Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители окисления

    Катализатор можно применять либо в виде металлической сетки, либо на инертном носителе. Окисление проводят при 500—700°, поскольку воздуха берут обычно меньше, чем требуется по уравнению (1), причем часть формальдегида образуется в результате дегидрирования метилового спирта по реакции [c.295]

    Выделение америция обычно ведут методом соосаждения с солями лантана. Затем америций отделяют от носителя окислением до шестивалентного состояния персульфатом аммония в присутствии иона Ag+ в 0,2 М азотной кислоте при осаждении лантана в виде фторида из окисленного раствора америций остается в растворе [33]. [c.538]


    Коски полагает, что атомы S , образующиеся в кристаллическом хлориде калия в отсутствие кислорода, находятся в виде S или S, причем из-за быстрого изотопного обмена эти две формы неразличимы. Если в воде отсутствует сульфидный носитель, то восстановленные атомы окисляются растворенным кислородом до сульфит- или до сульфат-ионов (в отсутствие как сульфидного, так и сульфитного носителей). Это окисление (S ) или до сульфата в отсутствие носителей (окисление полностью заканчивается менее чем за 3 мин. при комнатной температуре в присутствии кристаллического КС ) протекает гораздо быстрее, чем окисление макроколичеств S или S. Коски показал, что, если не имеется растворенного кислорода, водные растворы (5 ь) или в отсутствие носителей вполне устойчивы. [c.215]

    Неподвижная фаза также может быть причиной погрешностей хроматографического анализа. Высокий уровень шума или дрейф нулевой линии часто связан с низким качеством неподвижной фазы (высокое содержание летучих примесей) или низкой стабильностью фазы, вызывающей выделение летучих продуктов из-за разложения на каталитически активном твердом носителе, окисления примесью кислорода в газе-носителе, термического разложения и т. д. Кроме того, ухудшение формы пиков и снижение коэффициента разделения может происходить при старении колонки из-за длительной эксплуатации, временных перегревов или одновременного превышения предельных [c.38]

    Катализатор можно применять или в виде металлической сетки, или на инертном носителе. Окисление проводят при 500—700°С, причем вследствие того, что количество воздуха обычно меньше требуемого по уравнению [c.278]

    Как и хемиосмотическая, конформационная гипотеза не является окончательно доказанной, хотя в ее пользу и говорят некоторые факты. Конформации белковых носителей окисленных и восстановленных переносчиков различаются между собой. При запускании транспорта электронов в мембранах наблюдаются структурные перестройки митохондрий и хлоропластов, регистрируемые по сокращению их объема. Установлено, что конформационные перестройки хлоропластов происходят только в том случае, если транспорт электронов сопряжен с фосфорилированием. В присутствии ингибиторов фосфорилирования сокращения объема хлоропластов не наблюдается. [c.107]

    Направление превраш,ения, т. е. вид адсорбированного комплекса, будет зависеть от строения соответствуюш его окисляемого соединения. Сопоставление реакционной способности в реакции парофазного окисления осуществлено в ряду метилпиридинов. В опытах, проведенных в безградиентном реакторе, в присутствии ванадий-молибден-фосфорного катализатора на корундовом носителе, окислению подвергались изомерные метилпиридины при 370—430° С, временах контакта 0,15—1,0 сек и разбавлении воздухом и парами воды в мольном отношении к пиридину, равном 13 10 1. Данные табл. 5 показывают, что скорость суммарного превращения изомерных ме-тилпиридинов уменьшается в ряду изомеров 4-> 2- 3-. [c.54]


    Катализатор можно применять или в виде металлической сетки, или на инертном носителе. Окисление проводят при 500—700° С, причем вследствие того, что количество воздуха обычно меньше требуемого по уравнению (1), некоторое количество формальдегида образуется в результате дегидрирования метилового спирта  [c.278]

    Разновидностью метода является окисление пропилена в акролеин с катализатором СиО на носителе в кипящем слое [63]. [c.96]

    Носителем кислорода в реакциях прямого окисления чаще всего служит воздух или любой другой окислитель. Реакция Клауса — реакция взаимодействия H2S и SO2  [c.190]

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]

