Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правила переходов вращательных

    Квантовая механика формулирует также правило отбора вращательных уровней, разрешающее переходы только на соседние уровни А/ = 1. В этом случае по уравнению (28) можно определить энергию поглощенного кванта при таком переходе  [c.217]

    Колебательно-вращательные спектры двухатомных молекул лежат, как правило, в ИК-области. Каждый колебательный переход сопровождается большим числом вращательных переходов, поэтому вместо одной линии перехода в спектре возникает полоса. При хорошем разрешении можно определить отдельные линии, связанные g [c.155]


    Температура плавления рацемической яблочной кислоты 130—131°, а оптически деятельных форм 100 . Вращательная способность яблочной кислоты зависит от концентрации разбавленные растворы -формы отклоняют поляризованный свет влево, но с повышением концентрации левое вращение убывает, в 34%-ном растворе становится равным нулю и затем переходит в правое. [c.407]

    Предпринимались попытки распространить это правило на менее симметричные комплексы, в частности молекулы симметрии С2. Соответствующее правило сформулировано следующим образом комплексы симметрии С2 с положительной вращательной силой перехода А имеют конфигурацию ZJ = Л, Трудности состоят в идентификации перехода А. [c.212]

    В методах ДОВ и КД вопрос об абсолютной конфигурации решается лишь приближенно или качественно, так как в строгой теории методов, связывающей оптические свойства и молекулярную конфигурацию для расчета вращательной силы перехода, необходимо задавать электронные функции молекулы для основного и возбужденных состояний. К сожалению, такая информация достаточной точности отсутствует, что и приводит к установлению различных правил к закономерностей, к развитию полуэмпирических методов при использовании ДОВ и КД. [c.224]

    Что такое вращательная сила электронного перехода и каков ее физический смысл Как формулируется и доказывается правило сумм  [c.225]

    Лазерная техника расширила возможность изучения колебательной и вращательной релаксации в молекулах и открыла путь к проведению реакций под воздействием лазерного излучения. Как правило, колебательно-возбужденные молекулы химически более активны, чем невозбужденные. Лазерное излучение отличается от обычного сочетанием монохроматичности с высокой мощностью спектральная плотность лазеров в 10 — 10 раз превосходит спектральную плотность излучения солнца. Это позволяет избирательно возбуждать в молекулах определенные колебательные состояния и в принципе селективно осуществлять определенные химические реакции. Повышение селективности достигается тем, что лазерным излучением создается высокая заселенность некоторых возбужденных состояний при отсутствии термического разогрева, когда превращение молекул по обычным тепловым каналам практически не происходит. С этой целью успешно используется возбуждение колебаний резонансным лазерным излучением. При возбуждении колебательных уровней существенную роль играет вращательная релаксация. Это можно показать, рассмотрев пример газа, в котором лазерное излучение возбуждает светом, соответствующим колебательно-вращательному переходу (у = О, /о) (и = 1, /,). [c.110]


    При переходе соблюдаются правила отбора, подобные упомянутым ранее, а в результате возникают полосатые спектры типа (см. рис. 1.22, б), располагающиеся, как правило, в видимой и ультрафиолетовой областях. Такие спектры следует называть электронно-колебательно-вращательными или сокращенно просто электронными. Таким образом, если в атоме данный электронный переход дает в спектре единственную линию, то в молекуле единственному электронному переходу может соответствовать множество линий, группирующихся в полосы. [c.253]

    Поскольку при обычных температурах, прн которых, как правило, записывают инфракрасные спектры веществ, возбужденные колебательные состояния заселены в незначительной степени, то спектры поглощения отвечают переходам из основного состояния в различные возбужденные состояния. Каждому такому переходу соответствует набор линий поглощения, поскольку колебательные переходы могут сопровождаться различными переходами между вращательными состояниями. При записи спектров в жидкой фазе эта система линий сливается в одну широкую полосу поглощения. Таким образом, как и электронные спектры многоатомных частиц, колебательные инфракрасные спектры представляют собой систему полос, число которых определяется в первую очередь числом колебательных степеней свободы. Только двухатомные молекулы имеют одну колебательную степень свободы. Волновые числа, соответствующие переходу в первое возбужденное состояние для некоторых двухатомных частиц, приведены ниже  [c.155]

