Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кизельгур как носитель поверхность

    Оптимальное смещение потенциала при гидрогенолизе глюкозы с никелем на носителе (кизельгуре) равно 200 мВ, со скелетным никелем—240 мВ. Если Аф превышает указанные величины, то это значит, что водород вытесняется с поверхности катализатора органическими веществами (глюкоза, сорбит, ксилит и др.). [c.82]

    Осаждение кобальта на движущейся поверхности (схема с суспендированным катализатором). Носителем в этой схеме служит кизельгур. [c.52]


    Синтез при атмосферном давлении осуществляют в пластинчатых реакторах, а прн повышенных давлениях — в трубчатых. В качестве охлаждающего агента используют воду, которая циркулирует по трубам, пронизывающим пластины реактора, или в межтрубном пространстве в случае трубчатых реакторов. Передача тепла к охлаждающим поверхностям обеспечивается в основном синтез-газом, так как катализатор, содержащий большой процент кизельгура (носитель), обладает очень низкой теплопроводностью. Чем меньше диаметр трубок или расстояние между пластинами, тем меньше вероятность местных перегревов и тем ниже метанообразование. Так как теплопроводность катализатора мала, возможная удельная нагрузка на катализатор не превышает 100 ч", а поэтому и невелика единичная мощность реактора. Сравнительно простой расчет показывает, что, например, реактор емкостью 10 м катализатора может пропустить 1000 м синтез-газа в ч, что при выходе 165—170 г полезных продуктов синтеза на 1 м превращенного газа составляет примерно 120 кг/ч продуктов синтеза (Сз и выше). Охлаждающая поверхность на 1000 м превращенного газа при этом равна 3000 м , а расход металла около 65 т. Для интенсификации отвода тепла более перспективными являются реакторы с кипящим слоем катализатора. [c.301]

    Носителем (трегером) называется материал, на который наносят катализатор с целью увеличения его поверхности, придания массе пористой структуры, повышения ее механической прочности и снижения себестоимости контактной массы. В качестве носителей в контактных массах используются пемза, асбест, силикагель, кизельгур, пористая керамика. [c.129]

    Продолжительность реакции зависит от активности катализатора и в известных пределах от давления. Наиболее активным катализатором для промышленного процесса является твердая фосфорная кислота. Из применяемых носителей наибольшей активной поверхностью обладает кизельгур. [c.237]

    У обычного силикагеля очень большая поверхность, мелкие поры и вследствие этого высокая адсорбционная активность. Однако благодаря химической однородности силикагель более пригоден для применения в качестве твердого носителя, чем кизельгур, содержащий значительные примеси железа, кальция, магния и других металлов. На основе силикагеля можно изготовить носитель, обладающий достаточно малой адсорбционной активностью. После его обработки водой в автоклаве с последующей силанизацией, т. е. замещением групп —ОН на поверхности силикагеля группами —051(СНз)з, такой носитель становится инертным, приобретает однородную поверхность и хорошую механическую прочность и смачиваемость. Диаметр его пор может быть увеличен до 0,5- 10 мм. [c.182]


    На поверхность инертного носителя (кизельгур, истолченный огнеупорный кирпич, пемза) предварительно перед хроматографированием смеси газов наносят слой нелетучей удерживаемой носителем жидкости (неподвижная фаза) —эфиры высокомолекулярных спиртов сили- [c.37]

    Киселев и Щербакова (1961) смогли изготовить однородные, правильной формы носители также на основе силикагеля. В первоначальной форме силикагель, состоящий из водной кремневой кислоты, обладает очень большой поверхностью и имеет весьма мелкие поры (см. табл. 2). Объясняющаяся этим адсорбционная активность со всеми ее неприятными последствиями (асимметричность пиков, зависимость величин удерживания от величины пробы и т. д.) обычно препятствует применению силикагеля в качестве носителя. В отдельных случаях влияние носителя на коэффициенты распределения может оказаться полезным, по многочисленные недостатки все же мешают общему его применению. Однако для изготовления носителя, не зависящего от нагрузки, силикагель вследствие своей химической однородности был бы более пригоден, чем, например, кизельгур, содержащий примеси (соединения Fe, Al, Са, Mg), если бы удалось уменьшить его большую поверхность, расширить мелкие поры, достичь равномерного распределения пор и дезактивировать группы Si — ОН. Этого сумели достичь Киселев и Щербакова (1961) при помощи обработки силикагеля водой в автоклавах с последующим замещением групп ОН группами 031(СНд)з. Такой материал в значительной степени инертен (Киселев, 1963), обладает однородной поверхностью (ширина пор может быть увеличена до 0,5-10" мм) и хорошей механической прочностью. [c.89]