    В этих условиях наблюдались следующие реакции гидрогенолиз пентана с образованием метана, этана и бутана, изомеризация в изопентан и Сз-дегидроциклизация с образованием циклопентана. Влияние времени контакта на протекание реакций по названным направлениям представлено на рис. 13. Для циклизации наблюдается насыщение, что авторы объясняют достижением равновесия реакции изомеризации и гидрогенолиза не лимитируются равновесием. Показано, что увеличение температуры прогрева катализатора выще 200 °С ведет к уменьщению удельной поверхности металла, а прокаливание его при 700°С вызывает рост кристаллитов (от 0,7 до 15,0 нм). При обработке катализатора кислородом частицы металла подвергались поверхностному окислению и мигрировали по поверхности носителя, образуя крупные кристаллиты. Изменение дисперсности металла сильно влияло на скорость гидрогенолиза ( 1). Скорость изомеризации (Уг) гораздо меньше зависела от дисперсности металла и в определенном интервале мало снижалась при увеличении размера кристаллитов. Соответственно, отношение скоростей зависит от размера кри- [c.93]

    Скорость окисления зависит от корня квадратного скорости инициирования вследствие бимолекулярной природы реакции обрыва. Реакция обрыва выражается в основном реакцией (6), в то время как реакции (4) и (5) значения не имеют. В стадии развития скорость определяется не реакцией (2) R + Оа, а скорее реакцией (3), / 00 -Ь / Н определяет время каждого цикла. Из носителей цепи (активных центров) в сравнительно высокой концентрации (обусловленной факторами стабильности, как указано Б табл. 2) присутствует радикал ROO , и поэтому уравнения скорости для стадий развития и обрыва цепи зависят от концентрации данного промежуточного продукта. [c.289]

    Предыдущие кинетические формулы выведены при допущении только двух носителей цепи, а именно осколков R и ROO. С точки зрения кинетики нельзя делать различия между образованием гидроперекиси и образованием диалкилперекиси. Образование обоих типов перекисей при окислении сквалена и 2,6-диметил октадиена-2,6 подчиняются одному и тому же кинетическому выражению [26]. [c.289]

    Приведенные уравнения скорости реакции окисления выражают зависимость скорости лишь от некоторых переменных факторов. Более полный анализ всей реакции включает не только идентификацию носителей цени и конечных продуктов, но также продолжительность жизни и концентрацию этих промежуточных продуктов. Так как концентрация про-мен<уточных осколков не превышает 10 молей на 1 литр, то концентрацию следует вычислять косвенными методами [77]. [c.289]


    Время жизни кинетической цепи (т) определяется концентрацией носителя цепи ([/ 00 ] п случае окисления при высоком давлеиии кислорода) и скоростью инициирования (/ )  [c.290]

    Бреттон, Уэн и Додж [11] получили небольшие количества малеино-вой кислоты и формальдегида, а также следы глиоксаля при окислении н-бутана над катализатором из пятиокиси ванадия на носителе при высоком отношении воздуха к углеводороду. Около 80% углеводорода окислялось при этом до окиси углерода и углекислого газа. [c.339]

    В результате изучения кинетики окисления углеводородов установлено, что оно носит характер цепной реакции [83—86]. Такого рода реакция продолжается до тех пор, пока не произойдет, обычно в результате столкновения носителя цепи со стенкой сосуда, обрыв цепи. Если распространение цепи заканчивается одновременно с окончанием горения, то горение происходит нормально. Если же деактивация носителя цепи (активного центра) происходит медленнее, чем распространение цени, то наступит такой момент, когда концентрация цепей и носителей цепи станет настолько большой, что скорость реакции будет подниматься очень быстро несгоревшие газы при этом окислятся, и реакция закончится с неожиданной силой. [c.405]

    Акролеин образуется нрп окислении пропилена воздухом над катализатором (окись меди на носителе) [282]. Этот ненасыш,енный альдегид также получают путем конденсации ацетальдегида с формальдегидом. [c.582]

    По сравнению с парафинами ароматические углеводороды обладают большей антиокислительной стабильностью, и для их окисления необходимы более высокие температуры. Окисление ароматических углеводородов ведется в паровой фазе над твердым катали- чатором (обычно им служит окись ванадия на носителе). [c.589]

