Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация влияние

    Таким образом, конденсационные сополимеры отличаются друг от друга композиционным составом и строением (микрогетерогенностью) [25]. При равновесной сополиконденсации протекание обменных реакций препятствует возникновению композиционной неоднородности, что приводит к статистическому распределению звеньев в цепях сополимеров. Последние по составу аналогичны исходной смеси мономеров. Условия проведения процесса практически не оказывают влияния на статистические характеристики сополимера. Для неравновесной поликонденсации наблюдается несколько иное положение ввиду того, что в этом случае отсутствуют обменные реакции. Для этого процесса строение сополимера будет определяться реакционной способностью сомономеров. [c.171]


    Последнее уравнение удобно для качественного изучения влияния температуры на степень поликонденсации. Продифференцировав его, имеем  [c.278]

    Наличие значительных количеств гетероатомных соединений в сочетании с ненасыщенными углеводородами в продуктах крекинга способствует окислительной полимеризации и поликонденсации, тем самым оказывая определяющее влияние на образование смол и осадков (табл. 1.8) [3, И, 41-47]. [c.25]

    В соответствии с ранее изложенным механизмом коксообразования в необогреваемых камерах состав газа изменяется в тече-ппе всего процесса вначале, до протекания усиленных процессов поликонденсации, газ имеет повышенную плотность, в дальнейшем образуются в основном легкие углеводороды. Влияние температуры на качество газов наглядно иллюстрируют данные, полученные при термоконтактном коксовании арланской нефти на порошкообразном теплоносителе [28]. [c.127]

Рис.5.9. Влияние избытка одного из компонент на молекулярную массу полимера, полученного поликонденсацией Рис.5.9. Влияние избытка одного из компонент на <a href="/info/301935">молекулярную массу полимера</a>, полученного поликонденсацией
    Последний очень реакциоиноспособен и под влиянием небольших количеств аминов легко образует продукты поликонденсации, обладающие [c.387]

    В процессе коксообразования на катализаторах оксидного типа при окислительной конверсии тяжелого нефтяного сырья протекают реакции окисления, дегидрирования, деалкилирования, деструкции, полимеризации и поликонденсации асфальто-смолистых веществ, причем окислительное консекутивное прев >ащение отложений приводит к более глубокой химической конверсии, чем термическое превращение [9]. Установлено селективное влияние железоокисных катализаторов на процесс выгорания основных элементов коксовых отложений (рис. 5). [c.205]

    Существенное влияние на толщину граничных слоев оказывает скорость нагрева. При медленном нагреве толщина больше, так как увеличивается температурный интервал процесса поликонденсации в пеке и полимеризации в связующем. Это приводит к увеличению размера и молекулярной массы молекул и, следовательно, к росту толщины граничных слоев. [c.220]


    Такой процесс циклизации затрудняется с увеличением расстояния между функциональными группами, в результате чего образуются малоустойчивые циклы. Таким образом, способность бифункциональных мономеров к циклизации зависит от напряженности образующегося цикла, что, в свою очередь, определяется расстоянием между функциональными группами. Кроме того, на процесс поликонденсации и иа реакционную способность мономеров влияет также и расположение в них функциональных групп. Например, внутримолекулярная циклизация становится невозможной, если две функциональные группы находятся в пара-положении бензольного кольца. В то же время циклизация происходит, если эти группы находятся в орго-положении. Оказывают влияние и стерические факторы. Так, если в орго-положении присутствуют нереакционноспособный заместитель или мешающие друг другу в пространстве функциональные группы, то это сказывается и на процессе поликонденсации. Например, близость аминогрупп в орго-фенилендиамине способствует образованию циклических продуктов, что приводит [c.402]

    При эксплуатации масел интенсивно развиваются процессы окисления, полимеризации и поликонденсации, приводящие, в конечном итоге, к образованию смол. Усиливают смолообразование сернистые соединения, в частности, меркаптаны RSH. Способность масла под влиянием высоких температур разлагаться с образованием твердых осадков (кокса) называется коксуемостью. Она зависит от состава масла, степени его очистки, наличия присадок (чем больше присадок, тем выше коксуемость). [c.665]