    Каталитическую активность гетерогенного катализатора характеризуют константой скорости реакции, отнесенной к одному квадратному метру поверхности раздела фаз реагентов и катализатора, или скоростью реакции при определенных концентрациях реагирующих веществ, отнесенной к единице площади поверхности. Промышленные катализаторы применяют в форме цилиндров или гранул диаметром несколько миллиметров. Гранулы катализатора должны обладать высокой механической прочностью, большой пористостью и высокими значениями удельной поверхности. Большую группу катализаторов получают нанесением активного агента, например платины, палладия, на пористый носитель (трегер) с высокоразвитой поверхностью. В качестве носителей применяют активированный уголь, кизельгур, силикагель, алюмогель, оксид хрома (П1 и другие пористые материалы. Носитель пропитывают растворами солей металлов, например Pt, Ni, Pd, высушивают и обрабатывают водородом при 250—500° С. При этом металл восстанавливается и в виде коллоидных частиц [л = (2 -f- 10) 10 м1 осаждается на поверхности и в порах носителя. Можно провести синтез катализатора непосредственно на поверхности носителя, пропитав носитель растворами реагентов, с последующей термической обработкой. Так получают катализаторы с металлфталоцианинами, нанесенными на сажу, графит и другие носители. Широко применяются металлические сплавные катализаторы Ренея. Их получают из сплавов Ni, Со, u, Fe и других металлов с алюминием в соотношениях 1 1. Сплав металла с алюминием, измельченный до частиц размером от 10" до 10" м, обрабатывают раствором щелочи, алюминий растворяется, остающийся металлический скелет обладает достаточной механической прочностью. Удельная поверхность скелетных катализаторов превышает 100 м г" . Такие катализаторы применяются в процессах гидрирования, восстановления и дегидрирования в жидкофазных гете рогенно каталитических процессах. [c.635]

    Количество неподвижной фазы, необходимое для покрытия твердого носителя, зависит от многих факторов. Основное требование при этом заключается в том, что количество неподвижной фазы никогда не должно быть настолько велико, чтобы полученный сорбент становился клейким и частицы спекались вместе, так как при этом эффективность разделения значительно снижается. Максимальная способность к поглощению жидкости в значительной степени зависит от величины и структуры поверхности твердого носителя (см. табл. 2). Активный силикагель, например, может поглощать до 60% неподвижной фазы стеклянные микрошарики, напротив, могут удерживать жидкую фазу в количестве лишь около 3% собственного веса для шамотовой муки и кизельгура содержание неподвижной фазы не должно превышать 20-30%. [c.96]

    Электрофорез в тонком слое проводится в закрепленном толщиной 1—2 мм слое силикагеля, агара, агарозы, крахмала, полиакриламидного геля, сефадекса, целлюлозы, кизельгура, окиси алюминия, алебастра. Проводящую жидкость вводят в слой носителя нли ею опрыскивают слой после его формирования. Раствор исследуемого вещества вносят на поверхность слоя или внутрь отверстий, вырезанных в слое. Электрофоретический процесс можно проводить в устройствах, предназначенных для электрофореза на бумаге. [c.147]


    При выборе носителя важно знать, для какого типа каталитической реакции он больше подходит. Хорошо известен факт, что течению многих реакций способствует контакт с твердыми поверхностями. Пористые контакты эффективны при окислении, гидрогенизации, хлорировании и других процессах, так как они способны адсорбировать кислород, водород, хлор и т. д., облегчая этим их соприкосновение с реагирующими компонентами. Таким образом, природа и функции носителя могут быть специфичны не только в отношении катализатора, но также и в отношении типа реакции. В то время как осаждение платины или палладия на силикагеле, кизельгуре и других носителях значительно повышает способность этих катализаторов к гидрогенизации, гидрогенизирующее действие платины, осажденной на угле, незначительно. Сульфат бария или пемза также понижают каталитическую активность палладия. Действие носителя бывает отрицательным, когда эти катализаторы осаждены на таких углеродистых веществах, как крахмал и производные насыщенных углеводородов. Способность платины к дегидрогенизации, когда она осаждена на угле или целлюлозе, повышается в такой степени, что реакция проходит при комнатной температуре [269, 432]. [c.502]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со, А ). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. На роль носителей бифункциональных катализаторов указывалось выше. [c.419]

