Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабильность вакуумных

    Боковые погоны основной колонны 7 — фракции керосина и дизельного топлива — выводятся через отпарную колонну 8. Избыточное тепло из основной колонны 7 отводится циркуляционным орошением, выводимым из нее при 215 °С и возвращаемым в колонну при 90 °С. Мазут с низа колонны 7 при 330 С забирается насосом и прокачивается через печь 9 в вакуумную колонну 10. Вакуум в колонне создается барометрическим конденсатором и двухступенчатыми паровыми эжекторами. Из колонны 10 выводятся три масляных дистиллята. Гудрон с низа вакуумной колонны 10 при 360 °С забирается насосом и прокачивается через теплообменники, холодильник и, охлажденный до 95—105 0, поступает в мерник. Компоненты светлых нефтепродуктов выщелачиваются в очистных отстойниках. Избыток бензина первой ректификационной колонны 4 откачивается из водоотделителя 5 насосом через теплообменники стабильного бензина в стабилизатор 13. Температура низа стабилизатора (140 °С) поддерживается паровым подогревателем. С верха стабилизатора при 60 °С выводятся пары бу тановой фракции и газы, которые через конденсатор-холодильник проходят в сборник. Защелоченный бензин из отстойника и стабильный бензин из парового подогревателя стабилизатора под давлением в системе поступают в колонну блока вторичной перегонки бензина 14. [c.93]


    При крекинге очищенного газойля выход кокса снижается до 65% ио сравнению с выходом из неочищенного сырья при одинаковой глубине превращения. Выход бензина повышается на 20%. Крекинг-бензин, получаемый пз гидрированного сырья, имеет более высокие октановые числа — 86,0 против 84,1 (по моторному методу), меньшее содержание серы (0,01 вместо 0,18%). Легкий газойль характеризуется пониженным содержанием серы (0,12 против 1,57о), более высоким дизельным индексом (30 против 22) и улучшенной стабильностью цвета. Проверка этого метода в промышленных условиях в течение 1,5 лет показала удовлетворительное совпадение с результатами лабораторных исследований. Несмотря на сравнительно мягкие условия гидрирования качество крекинг-сырья значительно повышается, о чем свидетельствует снижение плотности, уменьшение содержания серы на 80%, коксуемости по Конрадсону на 65%, содержания азотистых оснований на 25%. Какого-либо влияния металлов, содержащихся в вакуумном газойле, на катализаторы гидрирования в течение полуторагодичной работы обнаружено не было. [c.192]

    На установке предусмотрена возможность работы без блока вакуумной перегонки. В этом случае мазут с низа ректификационной колонны 7 прокачивается через теплообменники и холодильники, где охлаждается до 90 °С, и направляется в резервуарный парк. Широкая бензиновая фракция н. к. — 180 °С после нагрева до 170 °С поступает в стабилизатор 10,-тле поддерживается абсолютное давление 12 кгс/см . Тепловой режим стабилизатора регулируется подачей флегмы (стабильная фракция и. к. — 180°С), которая прокачивается через печь и в паровой фазе возвращается в стабилизатор. Стабильная фракция и. к. — 180 " С из блока стабилизации направляется в блок вторичной перегонки бензина с целью получения узких фракций — сырья для нефтехимии. Блок вторичной перегонки работает по типовой схеме установки вторичной перегонки широкой бензиновой фракции. [c.116]

    Наиболее типичное сырье каталитического крекинга — вакуумные газойли парафинистых сернистых нефтей. Однако из-за слабой адсорбционной способности парафиновых углеводородов скорость превращения их относительно невелика. Сырье нафтенового основания является предпочтительным в результате реакций дегидрирования и перераспределения водорода продукты крекинга нафтенового сырья более стабильны и содержат больше ароматических углеводородов, чем продукты крекинга парафинистого сырья. Изо- [c.49]


    К пуску блока вакуумной перегонки установки приступают после вывода на стабильный режим атмосферного блока. [c.75]

