффузионных и тепловых потоков в пределах фазы оказывает влияние относительное движение фаз (коэффициенты ап зи > / 2п+зд)- Поток тепла 5,12) между фазами определяется не только разностью температур фаз, но и движущими силами межфазного переноса массы (коэффициенты i,2jv+2.....2Л42П+1) и химических превращений (коэффициенты, 121 > 2jv+i). Скорость транспорта вещества к-то компонента между фазами определяется прежде всего движущей силой межфазного массопереноса, состоящей из трех частей разности потенциалов Планка (V-ik [c.59]

    Если реакция проходит со значительным положительным тепловым эффектом, то при протекании ее во внешнедиффузионной области температура поверхности частиц значительно больше температуры газового потока. Разогрев поверхности частиц катализатора (распространяющийся в результате теплопроводности в их объем) происходит потому, что процессы переноса тепла и вещества подобны и движущие силы их (С — с) и (Гпов—Т об) пропорциональны. Разница температур газового потока и поверхности частиц катализатора, как и концентраций реагента в объеме и на поверхности, при протекании реакции во внешнедиффузионной области максимальна. На скорость реакции это явление влияния не оказывает, так как она определяется скоростью диффузии, но оно может сильно изменить селективность процеоса. [c.140]

    Для пнтепсификации процессов в производстве солен применяются все приемы увеличения движущей силы АС и развития поверхности соприкосновения реагентов Р (см. ч. I, гл. И и VI). Для солевой технологии особенно характерны процессы в системе жидкость— твердое вещество (Ж—Т). Развитие поверхности соприкосновения фаз в системе Ж—Т достигается чаще всего измельчением твердого материала и перемешиванием взвеси измельченного твердого материала в жидкости при помощи механических или пневматических мешалок. Перемешивание одновременно способствует интенсификации процесса за счет турбулизации системы и замены молекулярной диффузии конвективным переносом молекул. Для увеличения движущей силы массопередачи особенно широко применяются различные приемы повышения начальной концентрации твердых, жидких и газообразных реагирующих ве- [c.141]

    В этих формулах Оу — количество паровой фазы, кмоль1сек О, — количество жидкой фазы, кмоль/сек-, О — количество распределяемого между фазами вещества, переходящее из паровой фазы в жидкую, кмоль/сек-, Шу — число единиц переноса при расчете по паровой фазе [формула (Х-80)] гпх — число единиц переноса при расчете по жидкой фазе [формула (Х-81)] учу — содержание легколетучего компонента в паровой фазе и равновесное в любом сечении аппарата, доли моля х и х — содержание легколетучего компонента в жидкой фазе и равновесное в любом сечении аппарата, доли моля Д1/ср — средняя движущая сила, выраженная в концентрациях паровой фазы при линейной равновесной зависимости, доли моля Длгср — средняя движущая сила, выраженная в концентрациях жидкой фазы при линейной равновесной зависимости, доли моля /Су/ — коэффициент массопередачи, отнесенный к паровой фазе Kxf — коэффициент массопередачи, отнесенный к жидкой фазе. [c.672]

    I—количество чистого абсорбента (чистой жидкости), кмоль/сек О — количество распределяемого между фазами вещества, переходящее из газовой фазы в жидкую, кмоль/сек / — площадь свободного сечения аппарата, м У и У — содержание поглощаемого компонента в газовой фазе и равновесное в любом сечении аппарата, кмоль распределяемого вещества/кмоль чистого инертного газа X и X — содержание поглощаемого компонента в жидкой фазе и равновесное в любом сечении аппарата, кмоль распределяемого вещества/кмоль чистой жидкости ДКср —средняя движущая сила, выраженная в концентрациях газовой фазы при линейной равновесной зависимости ДА ср — средняя движущая сила, выраженная в концентрациях жидкой фазы при линейной равновесной зависимости гпи и т — числа единиц переноса при расчете по газовой или жидкой фазе [формулы (Х-78) и (Х-79)] — объемный коэффициент массопередачи, отнесенный к газовой фазе [формула (Х-72)] Kxv — объемный коэффициент массопередачи, отнесенный к жидкой фазе [формула (Х-73)]. [c.674]

    Простым примером является пористая двухкомпонентная структура, представляющая собой агрегат из спекающихся и неспекаю-щихся кристаллов. По-видимому, существует два возможных пути, которые могут привести к увеличению кристаллов. Первый заключается в потере стабильности неспекающегося компонента, который под влиянием изменяющейся химической среды начинает спекаться. Рис. 6 показывает, как размер кристалла трудноспекающегося вещества, которое более не является стабилизатором, увеличивается со скоростью, пропорциональной скорости спекания легкоспекаю-щегося вещества. Влияние воды и пара на тугоплавкие окислы, подобные окиси алюминия, — пример такого ослабления стабилизатора. Вторая возможность заключается в том, что кристаллы спекающегося компонента могут увеличиваться благодаря наличию механизма байпасного переноса. Атомы спекающегося компонента могут переноситься через промежутки между кристаллами этого компонента, тем самым позволяя термодинамическим потенциалам кристаллов различного размера становиться эффективными движущими силами, промотирующими рост кристаллов. В этих условиях кристаллы стабилизирующего носителя не должны увеличиваться. Но взаимосвязь, представленная на рис. 6, нарушаете , и закономерности, управляющие спеканием спекающегося вещества, фактически возвращаются (хотя и не совсем точно) к закономерностям однокомпонентной системы, которая была показана на рис. 4. Хороший пример такого механизма структурного коллапса — влияние присутствия в медном катализаторе небольшого количества хлора (или [c.43]

    Процесс изотермической перегонки может проходить практически во всех дисперсных системах с частицами, размер которых соответствует области действия эффекта Кельвина. В таких системах частицы разных размеров обладают неодинаковыми химическими потенциалами, что и создает движущую силу переноса вещества от мелких частиц к болае крупным Этот процесс ведет к постепенному нсчезиовению мелких частиц, уменьшению средней дпсперсиости (удельной поверхности) и энергии Гиббса поверхности. [c.276]


Смотреть страницы где упоминается термин Перенос вещества, движущая сила: [c.340]    [c.251]    [c.81]    [c.17]    [c.143]    [c.329]    [c.264]    [c.304]    [c.325]   
Перегонка (1954) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Движущая сила



© 2025 chem21.info Реклама на сайте