    Ферменты представляется возможным прикрепить к поверхности носителя путем сорбции к ионитам — катионитам (содержащие активные кислотные группы) или к анионитам (содержащим преимущественно основные группы). В качестве сорбентов — носителей ферментов часто используют гель гидроокиси алюминия или фосфата кальция, диатомит, модифицированный крахмал, бентониты, кизельгуры и др. Сорбцию ферментов осуществляют либо в колонках путем пропускания раствора фермента с определенной скоростью через слой ионитов, либо в реакторах, в которых сорбент определенное время перемешивают с раствором фермента. Полученный продукт затем используют как иммобилизованный ферментный препарат. Адсорбция фермента к носителю не обеспечивает их длительную стабилизацию. Более длительную стабилизацию обеспечивает ионообменное связывание фермента, например на модифицированных ионообменных целлюлозах. [c.205]

    При газо-жидкостном методе сорбентом является нелетучая жидкость, пропитывающая твердый носитель, который не участвует непосредственно в сорбционном процессе и служит для создания большой поверхности жидкости. Разделение компонентов смеси зависит от их растворимости в поглощающей жидкости. В качестве твердого носителя используются природные алюмосиликаты типа диатомита, кизельгура, пемзы и др. В качестве растворителей применяются вазелиновое масло, бензил-дифенил, диметилформамид и др. [c.31]

    Аналогичный прием описан в ряде патентов [11—14]. Для улучшения процесса декобальтизации (распада карбонила кобальта) и образования развитой поверхности гидрирующего катализатора вводимый в стационарную систему кобальт может быть нанесен на какой-либо подходящий носитель (кизельгур, инфузорная земля, пемза и т. д.) [15—17]. [c.7]

    В качестве порошкообразного носителя используют диатомитовую землю (кизельгур), представляющую собой природную окись кремния удельной поверхностью около 50 мVг. [c.35]

    Нанесенные катализаторы. Под этим типом понимаются катализаторы, в которых активный компонент находится на поверхности каталитически недеятельного в данном процессе носителя в количестве, обеспечивающем образование мелкокристаллической фазы металла на поверхности. Носителем обычно являются активированный уголь, синтетические системы с развитой поверхностью (алюмогель, силикагель, алюмосиликаты и т. д.), некоторые природные материалы (кизельгур, трепел, пемза, асбест и т. д.). [c.63]

    Фосфорную кислоту применяют или в жидком виде - на твердом инертном носителе, например на пемзе, силикагеле, кварце, активном угле, или в виде специально приготовленного катализатора в смеси с кизельгуром. Фосфорная кислота на кизельгуре представляет собой комплексное соединение, активным началом в котором является фосфорная кислота, а кизельгур играет роль носителя с высокоразвитой пористой поверхностью. Катализаторы этого типа транспортируют в герметически закрытых бочках, хранить их необходимо в сухих отапливаемых в зшлний период помещениях, так как они не терпят сырости и холода. Влага, попадающая из воздуха, нарушает структуру катализатора и приводит к потере каталитической активности. При низких температурах происходит разрушение комплекса, в результате вымораживания снижается содержание влаги, наблюдается механическое разрушение катализатора и потеря его каталитической активнос- [c.40]

    Кизельгур — это природная двуокись кремния (с 70—90, но чаще с 80—90% ЗЮг), которая пока еще широко используется в качестве носителя металлических катализаторов. Большинство разновидностей представляют собой порошки, но имеются и гранулированные сорта. По величине удельной поверхности и среднему диаметру пор все разновидности относят к двум категориям необработанный кизельгур—15—40 м /г, 0,2—0,7 мкм и прокаленный кизельгур — 2—6 м7г, 2—5 мкм (большей поверхности соответствует меньший размер пор). Природный кизельгур содержит также некоторое количество пор среднего диаметра (<10 нм), которые при прокаливании исчезают. Ценность кизельгура как носителя объясняется тем, что он обладает достаточной термической и химической стабильностью, которая сочетается с умеренной удельной поверхностью и относительно крупными порами, облегчающими транспорт реактантов. Характеристики имеющихся разновидностей кизельгура можно найти в статье [33]. [c.53]