    Это хорошо очищенные минеральные масла, применяемые в качестве рабочего тела вакуумных насосов. Отличаются узким фракционным составом, малой испаряемостью, высокой стабильностью против окисления присадок не содержат. Вырабатывают следующие марки вакуумных масел ВМ-1, ВМ-3, ВМ-4, ВМ-5, ВМ-6 и масло для вспомогательных пароструйных насосов. Получают их разгонкой очищенных масел в вакуумных дистилля-ционных аппаратах. Масла разных марок отличаются друг от друга вязкостью (от 10 у масла ВМ-3 до 70 мм /с при 50 "С у масла ВМ-5), температурой вспышки (180 и 230 С соответственно). От масел всех других типов вакуумные отличаются низким давлением насыщенных паров от 5 10 до 2 10 мм рт. ст. при 20 °С в зависимости от марки масла. [c.456]

    Установки гидроочистки масел отличаются от гидроочистки дизельных топлив только способом стабилизации гидрогенизата отгонка углеводородных газов и паров бензина осуществляется псдачей водяного пара затем стабильное масло подвергается осушке в вакуумной колонне под давлением 13,3 кПа. [c.220]

    Вакуумные дистилляты с температурой конца кипения 54С-580 С содержат несколько больше металлоорганических соединений (0,7-1,6-10 ), смол (4-6%), и их коксуемость не превышает 0,2-0,8% (мае.). Влияние содержащихся в сырье металлов, азотистых соединений, серы проявляется в снижении активности и стабильности работы за счет отложения кокса и отравления металлами. [c.185]

    НОГО газойля уменьшается (рис. 85, а). При крекинге очищенных серной кислотой вакуумных газойлей туймазинской и арланской нефти снижается содержание непредельных и увеличивается содержание ароматических углеводородов в бензинах каталитического крекинга (рис. 85, б). Это способствует улучшению стабильности и октановой характеристики бензинов. [c.190]

    Для каждого катализатора имеется свой предел термической стабильности. Уже отмечалось, что достаточно сильное спекание аморфного алюмосиликатного катализатора при переработке вакуумного газой- [c.60]

    Битум при этом получается особый. Ни один из битумов, по какой бы технологии он ни был получен, не обладает такими высокими адгезионными характеристиками. Дуктильность такого битума также велика - свыше 100 см при 25 С. Но есть один весьма существенный недостаток в остатке висбрекинга и остатке его вакуумной перегонки присутствуют непредельные соединения. В связи с этим стабильность свойств битума во времени недостаточна. [c.63]

    Холодильник для стабильного бензина Холодильник для остатка колонны вторичной перегонки (фракция 85—120°) Холодильник для первого погона и верхнего циркулирующего орошения вакуумной [c.179]

    Определить тепловой эффект процесса каталитического крекинга вакуумного газойля, если известны выходы продуктов (в % масс.) [49] сухого газа 5,5 головки стабилизации 11,5 стабильного бензина 32,4 легкого газойля 23,7 тяжелого газойля 18,9 кокса 8,0. [c.212]

    Гидрогенизационные процессы предназначены прежде всего для получения термостабильных топлив. Действительно, реактивные топлива, получаемые гидроочисткой, глубоким гидрированием и гидрокрекингом, обладают хорошей термической стабильностью, оцениваемой в статических условиях по ГОСТ 11802—66. При определении термической стабильности топлив в динамических условиях топливо, полученное гидрокрекингом вакуумного газойля западносибирских нефтей, с пределами выкипания 165—250° С и содержанием основного азота 0,0001%, имеет неудовлетворительную термическую стабильность— уже через 1 ч 20 мин фильтр установки ДТС-1 полностью забивается [1]. Однако резкое ухудшение термической стабильности топлива, оцениваемой в динамических условиях, обусловлено не только наличием азотистых оснований. Топлива РТ, Т-6, Т-8, получаемые различными гидрогенизационными процессами, обладают хорошей термической стабильностью, определяемой на установке ДТС-1 непосредственно на нефтеперерабатывающем заводе. Но в ряде случаев после их транспортирования, а иногда сразу после налива в железнодорожные цистерны термическая стабильность топлив существенно ухудшается. При транспортировании пря- [c.25]

