Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропная перегонка углеводородов

    Оптимальные разделяющие агенты для азеотропной перегонки углеводородов [c.310]

    Из большого числа веществ, доступных для применения при азеотропной перегонке углеводородов, в работе нашей лаборатории были использованы следующие  [c.85]

    Классическим примером азеотропной смеси углеводородов с минимальной температурой кипения являются циклогексан и бензол [14]. Эти вещества, кипящие соответственно при 80,8 и 80,1°, образуют азеотропную смесь, кипящую при 77,7°. Кривая давления пара этой смеси подобна кривой показанной на рис. 13. На рис. 14 показана х — г/-диаграмма для этой смеси. Состав азеотропной смеси соответствует точке пересечения кривой у = х) и прямой, образующей с осями координат угол в 45° (у = х). Если производить фракционную перегонку смеси бензола с циклогексаном, содержащей 20%о мол. циклогексана, то первым погоном будет [c.120]


    Смесь неароматических соединений, метилэтилкетона и воды отбирается из колонны К-1 в виде гомогенной азеотропной смеси. Для отделения разделяющего агента, главной составной частью которого является метилэтилкетон, эта смесь экстрагируется водой в колонне К-3. Большая часть метилэтилкетона получается в виде водного раствора, поступающего в колонну К-4, где этот раствор перегоняется. Азеотропная смесь метилэтилкетона и воды, содержащая 90 % МЭК и 10% воды, получается в виде верхнего погона и возвращается в колонну К-1 для азеотропной перегонки. Избыток воды, выделенный в остатки, в случае необходимости может быть направлен из К-4 в К-3. Экстрагированные углеводороды из колонны К-3 содержат еще небольшое количество метилэтилкетона. Эта смесь перегоняется в колонне К-5. Метилэтилкетон, освобожденный от примеси неароматических углеводородов, получается в виде остатков в колонне К-5. Верхний погон азеотропной смеси метилэтилкетона, воды и углеводородов смешивается с верхним погоном из колонны К-1 для экстракции в колонне К-3. [c.131]

    Если использовать рециркулирующие фракции бензина гидроформинга, то можно получить практически чистый толуол фракционной перегонкой, так как в исходных фракциях нет компонентов, способных образовывать азеотропы. Азеотропную перегонку (обычно с метилэтилкетоном) успешно применяют для сырья, содержащего большое количество (около 70. о) бензола или толуола с целью уменьшения расходов реагента и пара, экстракционную перегонку — когда сырье содержит 30—50% ароматических углеводородов. [c.59]

    Берг и сотр. [34, 52] изучили ряд смесей близкокипящих углеводородов и подобрали для их азеотропной перегонки опти- [c.309]

Рис. X. 67. Результаты выделения ароматических углеводородов из углеводородных смесей методом азеотропной перегонки. Рис. X. 67. Результаты <a href="/info/404898">выделения ароматических углеводородов</a> из <a href="/info/1337070">углеводородных смесей</a> <a href="/info/200829">методом азеотропной</a> перегонки.
    На нижней части рисунка показаны результаты азеотропной перегонки смеси монобутилового эфира этиленгликоля со смесью углеводородов при 770 мм рт. ст. Азеотропная смесь содержит около 60% объемн. углеводородов. [c.247]

    Азеотропная перегонка. Некоторые вещества, в частности ряд углеводородов с близкими температурами кипения, нельзя разделить перегонкой с ректификацией, так как при определенном [c.48]


    При выборе третьего компонента для азеотропной перегонки необходимо учитывать следующее 1) после его добавления температура кипения смеси третьего компонента с неароматическими углеводородами (новой азеотропной смеси) должна значительно отличаться от температуры кипения выделяемого ароматического углеводорода или его азеотропной смеси с третьим компонентом 2) желательно, чтобы новая образующаяся азеотропная смесь содержала максимальное количество неароматических углеводородов 3) третий компонент должен иметь низкую теплоту испарения, чтобы расход тепла на отгон был минимальным он должен также легко регенерироваться для дальнейшего использования в процессе, например путем водной промывки, разделения фаз при охлаждении и др., и быть химически инертным — не вступать в реакцию с разделяемыми углеводородами, не корродировать аппаратуру, быть термически стабильным, нетоксичным и доступным в промышленном масштабе. [c.41]

    В настоящее время установки азеотропной перегонки не сооружают. В то же время процесс азеотропной перегонки бензола может представлять интерес при переработке бензина пиролиза, полученного в жестком режиме из газообразного сырья. В выделенной из такого продукта гидроочищенной бензольной фракции содержится лишь 2—3% парафиновых и нафтеновых углеводородов. Азеотропные смеси парафиновых и нафтеновых углеводородов — С7 с ацетоном содержат его 40—60%, т. е. количество подаваемого в колонну азеотропной перегонки ацетона в расчете на сырье будет составлять небольшую величину. Азеотропная перегонка с ацетоном для выделения содержащегося в сырье бензола (97—98%), по-видимому, будет более экономичной, чем экстракция, и, возможно, она сможет конкурировать с процессами экстрактивной дистилляции и гидро-деалкилирования бензольно-толуольно-ксилольной фракции (см. гл. 6). При выделении азеотропной перегонкой толуола и ксилола необходимо применять значительно больше азеотропообразующего агента, чем при выделении бензола (см. табл. 2.5), в связи с чем экономические показатели будут ниже. Кроме того, в некоторых случаях не удается достигнуть нужной чистоты продуктов. [c.42]