    Их влияние на молекулярную массу продуктов поликонденсации аналогично влиянию избытка одного из компонентов в исходной смеси. Монофункциональные соединения могут образовываться в реакционной системе в результате побочных реакций. Часто небольшие количества монофункциональных соединений специально вводятся в реакционную смесь для регулирования молекулярной массы полимеров и придания стабильности продукту (на концах цепи будут функциональные группы одного типа). В таком случае их называют стабилизаторами молекулярной массы. [c.58]

    Определение энергии активации поликонденсации и влияния катализатора. [c.63]

    Наибольшее влияние на направление реакции соединений X—К—V оказывают природа и строение радикала К. Если радикал состоит только из групп —СНг—, то определяющим фактором будет число этих групп, т. е. расстояние между функциональными группами. Увеличение расстояния между функциональными группами уменьшает вероятность циклизации и способствует протеканию конкурирующей реакции поликонденсации, скорость которой в первом приближении не зависит от расстояния между функциональными группами внутри молекулы. [c.134]

    Тепловые эффекты реакции поликонденсации обычно невелики (33,4—41,8 кДж/моль, или 8—10 ккал/моль), а поэтому температура реакции очень мало влияет на молекулярную массу полимера. Но повышение температуры ускоряет приближение системы к состоянию равновесия, которое при низких температурах иногда практически недостижимо. Часто с повышением температуры облегчается удаление выделяющегося простейшего вещества (папример, воды), что приводит к смещению равновесия и образованию более высокомолекулярных полимеров. Однако этот вторичный процесс нельзя рассматривать как специфическое влияние температуры, так как аналогичное смещение равновесия может быть достигнуто и другими путями, например увеличением продолжительности отгонки выделяющегося вещества или увеличением разрежения. [c.148]

    Влияние катализатора на скорость поликонденсации и молекулярную массу полимера. Катализатор не может влиять на молекулярную массу конечного продукта, если поликонденсация заканчивается по достижении равновесия. Катализатор, повышая скорость реакции, лишь ускоряет приближение системы к равновесию. [c.148]

    Влияние примесей монофункциональных соединений на молекулярную массу продукта поликонденсации непосредственно связано с константой равновесия. При введении монофункционального соединения, блокирующего одну из функциональных групп, концентрация этих групп уменьшается и соответственно уменьшается знаменатель в выражении константы равновесия  [c.150]

    При получении полигексаметиленадипамида для поликонденсации используют обычно заранее полученную соль диамина и адипиновой кислоты (соль АГ), в состав которой компоненты входят в строго эквивалентных количествах. Аналогичное влияние эквивалентности исходных компонентов на молекулярную массу полимера можно наблюдать и при синтезе полиуретанов из диизоцианатов и диолов (рис. 21). [c.150]

    Пол и конденсацией называется реакция соединения молекул одного и разных мономеров, происходящая в результате взаимодействия их функциональных групп и сопровождающаяся выделением побочных низкомолекулярных веществ (HjO, H l, Oj и др.). Характер и количество функциональных групп исходных соединений оказывают большое влияние на строение и свойства полимеров. Вот некоторые из функциональных групп, обеспечивающие возможность участия веществ в процессе поликонденсации  [c.388]


    При синтезе под влиянием воды молекулы капролактама превращаются в молекулы -аминокапроновой кислоты, которые подвергаются поликонденсации  [c.348]

    Отделение химии и химической технологии Заведующий S. otson Направление научных исследований изучение строения веществ с помощью рентгеновской дифракции гомогенные реакции в газовой фазе химия соединений олова и серы химия сиднонов окисление метанола кинетика реакций поликонденсации влияние пластификаторов на поливинилхлорид экструзия полистирола неорганические полимеры. [c.252]