    Коллоидная стабильность — это способность смазок удерживать дисперсионную среду в условиях эксплуатации и храпения. Оценка коллоидной стабильности (М) основана гш определении количества масла (в %), выделившегося нз смазки при механическом воздействии, вакуумном фильтровании и других внешних воздействиях. Наибольшее распространение получил метод оценки коллоидной стабильности смазок на приборе КСА (ГОСТ 7142—74), по которому о стабильности судят по количеству масла, отпрессовавшегося из слоя смазки (под действием груза в 1 кгс за 30 мии). [c.272]

    При проведении опытов на пилотной установке температуру ма-з та на входе в колонну поддерживали максимально высокой с точки зрения термической стабильности. Накопленный опыт по перегонке сернистых и высокосернистых мазутов показывает, что эта температура не должна превышать 390 С. Часть опытов выполняли, чтобы изучить влияние четкости разделения на качество вакуумного газойля (содержание тяжелых металлов, коксуемость и др.). В этом случае при одинаковых давлении перегонки и производительности изменяли температуру ввода сырья (теплоподвод) или вверху колонны, где отбирали вакуумный газойль. [c.69]


    Следовательно, сернокислотная очистка вакуумного газойля арланской нефти позволяет весьма полно удалить азотистые соединения, особенно основного характера, а также уменьшить содержание металлов и коксообразующих компонентов. Как уже сообщалось в ряде работ [2, 6, 7, 9, 10], при этом резко изменяется материальный баланс каталитического крекинга очищенного сырья по сравнению с балансом крекинга исходного газойля (увеличивается выход целевых продуктов и уменьшается выход кокса). При удалении металлов из сырья каталитического крекинга увеличивается также стабильность катализатора. [c.84]

    Сравнительная оценка эксплуатационных характеристик насосов диодного и триодного типов позволяет сделать следующие вьшоды. Триодные насосы предпочтительнее при повышенных давлениях (5 10" Па и вьппе). При меньших давлениях более стабильны вакуумные параметры диодных насосов они имеют, в частности, больший ресурс в непрерывном режиме откачки. Триодные насосы целесообразно использовать в установках с частым напуском газа, а диодные — в сверхвакуумкых системах запуск диодных насосов при швы- шенных давлениях желательно сопровождать термическим напылением дополнительных геттерных пленок. Триодные насосы харак-. теризуются крайне слабым проязлением эффекта памяти по аргону даже после его длительной откачки и меньшей продолжительностью стартового периода. [c.195]

    После 20 экспозиций геттера при комнатной температуре на воздухе и его регенерации ni Т = 673 К (ST101) и 553 К (ST707) быстрота действия по водороду падает вдвое после 40 экспозиций быстрота действия составляет лишь 40% начального значения. При экспозиции в среде сухого азота при тех же условиях быстрота действия сохраняется на уровне 60%. Более того, после нескольких экспозиций в среде сухого чистого азота она даже несколько увеличивается. Работа в среде аргона обеспечивает еще большую стабильность вакуумных характеристик. [c.246]

    К контактным устройствам вакуумных колонн предъявляют особо жесткие требования, так как они должны обеспечить минимальное гидравлическое сопротивление потоку паров при высокой разделительной способности (min AP/N) и высокую производительность колонны по пару (min ВЭТТ// ). Кроме того, контакт-H je устройства должны обеспечивать достаточно широкий диапазон стабильной работы колонны. [c.181]

    ЭЛОУ 2 — атмосферная перегонка нефтп (АТ) <3 — вакуумная перегонка мазута (ВТ) 4 — выщелачивание компонентов светлых нефтепродуктов 5 — вторичная перегонка широкой бензиновой фракции 6 — стабилизация бензина 7 —абсорбция и десорбция, / — сырая нефть // — обессоленная нефть /// — компоненты светлых нефтепродуктов /1/— выщелоченные продукты 1/— масляные дистилляты V/— широкая бензиновая фракция V//— сжиженные газы Vfll — мазут IX — легкие бензины X — бензин па стабилизацию X/— узкие бензиновые фракции Х// —стабильный бензин Х1П — сухой газ. [c.142]