    Условием для получения колебательных и вращательных спектров поглощения или испускания является изменение дипольного момента, тогда как переходы, наблюдаемые в спектрах Ki связаны с изменением поляризуемости молекул. Благодаря различию правил отбора ИК-спектроскопия и спектроскопия КР существен но дополняют друг друга. [c.267]

    Активными центрами газовых лазеров являются атомы и ионы в газовой фазе. Области генерации достаточно узкие, как правило, не превышающие ширины спектральных линий, возникающих при электронных переходах в атомах и ионах. В последнее время широкое применение находят лазеры, в которых активными центрами являются молекулы, т. е. лазерное излучение возникает при электронных переходах в молекулах (говорят на молекулярных переходах ). Области генерации молекулярных лазеров несколько шире, чем лазеров на атомных переходах, так как генерация происходит одновременно в нескольких возбужденных вращательных уровнях (иногда и электронно-колебательно-вращательных). Мощности генерации меньше, чем у твердотельных лазеров, [c.192]

    Самопроизвольный переход молекулы на более низкий вращательный уровень с испусканием фотона происходит очень редко и спектры испускания получить не удается. Скорость вращения молекул изменяется обычно только при их столкновении. Но молекула может поглотить фотон и перейти на более высокий вращательный уровень. Конечно, должно выполняться обычное правило поглощение происходит только в том случае, если энергия фотона точно равна разности двух вращательных уровней. [c.288]

    Спектры комбинационного рассеяния во многом подобны инфракрасным спектрам, так как и те и другие обусловлены колебательными, а иногда и вращательными переходами в веществе. Но правила отбора, [c.339]

    Энергия, приобретаемая молекулой при переходе на более высокий колебательный уровень, быстро распределяется по всему веществу, превращаясь во вращательную и поступательную энергию в результате столкновений возбужденной молекулы с окружающими ее молекулами. Как правило, заселенность нижнего колебательного уровня во время облучения не изменяется и в ИК-спектрах не наблюдается явления насыщения. [c.201]

    До сих пор обсуждение правил отбора касалось лишь электронной компоненты перехода. В молекулярных спектрах возможно появление колебательной и вращательной структуры, хотя для сложных молекул, особенно в конденсированной фазе, где столкновительное уширение линий становится существенным, вращательные, а иногда и колебательные полосы [c.42]

    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]


    При переходах молекулы из одного электронного состояния в другое правило отбора Ау = 1 перестает действовать, т. е. из данного колебательного уровня одного электронного состояния возможен переход на любой колебательный уровень другого электронного состояния. Схематически эти переходы в случае поглощения изображены на рис. 108. Каждому такому переходу соответствует система вращательных линий (не показанная на рис.), поэтому в спектре наблюдаются сложные полосы. [c.203]

    Формула (УП.19) дает все возможные частоты. При электронных переходах введенное ранее правило отбора для вращательного числа Д/= 1 должно быть дополнено правилом А/=0, [c.203]

    Вращательные уровни энергии двухатомных молекул характеризуются некоторыми общими свойствами симметрии. Одним из самых важных является следующее свойство вращательный уровень называется положительным (4-) или отрицательным (—) в зависимости от того, остается ли постоянным или изменяется знак полной волновой функции при отражении всех частиц в начале координат, или, короче, при инверсии (т. е. при переходе от правой к левой системе координат). Поскольку полная волновая функция может быть записана как произведение [c.43]

    Вращательная структура. Вращательная структура данного колебательного перехода, т. е. полосы, зависит от типов электронных ч остояний, между которыми происходит переход. Рассмотрим сначала переходы 2 —2. Правило отбора для квантового числа N этих переходов есть = н= 1 (стр. 54), что в случае переходов 2 — —Ч, идентично ДУ = 1. Другими словами, получаем R- и Р-ветви, так же как и для инфракрасных колебательно-вращательных полос вклад вращения в волновое число определяется теми же уравнениями,, что были уже введены для колебательно-вращательных полос уравнениями (82) и (83) соответственно для v и vp [или единым уравнением (84)1. Единственное отличие заключается в том, что, поскольку теперь В к В" принадлежат различным электронным состояниям, разница между ними может быть значительной. Именно этим обусловлена гораздо более сильная сходимость к длинным или коротким волнам, приводящая к образованию характерных кантов [когда у(т +1) — у(т) в уравнении (84) стремится к нулю]. Высокочастотный кант в / -ветви (красное оттенение полосы) образуется при В <С В", а при В" образуется низко- [c.74]