    Зональное распределение кокса в зерне катализатора выглядит следующим образом. Кокс первой, низкотемпературной зоны (375 °С) окисления локализован в области каталитического действия металла, а второй -высокотемпературной (440-460 °С) - преимущественно на носителе. Перераспределение кокса по зонам окисления можно объяснить деструктивными превращениями (гидрированием кокса) в среде водорода при прогреве, с образованием некоторого количества отложений с небольшим молекулярным весом, которые могут мигрировать в газовую фазу. На рис. 4.3 представлено распределение кокса по зонам во времени, а на рис. 4.4 - изменение активности и доступной поверхности платины при накоплении кокса на катализаторе. [c.52]

    На втором этапе при температуре 350-480°С из катализатора выгорает основная масса кокса. При этом кокс, локализованный в области каталитического действия металла выгорает при температуре 375°С, а кокс носителя - при температуре 440-460°С. Платина катализирует окисление, реакция идёт с выделением тепла, поэтому на этой стадии важно не допустить перегрева слоя катализатора и спекания платины. С этой целью концентрация кислорода в циркулирующем инертном газе не должна превышать 1% об. [c.54]

    В работах [72-76,92-99] приведены различные видоизменённые варианты механизма катализа реакции фталоцианинами металлов переменной валентности, в т.ч. в гетерогенных условиях, когда фталоцианин находится (адсорбирован) на поверхности носителя. В работах [80,147] сделано предположение, что окисление тяжелых меркаптанов, в труднорастворимых в водных щелочных растворах происходит также по вышеописанному механизму на границе раздела фаз, однако доказательства отсутствуют. [c.25]

    Окисление меркаптанов в водно-щелочной среде и испытание активности катализаторов этой реакции проводились при атмосферном давлении техническим кислородом (Ог = 99,5 % об.) в стеклянном аппарате периодического действия с турбинной мешалкой. Опыты по нанесению фталоцианинового катализатора на носитель и по демеркаптанизации дизельного топлива проводились в барботажной стеклянной колонке. Испытание катализаторов гидроочистки проводили на лабораторной и на действующих промышленных установках. [c.29]

    Предварительно промытый и ингибированный бензин смешивается с воздухом и, проходя вниз по реактору, контактирует с катализатором на носителе, насыщенном едким натром. В процессе реакции поддерживается давление 1,7-1,9 МПа для поддержания воздуха в бензине в растворённом состоянии. При этом происходит окисление меркаптанов по реакции  [c.37]

    Таким образом, в гетерогенном катализе окисления меркаптанов, во-первых, исключается разрушение катализатора в щелочной фазе, во-вторых, поверхность раздела фаз, где протекает реакция окисления, образуется развитой поверхностью носителя катализатора, а не интенсивным перемешиванием фаз, как в случае гомогенного катализа. Очевидно, что механизм реакции окисления высокомолекулярных меркаптанов на гетерогенном катализаторе не будет сильно отличаться от механизма гомогенного окисления, поэтому в этом разделе работы основное внимание будет уделено рассмотрению технологических аспектов процесса демеркаптанизации дистиллятов нефти. [c.64]

    Получение хлора окислением H I. В старом методе Дикона катализатором служила двуххлористая медь, осажденная на носителе (глине) в количестве около 1%. Реакцию вели в аппарате с неподвижным слоем при 480 °С. В последнее время проявился некоторый интерес к процессу с кипящим слоем. На заводе I. G. Oppau недавно стали применять в качестве катализатора сплав хлоридов калия и окиси железа при температуре слоя 455 С. [c.325]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    Для нанесения окиси ванадия необходимо выбирать абсолютно инактивный носитель, иначе значительная часть сырья окисляется до воды и СО2. Подходящим носителем для окиси ванадия является пемза. Описан также снликагелевый носитель, обработанный сульфатом калия. Одной фирмой разработан процесс окисления нафталина или ортео-ксилола в псевдокинящем слое катализатора [348]. Преимуществами процесса в псевдокипящем (флюидном) слое являются меньший расход воздуха и более эффективный отвод тепла из реакционной зоны. [c.590]