    Второй метод получения стабилизированных пористых металлов — соосаждение он применим к железу, кобальту и никелю. Гидроокиси этих металлов и стабилизатор осаждают одновременно из водного раствора, осадок промывают, фильтруют, сушат и восстанавливают водородом. Если химическим промотором служит растворимая в воде соль калия, ее добавляют пропиткой катализатора перед восстановлением. Стабилизированный катализатор часто распределяют на носителе с низкой или средней удельной поверхностью, например на кизельгуре или низкопористых гранулированных образцах двуокиси кремния или окиси алюминия, чтобы повысить его доступность для реактантов. Носитель вводят путем суспендирования перед или в процессе соосаждения. Окислы можно также получать термическим разложением нитратов, однако этот способ применяется редко. [c.232]

    В литературе описано [406, 407] приготовление осажденного на кизельгуре платинового катализатора для получения серной кислоты. Материалы с высоким содержанием кремневой кислоты можно нагревать с силикатами. Свежеосажденную окись алюминия нагревают с силикатом для получения нейтральных соединений, ингредиенты основного характера удаляют из реакционной смеси обработкой минеральными кислотами (соляной или серной). Активирующие вещества можно осаждать на поверхности носителя из водной или спиртовой суспензии и сушить при 60 —100°. Такие носители, как морскую пену или кизельгур, можно платинировать пропитыванием раствором хлорной платины и последующим высушиванием при 60—100°. Перед платинированием носитель прессуют или формуют и прокаливают при температуре не выше 1000° [19]. [c.492]

    Никель (активированная поверхность) Никель на носителях (кизельгур, японская кислая земля) [c.32]

    Твердые носители. Диатомит — материал, известный в Северной Америке под названием диатомовая, земля и в Европе под названием кизельгур, используется для фильтрования, как инертный наполнитель в динамите, основной компонент огнеупорного кирпича и даже как абразивный компонент зубных паст. Он представляет собой одну из многих природных разновидностей оксида кремния. Диатомит состоит из остатков микроскопических кремневых панцирей диатомовых морских водорослей. Он имеет менее развитую поверхность, чем силикагель [c.577]

    Более длительной работе никеля на кизельгуре препятствует малая механическая прочность кизельгура вследствие его химического взаимодействия с водой при высоких температурах и высоких pH среды. Поэтому представляют интерес работы по применению для гидрогеиолиза катализаторов на носителях, устойчивых к воздействию реакционной среды, — на окиси алюминия алюминатах кальция [47], а также сплавных порошкообразных медно-алюминиевых катализаторов [42]. Такие катализаторьг должны быть, очевидно, стабильнее никеля на кизельгуре их активность и селективность в процессе гидрогеиолиза углеводов может значительно отличаться от соответствующих свойств никеля на кизельгуре, так как применение окиси алюминия в качестве носителя значительно увеличивает прочность связи водорода с поверхностью [48]. Следует, однако, заметить, что большая твердость никелевого катализатора на окиси алюминия по сравнению-с никелем на кизельгуре может вызвать значительную эрозию оборудования, трубопроводов и арматуры, а повышенная плотность этих катализаторов затрудняет их использование в суспендированном виде необходимы работы по усовершенствованию таких катализаторов. [c.121]

    Активность катализатора характеризует его производительность. Чем активнее катализатор, тем меньше его нужно для превращения определенного количества исходных веществ в конечные продукты за единицу времени. Активность твердого катализатора зависит главным образом от состояния его поверхности. Катализаторы обычно применяются в виде таблеток, шариков или зерен небольших размеров. Для увеличения поверхности часто катализатор наносят на подложку (носитель), обладающую пористой поверхностью. В качестве носителей применяют активированный уголь, пемзу, кизельгур, окись алюминия, силикагель и искусственные цеолиты различных марок. Носитель повышает активность катализатора, придает ему механическую прочность и уменьшает, его расход. Активность многих катализаторов удается повысить добавлением небольшого количества так называемых промоторов, или активаторов. Действие активатороь может быть различным. Одни вещества увеличивают внутреннюю поверхность катализатора, т. е. воздействуют на его структуру и способствуют ее сохранению во время работы. Такие промоторы получили название структурных. Другие активаторы изменяют химический состав поверхности катализатора, увеличивают число активных центров. Такие активаторы получили название химических. [c.217]