    После этого на испаритель тенсиометра надевают электропечь, включают ее и подогревают масло до установления в вакуумной системе стабильного давления, определяемого по манометрическому ионизационному преобразователю, порядка 10 мм рт. ст. Во время проведения испытания давление в вакуумной системе должно быть порядка 10 мм рт. ст. После установления указанного давления электропечь снимают с тенсиометра и после его охлаждения до 20 5°С погружают в термостат с температурой 20 5° С, перемещая подъемный стол установки. [c.6]

    Рядом исследователей изучалась возможность получения битумов из парафинистых нефтей с использованием вакуумной перегонки и нагрева до температуры крекинга [107—109]. При одинаковом фракционном составе наименьшей термической стабильностью отличаются парафиновые углеводороды, а наибольшей— голоядерные ароматические. Таким образом, можно рассчитывать, что уже легкий крекинг позволит расщепить и затем отогнать парафиновые углеводороды, отрицательно влияющие на свойства битумов. [c.81]

    При расчете вакуумной колонны необходимо учитывать ко-лнчество воздуха, подсасываемого через неплотности аппаратуры (0,01—0,2% масс, на сырье вакуумной колонны) и газов разложения (0,1% масс, на сырье). Молекулярная масса газов разложения 36—68. При работе на сернистом сырье количество газов разложения увеличивается в 2—3 раза вследствие меньшей термической стабильности этого сырья. При увеличении температуры нагрева на 10—15 °С выход газов разложения повышается в 1,5—2 раза. В низ вакуумной колонны подается водяной пар (3—4 /о масс, на гудрон). При расчете принимают водяной пар, воздух и углеводородные газы — неконденсируе-мые компоненты, не равновесные с углеводородной жидкостью. [c.72]

    Для удовлетворения возрастающей потребности в ДТ все большее внимание уделяется использованию дистиллятных фракций вторичных процессов в составе дизельных топлив. Только процесс гидрокрекинга вакуумного дистиллята позволяет получать продукты, стабильные при хранении и в условиях применения. Это связано с отсутствием в них ненасыщенных углеводородов, а также заметного количества гете-роатомных соединений. Дистилляты остальных процессов, прежде всего термических и особенно замедленного коксования, обогащены ненасыщенными углеводородами, включая диолефины и дициклоолефины, а также содержат значительное количество сернистых, азотистых и кислородсодержащих соединений (табл. 1.7). [c.24]

    Разложение прп перегонке ухудшает эксплуатационные свойства нефтепродуктов понижает их вязкость, температуру вспышки, стабильность к окислению. В целях уменьшения разложения ограничивают время пребывания нефтяных остатков при высоких температурах. Реко.мендуемое время пребывания мазута в нижней части атмосферной колониы не более 5 мин, гудрона, .в низу вакуумной колонны —2—5 мин. [c.68]

    Блок-схема установки Г-43-107 с предварительной гидроочисткой сырья приведена на рис. 2.16. Сырье (вакуумный дистиллят сернистых нефтей) подвергается в секции I гидроочистке на алюмокобальтмолибденовом катализаторе. После отделения бензиновой и дизельной фракций гидроочищенное сырье подается на каталитический крекинг в секцию 2. Продукты крекинга подвергаются ректификации с получением жирного газа, нестабильного бензина, фракций 195—270°, 270—420°, выше 420 °С. Жирный газ и нестабильный бензин направляются в секцию 3 на абсорбцию и газофракциоиирование, где получаются стабильный бензип, ББФ, ППФ, сухой газ и сероводород, абсорбированный моноэтаноламином из жирного и водородсодержащего газов. Дымовые газы регенерации поступают в секцию 4 для утилизации теплоты, затем в электрофильтры 5 для улавливания катализаторной пыли и потом в дымовую трубу. [c.116]