    В соответствии с существующими предложениями процесс окисления кокса протекает через ряд стадий. Первая стадия - хемосорбция кислорода с образованием устойчивого поверхностного углерод-кислородного комплекса. Вторая стадия - разложение комплекса с образованием окиси и двуокиси углерода. Этот процесс может протекать с большой скоростью, при этом необходимо учитывать неравномерность горения кокса во времени. В первый момент времени температура катализатора резко возрастает вследствие быстрого окисления находящихся на поверхности кокса активных веществ, богатых водородом. Подскок температуры может достигать при этом 70-80°С. Перегревы отдельных зон гранулы катализатора зависят от характера распределения кокса по объёму частицы. При невысоком содержании кокса переферия гранулы закоксована гораздо сильнее ядра. При увеличении содержания кокса эта разница быстро уменьшается. Кроме такого, диффузного по своей природе, распределения кокса, имеет место и зональное его распределение - на металле и на носителе катализатора. [c.54]

    Редиспергирование платины, нанесённой на А12О3, можно объяснить исходя из того, что чистые металлы имеют значительно большее поверхностное натяжение, чем их оксиды. Поэтому кристаллы металла не смачивают поверхность носителя, но при окислении металла смачивание на границе раздела сильно увеличивается и Pt02 "растекается" по поверхности носителя, образуя дисперсную фазу. Однако, только мелкие кристаллиты платины (1-3 нм) способны окисляться кислородом при 500°С. Так как при 600°С образуются крупные кристаллиты, редиспергировать их трудно. [c.60]

    Стимулом к изучению кинетики реакции окисления нефтяных KOiK io B в последние годы послужила разработка процессов с аппаратами высокотампературното окисления неф-тяного кокса (коксонагреватели), а также регенерации углеродистых отложений на неорганических носителях или катализаторах при температурах 700—1400° С и выше. [c.80]

    Для действующих аппаратов особенностью орощесса окисления коиса является нестационарный характер протекания его, так как содержание кокса на неорганических носителях (или уменьшение веса шарика кокса — теплоносителя) и кислорода в газовом потоке меняется по длине слоя и во времени. [c.95]

    Промышленный процесс окислительной демеркаптанизации топлив был разработан в 1960 году фирмой UOP (Universal Oil Produ tion) под названием Мерокс-демеркаптанизация и к 1991 году число работающих установок достигло 1450. В процессе Мерокс окисление меркаптанов проводится кислородом воздуха в щелочной среде в присутствии металлофталоцианиновых катализаторов. Катализатор окисления может быть нанесен на твердый стационарный носитель (активированный уголь), либо растворен или суспензирован в щелочном растворе [90,91,114-116.  [c.20]

    Плавленые, скелетные и прочие катализатбры. К числу плав- леных катализаторов прежде всего относятся металлические катализаторы ненанесенного типа. Отдельные представители группы плавленых катализаторов, как, например, катализаторы синтеза и окисления аммиака, получили широкое распространение. Другие катализаторы — металлокерамические — только начинают находить применение. В целом, однако, этот класс катализаторов в настоящее время менее распространен, чем осажденные катализаторй и катализаторы на носителях.  [c.185]

    Относительно недавно в качестве носителей стали использовать специальным образом приготовленную керамику. Применяют керамику на основе а-окиси алюминия (корунда), окиси циркония, силиката циркония (циркона), карборунда, динаса, муллита. Керамические носители инертны, температуростойки и могут изготовляться с диаметром пор 2000—3000 А. Возможность получения широко- и малонористых носителей особенно важна при синтезе катализаторов для получения целевых продуктов, являющихся промежуточными в системе последовательных необратимых реакций, например в реакциях окисления. Характеристики основных керамических носителей даны в работе [32]. [c.187]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]


Смотреть страницы где упоминается термин Носители окисления: [c.204]    [c.237]    [c.118]    [c.67]    [c.241]    [c.312]    [c.321]    [c.61]    [c.361]    [c.509]    [c.64]    [c.65]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.454 , c.503 ]




ПОИСК







© 2025 chem21.info Реклама на сайте