    Молекулы типа симметричного волчка. Тонкая вращательная структура электронных полос молекул типа симметричного волчка подобна структуре колебательно-вращательных полос этих молекул. Вращательные правила отбора зависят от того, параллельно ИЛИ перпендикулярно оси волчка направлен электронный момент перехода. В первом случае (параллельные полосы) правила отбора имеют вид [c.163]

    В параллельных полосах молекул типа слегка асимметричного волчка должно быть удвоение линий во всех ветвях с /С>0- Однако это удвоение будет заметным, только для самых низких значений /С. Какая из двух компонент /С-дублета будет участвовать в переходе, определяется правилами отбора для свойств симметрии -h +, —,. .. вращательной волновой функции асимметричного волчка (стр. 150). Здесь эти правила рассматриваться не будут (они обсуждаются в [П1], стр. 244 и сл.). Хороший пример параллель- [c.168]

    При расчетах интенсивностей переходов, связанных с вращением плоскости поляризации световой волны, возникают в качестве определяющих вращательную силу перехода матричные элементы магнитного момента и т.д. Для каждого из рассмотренных выше случаев будут получаться свои точные или приближенные правила отбора, определяющие вероятности соответствующих переходов. [c.229]

    Для исследования различных морфологических состояний, особенно в аморфных областях, необходимы более чувствительные к таким состояниям методы. Именвд такими методами являются ЯМР и ЭПР. Исследуя температурную зависимость подвижности протонов, Бергман определил температуры, при которых начинается молекулярное движение в различных полимерах [14]. Применение ЯМР для изучения молекулярного движения в твердых полимерах рассматривалось в нескольких обзорах [15-17]. Методом ЭПР, как правило, изучают вращательное и трансляционное движения стабильных радикалов, обычно нитроксильных, и связывают их подвижность с переходами в полимерах. Как отмечено в нескольких работах [18, 19], чувствительность метода к движению полимерных цепей зависит от размера, формы и полярности радикалов. Оба метода исследования являются высокочастотными (10 -10 Гц). Однако измерения на высоких частотах уменьшают разрешающую способность при определении различных переходов в отличие от низкочастотных или статических методов, таки как дилатометрия, для которой эффективная частота составляет 10 Гц [20]. [c.111]

    Первичный уровень клеточного автомата представляет дискретное однородное скалярное поле. Для того чтобы описывать физический мир, эта система должна быть способна отображать все внутренние симметрии физических явлении. Это касается следующих аспектов. Во-первых, физическое пространство характеризуется непрерывными вращательными и трансляционными симметриями в рамках модели это можно реализовать, если дискретная структура клеточного автомата допускает промежуточный уровень непрерывной аппроксимации. Во-вторых, различные внутренние симметрии физических объектов могут представлять собой отражение симметрии лежащего в нх основании правила перехода, в частности, функция Р ъ (1) должна быть периодической, а не монотонной. И в-третьих, изиачаль-пая однородность скалярного клеточного автомата должна быть нарушена каким-либо образом, чтобы обеспечить появление асимметрии и векторных свойств физического мира. [c.21]

    У лаборанта получите приблизительно 100 мл раствора щелочи точной нормальности. При помощи мерной пипетки (вместимостью от 10 до 25 мл) отберите раствор щелочи и перелейте его в коническую колбу или колбу Эрленмейера вместимостью 100—200 мл. Предварительно пипетку промойте раствором щелочи, а коническую колбу несколько раз промойте дистиллированной водой. В колбу со щелочью добавьте 1—2 капли метилоранжа, подложите под нее лист белой бумаги (чтобы лучше был виден переход окраски индикатора) и добавляйте раствор кислоты левой рукой, все время перемешивая содержимое колбы вращательным движением правой руки. Титрование прекращают тогда, когда желтая окраска раствора приобретает слегка розоватый оттенсук. Отметьте показания на шкале бюретки [c.83]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    При неупругом ударе, как правило, энергия поступательного движения переходит во внутреннюю энергию молекул (вращательную, колебательную, электронную), причем деформация сталки- [c.81]