    Поликонденсация Типы реакций поликонденсации. Основные различия полимеризационных и поликонденсационных процессов. Термодинамика поликонденсации и поликонденсационное равновесие. МолекуЛ5фная масса и молекулярномассовое распределение при поликонденсации. Влияние стехиометрии, монофункциональных примесей и побочных реакций на молекулярную массу продуктов и образование сетчатых структур. Проведение поликонденсации в расплаве, в растворе и на границе раздела фаз. [c.383]

    В 2,4-толуилендизоцианате п-изоцианатная группа более чем в 10 раз реакционноспособнее о-изоцианатной [3, с. 64]. Влияние заместителей на реакцию поликонденсации диизоцианата с гидроксилсодержащими соединениями становится более понятным при рассмотрении резонансных структур изоцианатной группы  [c.159]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Вез синтетические полимеры получают двумя основными путями--полимеризацией и поликонденсацией. Для первой из этих реакц 1Й требуются мономеры, т. е. вещества, способные под влиянием гепла, света, облучения илн катализаторов соединяться друг с другом без выделения каких-либо низкомолекулярных соединений и давать длинные цепи полимера с тем же составом элементарных звеньев, как в исходном мономере  [c.9]

    Реакции поликонденсации очень медленно протекают при обычной температуре, и поэтому синтез конденсационных полимеров ведут обычно при температурах порядка 150—300° С и даже выше, т. е. температурный режим синтеза является одним из макрокине-тических факторов, влияющих на процесс синтеза. Поликонденсация может быть гетерофазной, например эмульсионной. Эмульсионным может быть также процесс полимеризации, при котором радикальная полимеризация протекает в эмульсии мономера [32], причем реакционная масса в этом случае имеет невысокую вязкость. При эмульсионном процессе синтеза существенное влияние оказывают такие показатели, как размер капель мономера и скорость транспорта мономера к поверхности раздела фаз [46]. Тем самым гидродинамический режим синтеза также является макрокинети ческим фактором, влияющим на процесс синтеза. [c.5]

    Если мономеры обладают высокой стабильностью, а готовая продукция малой транспортабельностью, то производство мономеров необходимо размещать в районах, богатых сырьем и топливом, а полимеризацию и поликонденсацию приблизить к потребителю. Затраты рабочей силы как в производстве цефтепродуктов, так и нефтехимической продукции небольшие, поэтому они не оказывают существенного влияния на выбор места размещения предприятий. При выборе места строительства предприятия и особенно при определении его мощности иеобходимо учитывать сроки строительства и возможности строительных организаций. [c.98]

    ИСХОДИТ непрерывное нивелирование размеров растущих макромолекул в процессе поликонденсации (рис. 59). Сравнительно небольшое различие фракций полимера по молекулярному весу и случае линейной поликонденсации можно объяснить большей скоростью деструкции высокомолекулярных фракций. Протеканием процесса деструкции объясняется также значительно меньшая величина среднего молекулярного веса полимера, по сравнению с молекулярным весом, найденным по расчетным данным (из условий равновесного состояния в процессе поликонденсации). Механизм реакции, вызываю. цей деструкцию цепей полимера иод влиянием 1шзкомолекулярпых ветеств. можно представит следуюишм образом  [c.168]

    Замещение водородного атома только в одной гидроксильной группе резорцина или пирогаллола не оказывает заметного влияния на реакцию поликонденсации с Так, ж-оксифеноксиуксусная кислота уже при 20" вступает в реакцию поликонденсации с формальдегидом. Полимер обладает структурой резита, аморфен, имеет ярко-красный цвет, нерастворим, хрупок, прозрачен, характеризуется высокой поверхностной твердостью и отсутствием термопластичности. В макромолекулах, очевидно, содержатся два типа звеньев в различном соотпошенин и с различной очередностью взаимного сочетания  [c.383]

    Влияние концентрации мономера. Поликонденсация протекает по ступенчатому механизму. Сначала взаимодействуют молекулы мономеров, образуя димеры. Последние взаимодействуют друг с другом и с мономером, образуя тримеры и тетрамеры и т. д. Молекулярная масса увеличивается медленно, одновременно исчерпываются функциональные группы. [c.55]