    Обычно в качестве вещества, образующего азеотропную смесь с ароматическим углеводородом, берут метилэтилкетон или метиловый спирт. Лэйк [9] составил список веществ, дающих азеотропные смеси с толуолом. Для азеотропной перегонки последнего, по-видимому, наиболее часто используют водный метилэтилкетон. Его применение для этой цели в промышленном масштабе описано в литературе [9, 10]. Этот кетон увлекает с собой в отгон парафины, а также нафтены, если последние присутствуют в разделяемой смеси. Для экономии греющего пара перегонке подвергают концентрат, содержащий 40% толуола. Даже в этом случае для хорошего разделения требуется брать на каждый объем неароматического углеводорода 2—3 объема метилэтилкетона. [c.246]

    При азеотропной перегонке для извлечения толуола к фракции добавляют метанол, или водный метилэтилкетон, или иной подходящий агент. Любое из этих вспомогательных веществ образует постоянно кипящую смесь (азеотроп) с алканами и цикланами исходного сырья и вместе с ними отгоняется из колонны. Дальнейшая обработка ректификата водой освобождает углеводороды от спирта или кетона, которые растворяются [c.235]

    Наличие таких смесей делает практически невозможным нормально достигаемое разделение при помощи азеотропной перегонки углеводородов, выкию аю-щих в тех же пределах. [c.246]

    При подготовке к выделению углеводородов, содержащихся в любой фракции нефти, с помощью азеотропной перегонки необходимо получить смеси углеводородов, хорошо разделенные путем систематической и эффективной перегонки на ряд постоянно кипящих фракций. Такую операцию необходимо проводить, чтобы не получать смесей углеводородов, в которых наряду с парафинами присутствуют низкокшящие циклопарафины, или смесей любых парафинов и циклопарафинов с низкокипящими ароматическими углеводородами. Наличие смесей такого типа делает практически невозможным нормально достигаемое разделение с помощью азеотропной перегонки углеводородов, выкипающих в тех же пределах. В связи с выбором подходящего вещества, образующего азеотропную смесь, необходимо, в дополнение к вышеперечисленным требованиям, обсудить такие вопросы, как объем загрузки углеводородной смеси и соотношение этого объема с производительностью и величиной задержки перегонной колонны. В случае, если имеется сравнительно небольшое по объему количество фракции, кипящей в узких пределах, то лучше всего выбирать вещество, образующее азеотропную смесь с точкой юшения на 30—40° С нише, чем подлежащая разделению смесь, чтобы обеспечить по возможности небольшую концентрацию углеводорода в азеотропном дистиллате. [c.85]


    Толуол можно получать также из фракций некоторых нефтей непосредственно. Например, содержание толуола в восточнотексасской нефти составляет 0,4%, а в некоторых западнотексасских нефтях 0,5%. Из таких нефтей четкой ректификацией на колонне с 50 тарелками можно выделить фракцию, содержащую 23—25% толуола, из которой затем методом ступенчатой азеотропной перегонки можно выделить толуол 98%-ной чистоты. Из приведенных на стр. 103 цифр можно видеть, однако, что значительно выгоднее, когда наряду с ограниченным количеством толуола во фракции содержится относительно много нафтеновых углеводородов, которые могут быть превращены в толуол посредством каталитических процессов. [c.109]

    Для разделения или очистки углеводородов погредством азеотропной перегонки требуется введение в систему разделяющего агента (растворителя), дающего возможность удалить из системы один или несколько компонентов. Для этого образующаяся азеотропная смесь должна иметь температуру кипения, настолько отличающуюся от температур кипения других компонентов системы, чтобы можно было ее отгонять. Послс того, как будет произведена азеотропная перегонка, остается решить задачу удаления разделяющего агента. [c.124]

    Применение азеотропной перегонки. Селективный разделяющий агент определяется как вещество, образующее азеотропные смеси с ограниченным числом компонентов системы. Неселектииные разделяющие агенты образуют азеотропные смесн со всеми компонентами системы. При разделении путем азеотропной перегонки селективные разделяющие апшты применяются реже, чем неселективБые. Обычно разделяющий агент образует азеотропные смеси со всеми компонентами разделяемой смеси, температуры кипения которых близки к температуре кипения разделяющего агента. Это можно видеть из табл. 25, в которой дан перечень разделяющих агентов, применяющихся для разделения углеводородов. Метанол, например, образует азеотропные смеси с углеводородами, температура кипения которых ниже температуры кипения метанола на 70°, и с углеводородами, температура кипения которых выше температуры кипения метанола на 55°, а также со всеми углеводородами с промежуточной температурой кипения. Максимальное понижение температуры кипения получается в том случае, когда температура кипения разделяющего агента ра]ша температуре кипения вещества, подлежащего отделению [10]. Это показано иа рис. 23. [c.127]