    В последние годы в спектрах ряда свободных радикалов был изучен другой тип ггерехода 2 —2 переход 2" — 2 . Такой переход является нарушением сразу двух правил отбора А5 = (> и 2 ч-1- 2 . Однако второе правило справедливо только для переходов с А5 = 0, и хотя переход 2" — 2" запрещен, он запрещен не настолько, чтобы не наблюдаться. На рис. 44 показана возможная вращательная структура такого электронного перехода. Как видно из рисунка, имеются три ветви с АМ = О, называемые ветвями ( -формы, и по одной ветви с АЛ = + 2 и —2, называемой ветвью 5- и 0-форм соответственно. В последних расстояние между [c.78]

    Рамановская спектроскопия основана на исследовании спектров рассеяния света. При столкновении фотона с молекулой может иметь место упругое соударение, при котором фотон не теряет энергию, но изменяет направление своего движения. Такое рассеяние известно под названием рэлеевского и лежит в основе метода определения молекулярных весов соединений. Соударения могут быть также иеупругими они характеризуются тем, что энергия молекулы и фотона изменяется. Поскольку эти изменения носят квантовый характер и определяются колебательными и вращательными уровнями молекулы, анализ спектра рассеянного света (спектра Рамана) дает почти ту же информацию, что и обычный инфракрасный спектр. Необходимо, однако, помнить один момент правила отбора в этих двух случаях различаются. В инфракрасной спектроскопии разрешены одни переходы, в раман-спектро-скопии — другие. Таким образом, имеет смысл снять и тот и другой спектр исследуемого образца. До недавнего времени раман-спектроско-пия находила весьма ограниченное применение из-за малой интенсивности рассеянного света. Однако использование для возбуждения лазеров существенно повысило ценность указанного метода [16—20]. В качестве примера на рис. 13-4,5 приведен раман-спектр 1-метилурацила. Заметим, что интенсивность полосы амид II (относительно полосы амид I) в раман-спектре значительно меньше, чем в инфракрасном спектре поглощения. Особый интерес представляет резонансная раман-спектроскопия [19—21], где используется лазерный пучок с длиной волны, соответствующей длине волны электронного перехода. Рассеяние света при этом часто существенно усиливается на частотах, которые отличаются от частоты лазера на частоту рамановского рассеяния, происходящего на группах хромофора или на группах молекулы, соседствующей с хромофором. Несмотря на определенные экспериментальные трудности, указанный метод позволяет изучать структурные особенности какого-либо конкретного участка макромолекулы. [c.13]

    Легче интерпретировать дихроизм п—я -переходов карбонильных соединений. В данном случае имеется набор правил, известных как правила октанта, которые позволяют предсказывать знак и величину КД простых соединений [47]. Разработан также теоретический подход к анализу КД-спектров и спектров поглощения белков в высокоэнергетической УФ-обла-сти. В пределах регулярной р-струк-туры, а-спирали и кристаллических областей электронные переходы соседствующих друг с другом амидных групп могут быть связаны, в результате чего имеет место делокализация возбуждения. Такая делокализация (экситон) приводит к расщеплению (давыдовскому расщеплению) на два перехода с различающимися энергиями и направлением поляризации [7, 44]. Так, полоса поглощения амидной группы с тах = 52 600 см- в случае а-спирали расщепляется на две компоненты с Vmax=48 500 и 52 600 см . Кроме того, низкоэнергетические я—п - и п—я -переходы весьма близки по энергии, что может приводить к формированию состояния, представляющего смесь двух указанных состояний с появлением вращательной силы в я—я -полосе, знак которой противоположен знаку вращательной силы в п—я -полосе (см. работу [44]). И знак, и интенсивность КД-полос зависят от конформации соединения, что позволяет четко различать а-спирали, -структуры и статистический клубок. В водных растворах измерения проводят при длинах волн, простирающихся вплоть до вакуумного ультрафиолета, т. е. до волновых чисел - бООООсм [48]. [c.26]


Смотреть страницы где упоминается термин Правила переходов вращательных: [c.306]    [c.58]    [c.153]    [c.154]    [c.162]    [c.166]    [c.153]    [c.154]    [c.162]    [c.166]    [c.249]    [c.41]    [c.54]    [c.75]    [c.79]   
Основы квантовой химии (1979) -- [ c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Некоторые свойства функций и правила отбора для переходов между вращательными подуровнями линейных молекул

Переходы вращательные

Переходы между электронно-колебательно-вращательными состояниями двухатомных молекул и правила отбора для спектров испускания, поглоще- J ния, рассеяния

Правила отбора колебательно-вращательных переходов



© 2025 chem21.info Реклама на сайте