    В работе [150] исследовался состав вакуумных газойлей (фракция 350—500 °С) различных нефтей и приведен состав концентратов, выделенных карбамидным методом. Так, концентрат, полученный из западносибирской нефти, содержал всего 73 /о нормальных алканов, 11,2% изоалканов, 10,1% моноциклоалка-нов, 21 7о бициклоалканов, 1,9% трициклоалканов и 1,7 % аренов. Была исследована методом дифференциального термического анализа термическая устойчивость аддуктов тиомочевины с 32 изоалканами и циклоалканами [151]. Стабильность аддуктов характеризовалась также значением индивидуальной равновесной концентрации (Ср) углеводорода в инертном к тиомочевине растворителе, выше которой возможно образование аддукта. Значения Ср и температур диссоциации аддуктов с некоторыми из исследованных углеводородов приведены в табл. 18. Наиболее ста- [c.75]

    Преимущества насадочных контактных устройств перед тарельчатыми общеизвестны и заключаются прежде всего в исключительно малом перепаде давления на одну ступень разделения. Среди них более предпочтительны регулярные насадки, поскольку они имеют регулярную заданную структуру и их гидравлические и массообменные характеристики более стабильны по сравнению с насыпными. Гидродинамические условия эксплуатации насадок при перекрестном контакте фаз существенно отличаются от таковых при противот е. При перекрестном токе жидкость движется сверху вниз, а пары -горизонтально, следовательно, жидкая и паровая фазы проходят различные независимые сечения, площади которых можно регулировать, а при противотоке - одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкостного и парового орощений изменением толщины и поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превыщающую при противотоке скорость паров (в расчете на горизонтальное сечение колонны) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насыпных насадочных или тарельчатых колонн. Экспериментально установлено, что перекрестноточный насадочный блок конструкции УНИ, выполненный из металлического сетчато-вяза-ного рукава, высотой 0,5 м эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт.ст. (0,13 103 Па), т.е. в 3 - 5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно ценно тем, что позволяет обеспечить в зоне питания вакуумной колонны при ее оборудовании насадочным слоем, эквивалентным 10 - 15 тарелкам, остаточное давление менее 20 - 30 мм рт.ст. и, как следствие, значительно углубить отбор вакуумного газойля или отказаться от подачи водяного пара в низ колонны. [c.51]

    Пущенная в эксплуатацию в ноябре 1987 г. вакуумная колонна нормально и стабильно работала при всех зафиксированных вариантах нагрузки по сырью (мазут арланской нефти) и по режиму ректификации. Давление в зоне питания колонны составило 20 - 30 мм рт. ст. (2,7-4,0)-103 Па, а температура верха - 50 - 70 "С, конденсация вакуумного газойля на насадках за счет циркуляционного орошения была почти полной суточное количество конденсата легкой фракции (180 - 290 С) в емкости-отделителе воды составило менее 1 т. В зависимости от требуемой глубины переработки мазута колонна может работать с подогревом его в вакуумной печи или без подогрева за счет самоиспарения сырья при глубоком вакууме, а также в режиме сухой перегонки. Отбор вакуумного газойля ограничивался высокой вязкостью арландского гудрона и составлял 10 - 18% на нефть. [c.53]

    На первых порах, пока в стране имеются большие ресурсы вакуумных дистиллятов, следует, по-видимому, ограничиться внедрением новых и модернизацией устаревших элементов реакторно-регенераторного блока с целью повышения производительности, углубления процесса, увеличения выхода бензина, селективности, стабильности катализатора, уменьшения его расхода, охраны окружающей среды и продолжительности межремонтного пробега до 3 лет. Всего этого можно достигнуть путем замены катализатора РЗЭ-Y на ультрастабильные или весьма селективные высококремнеземные ЦСК или алюмино-фосфаты La-210, перехода на крекинг в пифт-реакторе при повышенной температуре и сокращенном времени (до 2 - 4 с) подачи водяного пара и применении ультразвуковых форсунок для равномерного напыления на частицы катализатора мелких капелек жидкого сырья по р..ему сечению лифт-реактора, двухступенчатой регенерации. [c.133]