    Наиболее изучена реакция фенолов с формальдегидом. В качестве промежуточных продуктов этой реакции образуются о- и п-ок-сибензиловые спирты, а также 4,4-, 2,2- и 2,4-диоксидифенилме-таиы. Большое влияние на свойства образующихся полимеров оказывает соотношение исходных веществ. Если количество формальдегида не превышает эквимольного по отношению к фенолу, то образуются линейные смолообразные олигомеры, называемые ново-лаками. При избытке формальдегида образуются разветвленные продукты поликонденсации, называемые резолами. Резолы плавятся и растворяются в органических растворителях, но в отличие от новолаков они способны при нагревании переходить в неплавкое и нерастворимое состояние. Этот переход осуществляется через образование промежуточного продукта, называемого резитолом, который не способен плавиться и растворяться, но может набухать в растворителях и слегка размягчаться при нагревании. На последней стадии отверждения образуется неплавкий, нерастворимый и ненабухающий продукт поликонденсации, называемый резитом. [c.74]

    Другие признаки были рассмотрены выше. Можно выделить несколько существенных факторов, способных оказывать влияние на ход ступенчатой реакции и выход конечных продуктов (полимеров). Прежде всего для реакций поликонденсации одним из существенных факторов является удаление выделяющегося ннзкомоле-кулярного компонента. Это позволяет исключить обратное течение реакции и распад образующихся высокомолекулярных продуктов. [c.76]

    В зависимости от взятой для поликоиденсации кислоты полиэфирные смолы целесообразно разделить на а) смолы на основе фталевой кислоты б) смолы на основе терефталевой кислоты в) смолы на основе ненасыщенных кислот. Влияние указанных кислот можно проследить на свойствах полиэфиров, полученных поликонденсацией с этиленгликолем. Фталевый ангидрид с этиленгликолем образует хрупкие аморфные смолы, не имеющие большого практического значения. Терефталевая кислота и ее эфиры образуют высокоплавкие кристаллические полимеры, применяемые для получения пленок и волокон. Непредельные кислоты сообщают полимеру особое свойство — способность в ре- [c.216]

    К конденсационным смолам относят полимеры, получаемые в результате поликонденсации. Значительное число конденсационных смол (феноло-альдегидные, мочевино-альдегидные, глифтале-вые и др.) — термореактиБные полимеры (стр. 443). Характерная особенность полимеров этого типа — переход под влиянием температурных воздействий в присутствии катализаторов в неплавкое и нерастворимое состояние. В результате термической обработки имеют место химические процессы между макромолекулами, приводящие к образованию сетчатых структур за счет прочных химических связей при этом происходит процесс необратимого отверждения. [c.475]

    Фракционный состав продукта поликонденсации, как и его молекулярная масса, определяется равновесным состоянием системы. В состоянии равновесия смесь макромолекул данного полимергомологиче-ского ряда обладает минимальным изобарно-изотермическим потенциалом при заданной средней молекулярной массе. До достижения равцо-весия фракционный состав смеси полимергомологов непрерывно изме няется в результате различных реакций перераспределения цепей. При этом наряду с реакциями конденсации протекают реакции деструкции под влиянием выделяющегося простейшего вещества (например, воды) [c.149]

    Проведено выявление и экспериментальное обоснование условий протекания процессов поликонденсацации в полимерных матрицах. Показано влияние ингредиентов технических резиновых смесей на кинетику поликонденсации в эластомерных матрицах. Показана эффективность использования дикарбоновых кислот и многоатомных спиртов и дигидра-зидов кислот для получения теплостойких резин и для регулирования других свойств резин. [c.92]


Библиография для Поликонденсация влияние: [c.697]   
Смотреть страницы где упоминается термин Поликонденсация влияние: [c.15]    [c.155]    [c.441]    [c.83]    [c.52]   
Прогресс полимерной химии (1965) -- [ c.0 ]

Прогресс полимерной химии (1965) -- [ c.0 ]

Кинетика реакций в жидкой фазе (1973) -- [ c.394 , c.395 ]




ПОИСК







© 2025 chem21.info Реклама на сайте