    Колонку наполняют носителем (силикагель, окись алюминия, кизельгур и др.)—веществом, индифферентным к хроматографируемым веществам и в отношении к применяемому растворителю. Носитель удерживает на своей поверхности жидкую фазу — неподвижный растворитель. Пробу хроматографируемого раствора, содержащего несколько компонентов, вносят в колонку и после того, как раствор впитается, про- [c.282]

    Носители неподвижных фаз. В ГЖХ НФ наносят на твердый носитель (см. рис. 28.12). Носитель должен обладать достаточной удельной поверхностью, механической прочностью, однородным распределением пор и размеров частиц, а также способностью смачиваться НФ. Весьма важными свойствами являются малая адсорбционная активность и химическая инертность, что достигается специальной обработкой носителя. Как правило, используют носители с поверхностью I—5 м /г, предварительно обработанные кислотами, щелочами и специальными реагентами для уменьшения адсорбционной активности. Наиболее часто применяют носители на основе диатомита (кизельгур)— осадочной породы, состоящей из панцирей диатомовых водорослей. Кроме того, используют стеклянные мккрошарики, силикагель, тефлон и некоторые другие материалы. [c.623]

    Первоначально в качестве носителя использовали светло-серое или красновато-коричневое аморфное вещество, которое оседает в качестве продукта биологического распада микроскопических водорослей (В1а1ошасеае) и встречается в виде огромных залежей на дне бывших водоемов на территории Канады, Советского Союза, США, Северной Африки, Нижней Австрии, Чехословакии, ГДР и ФРГ (Саксония и Гессен). Сырой кизельгур состоит препмущественно из кремневой кислоты, содержащей от 20 до 60% физически связанной воды. Путем отмучивания удаляют песок, присутствующий в качестве прпмесн затем кизельгур сушат и измельчают. При прокаливании во вращающихся печах, например с добавкой щелочей, удаляют органические вещества при этом окраска кизельгура изменяется и удельная поверхность уменьшается с 12—40 м г (для сырого продукта) до 1—5 м г. Затем кпзельгур измельчают, просеивают и иногда еще освобождают от окислов железа. Из этого порошкообразного материала в лаборатории можно приготовить подходящий твердый носитель. [c.79]

    Вследствие малой удельной поверхности стеклянных шариков (см. табл. 2) на них можно наносить лишь малые количества неподвижной фазы. Максимальное количество неподвижной фазы зависит от радиуса шариков, иоверхностного натяжения и плотности неподвижной фазы и изменяется в пределах 0,05—3%. При оптимальном содержании ненодвижной фазы достигается высота теоретической тарелки 0,5 — 1 мм, причем в области скоростей 16 —100 мл мин эта величина не зависит от скорости газа. Этот факт, а также малое содержание неподвижной фазы позволяют снизить время анализа (которое, как известно, зависит от количества неподвижной фазы и от скорости потока газа) па 40% при том же качестве разделения, и, следовательно, можно работать при температурах на 250° ниже температуры кипения наиболее высококипящего компонента анализируемой смеси (Хишта, Мессерли и сотр., 1960). В этом, по-видимому, заключается главное преимущество стеклянных микрошариков как носителей. Таким образом, оказывается возможным применять менее устойчивые к нагреванию полярные неподвижные фазы, использовать аппаратуру, менее пригодную для работ нри высоких температурах, и, кроме того, исследовать вещества, термически неустойчивые. Вследствие малого количества неподвижной фазы приходится, однако, применять пробы малого размера. Правильная форма стеклянных шариков позволяет изготовлять колонки с воспроизводимыми величинами числа тарелок , что в случае носителей на основе кизельгура (Шретер и Лейбнитц, 1961) связано со значительными трудностями. [c.88]