    Резюмируя полученные результаты по влиянию металлов, как свежеотложенных, так и находящихся в условиях старения катализатора, можно отметить следующее. Металлы оказывают сильное влияние на активность катализатора, выражающееся не только в качественном изменении его поверхности, — они способствуют также увеличению скорости сиекания при термопаровой обработке. Изменение активности и увеличение скорости спекания зависит от концентрации металла и его природы, а также от вида обработки. Среди металлов, загрязняющих катализатор, наибольшую опасность представляет никель. Он уменьшает активность и ускоряет спекание катализатора. Ванадий до концентрации 0,02%, которая может накопиться на шариковом катализаторе при переработке вакуумного газойля, наоборот, увеличивает его активность. Это влияние ванадия является стабильным и сохраняется в условиях, характерных для промышленного регенератора. [c.147]

    Результаты гидроочистки вакуумных газойлей можно улучшить путем применения более активных и стабильных катализаторов, предназначенных для переработки тяжелых дистиллятов. В частности, алюмоникельмолибдеиовый катализатор оказался более активным, чем промышленный кобальтмолибденовый катализатор [331—336]. Преимущества нового катализатора наиболее сильно проявляются при переработке тяжелых нефтяных дистиллятов. [c.210]

    Трубопроводы вакуумных установок предварительно испытывают на герметичность давлением 0,2—0,6 МПа в зависимости от величины вакуума, подогретым и осушенным воздухом или инертным газом. После устранения неплотностей систему испытывают на плотность при разрежении. Для этого стационарным оборудованием, создающим выкуум, из системы откачивают воздух. Если в системе не создается стабильный вакуум, та в сомнительных местах заменяют прокладки, подтягивают болты и повторно испытывают систему сжатым воздухом. При достижении стабильного вакуума обнаружение мест утечки производят течеискателем с обдувкой гелием мест соединения и сварки. [c.370]

    На рис. 60 приведены данные о влиянии содержания азота в сырье и длительности работы катализатора на выход бензиновой фракции при различных давлениях во второй ступени гидрокрекинга на алюмосиликатникелевом катализаторе при температуре 425° С, объемной скорости подачи сырья 1,0 ч" и кратности циркуляции водорода 1000 м /м [47]. В качестве исходного сырья был взят гидроочищенный вакуумный дистиллят с различным содержанием азотистых соединений, поскольку азот является наиболее сильным дезактиватором подобных катализаторов. Полученные данные показали, что для обеспечения стабильной работы высокоактивных катализаторов необходимо давление около 150 ат при этом содержание общего азота в сырье не должно превышать 0,01 вес.%. Очистка сырья от азотистых соединений достигается предварительным гидрокрекингом — гидрооблагораживанием вакуумного дистиллята на первой ступени процесса, также под общим давлением [c.258]

    Для ускоренного определения стабильности исследуемые парафины марок В2, Вд и П-1 расплавляли и при температуре 80 + 5°С псжещали в вакуумный термостат, где в течение двух часов держали их под вакуумом при остаточном давлении 0,133 - 0,665 кПа с целью отсоса воздуха и згглеводородных газов. [c.105]

    ДЛЯ получения (после и.ч облагоражнвапия) компонентов моторных топ-лпв и масел, специальных нефтепродуктов н сырья для нефтехимических производств. На установках прямой перегонки обычно получают широкую бензиновую фракцию, подБер[-ают ее стабилизации и далее вторичной перегонке. В результате вторичной перегонки стабильного бензина выделяют узкие фракции— сырье для каталитического риформинга, из которого вырабатывают высокооктановый компонент товарных бензинов либо ароматические углеводороды (бензол, толуол, ксилолы). На атмосферной и вакуумной части также получают керосиновую дизельную и вакуумную фракции. [c.195]


Смотреть страницы где упоминается термин Стабильность вакуумных: [c.149]    [c.112]    [c.133]    [c.120]    [c.118]    [c.156]    [c.74]    [c.42]    [c.81]    [c.62]    [c.27]    [c.59]    [c.9]    [c.256]   
Товарные нефтепродукты, их свойства и применение Справочник (1971) -- [ c.204 ]

Товарные нефтепродукты (1978) -- [ c.211 ]




ПОИСК







© 2025 chem21.info Реклама на сайте