    В газожидкостной хроматографии применяются два типа колонок — наполненные и капиллярные. Наполненные колонки по конструкции такие же, как и в газоадсорбционной хроматографии. Для заполнения колонок применяют нелетучие жидкости (неподвижная фаза), нанесенные в виде тонкого слоя на поверхность инертного носителя. В качестве носителей используют огнеупорный кирпич, кизельгур, трепел, диатомиты, размолотые до размера частиц 0,1—0,2 мм, в качестве неподвижной фазы — разнообразные масла вазелиновое, растительное, силиконовые — синтетические полимерные и т. п. Подбирая подходящую неподвижную фазу, обладающую различной растворяющей способностью по отношению к компонентам анализируемой смеси, и изменяя температуру колонки, удается получить четкую хроматограмму, на которой каждый пик соответствует одному компоненту, практически для любой смеси веществ. Анализ, как правило, проводят при температуре, близкой к темпе ратуре кипения смеси, однако возможно проведение анализа и при температурах на 200—300° ниже темпе  [c.127]

    В тонкослойной хроматографии адсорбентом служит тонкий, равномерный слой (обычно толщиной около 0,24 мм) сухого мелкоизмельченного материала, нанесенного на подходящую подложку, например на стеклянную пластинку, алюминиевую фольгу или пластмассовую тленку. Подвижная фаза движется то поверхности пластинки (обычно под действием капиллярных сил) хроматографический процесс может зависеть от адсорбции, распределения или комбинации обоих явлений, что в свою очередь зависит от адсорбента, его обработки и природы используемых растворителей. Во время хроматографирования пластинка находится в хроматографической камере (чаще всего изготовленной из стекла, чтобы можно было наблюдать движение подвижной фазы по пластинке), которая обычно насыщена парами растворителя. В качестве твердого носителя часто используются силикагель, кизельгур, окись алюминия и целлюлоза для лучшего сцепления с носителем к нему можно прибавлять соответствующие вещества, например сульфат кальция (гипс). Для изменения свойств приготовленного слоя его можно пропитать буферными материалами, чтобы получить кислый, нейтральный или основной слой можно использовать и другие вещества, такие, как нитрат серебра. В некоторых случаях слой может состоять из ионообменной смолы. Такой широкий диапазон различных слоев, используемых в сочетании с разными [c.92]

    Твердый носитель служит для удержания тонкой равномерной пленки неподвижной жидкой фазы, его поверхность должна обеспечивать достаточное разделение. Он должен иметь достаточную механическую прочность и быть инертным как по отношению к анализируемым веществам, так и к жидкой фазе. В качестве твердых носителей применяют материалы на основе кремнезема — диатомита или кизельгура (например, сферохромы, хроматоны, хезосорбы, целиты) фторугле-родных полимеров (например, тефлон, полихром) полистирола и сополимеров стирола и дивинилбензола (полисорбы). В отдельных случаях в качестве твердых носителей могут использоваться кристаллы некоторых солей (например, хлорида натрия), стеклянные шарики и графитированная сажа (карбохром). Наиболее часто используемый размер частиц твердого носителя от 0,1 до 0,5 мм. В зависимости от задач анализа свойства носителей можно изменять обработкой их кислотами или щелочами, а также силанизированием. [c.107]

    К числу модификаторов можно отнести и носители (трегеры), которые повышают активную поверхность катализатора (например, в случае нанесенных металлических катализаторов), увеличивают термостойкость и механическую прочность катализатора и другие его физико-механические и химические характеристики. В качестве носителей используют оксид алюминия, силикагель, активный 5толь, пемзу, кизельгур и другие природные и синтетические материалы. [c.642]

    В состав катализатора помимо основного (базового) металла входят также различные добавки — промоторы. По принципу действия их подразделяют на структурирующие и химические. Структурирующие (или структурные) промоторы способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации его активной фазы. В качестве таких промоторов чаще всего используют трудно восстанавливаемые оксиды—АЬОз, 2гОг, TiOz, MgO и СаО. Для осажденных катализаторов аналогичную роль играют также носители—-кизельгур, доломит, диоксид кремния, цеолиты, алюмосиликат. Химические промоторы увеличивают скорость реакции и влияют на ее селективность. [c.281]


Смотреть страницы где упоминается термин Кизельгур как носитель поверхность: [c.152]    [c.338]    [c.23]    [c.431]    [c.409]    [c.58]    [c.300]    [c.99]    [c.44]    [c.229]    [c.446]    [c.519]   
Структура металических катализов (1978) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Кизельгур

Кизельгур как носитель



© 2024 chem21.info Реклама на сайте