    Перегонкг с водяным паром. Перегонка с водяным паром при переработке нефти применяется с различными целями. В большинстве случаев перегретый пар используется таким образом, что на тарелках перегонной колонны вода не выделяется. Так как состав фракций меняется в зависимости от относительной величины парциальных давлений паров воды и углеводородов, этот вид перегонки можно рассматривать как одну из разновидностей азеотропной перегонки. Перегретый пар вводится в различных местах в трубчатые перегонные кубы, работающие при атмосфер- [c.128]

    Толуол, полученный этнм методом, после обработки кислотой, нейтрализации едким натром, промывки водой и повторной перегонки пригоден для нитрования. Если в исходном продукте содержатся ненасыщенные углеводороды, то конец кипения фракции снижается с 121 до 113°. Сравнение экономических показателей этого процесса н про[ ,есса очистки толуола путем экстракционной перегонки показало, что азеотропная Ш ре-гонка выгоднее, если исходный продукт содержит более 40 % толуола [26]. Очистка толуола азеотропной перегонкой представляет значительный интерес. В табл. 27 приведены некоторые данные об опубликованных патентах, относящихся к этому процессу. [c.131]

    Очистка бутадиенэ путем азеотропной перегонки. В конце 30-х годов возрос спрос на бутадиен, являющийся сырьем для производства синтетического каучука. Первоначально дешевыми источниками бутадиена были газы нефтяного крекинга. Дау Кемикл Компани имела в своем распоряжении значительные количества фракций, содержащих углеводороды С , в состав которых входило 50% бутадиена. Был разработан процесс выделения этого бутадиена в чистом виде, состоящий в азеотропной перегонке с аммиаком [40]. Промышленная установка, построенная для работы по этому процессу, была первой установкой США, в которой бутадиен получался тоннами. Этот процесс в настоящее время не используется, хотя изучение его показало, что он является наиболее рентабельным способом очистки, если исходный продукт содержит более 50% бутадиена. [c.132]

    Процесс состоял из первичного разделения в колонне для азеотропной перегонки, регенерации аммиака в специальной установке, удаления диацетилена при помощи специальной системы и окончательного отделения бутадиена в перегонном кубе. Очищенный бутадиен получался в колонне для азеотропной перегонки в виде остатков с примесью небольшого Количества гомологов ацетилена. Другие углеводороды отгонялись в виде йзео-тропных смесей с аммиаком. При охлаждении погон азеотропной перегонки разделялся на две жидкие фазы, после чего фаза с большим содержанием аммиака поступала в виде орошения обратно в Колонну. Углеводородная фаза повторно перегонялась для получения оставшегося в ней аммиака. Если в исходном продукте находились пропаны, то при использовании этого метода восстановления разделяющего агента возникали трудности из-за высокой упругости пара пропанов. Другой метод восстановления разделяющего агента заключается в промывке отогнанного продукта водой. [c.133]

    Азеотропная перегонка применяется для разделения узких фракций бензинов в тех случаях, когда перегонка в вакууме, судя по величинам упругостей паров данных углеводородов, не обещает хороших результатов. К пераздельпокинящей смеси угле-водорсдов прибавляют специальное вещество (из числа низкомолекулярных спиртов, кислот и др.), которое образует с одним из разделяемых углеводородов азеотроппую смесь и этим как бы освобождает второй углеводород. Образование азеотронных смесей вызывается отклонением свойств двух смешивающихся жидкостей от свойств идеальных растворов. Зависимость давления пара ог состава смеси в этом случае ие является линейной —кривая проходит через максимум или минимум. При максимуме давло ИЯ пара смесь кипит при более низкой температуре [c.81]

    При помощи современных методов фракционирования (перегонка в вакууме, азеотропная перегонка, экстракция, кристаллизация) были выделены некоторые полиалкилбензолы и углеводороды ряда тетралина и нафталина [5]. Бициклические ароматические углеводороды многих нефтей были выделены и идентифицированы через никраты. Для идентификации применялись также спект])алыше методы [4, стр. 441-466] (см. табл. 24). [c.116]

    Обзор всех известных приемов азеотропной перегонки был бы слишком громоздким. Техническая литература, в том числе й патентная, по данному вопросу исключительно обширна. Уже приведенные примеры показывают, насколько велики возможности этого метода перегонки. Поэтому целесообразно указать лишь классы веществ, которые особенно выгодно разделять азеотропной перегонкой. Азеотропную перегонку широко применяют для обезвоживания органических веществ, таких как муравьиная кислота, уксусная кислота и пиридин, а также для выделения углеводородов из спиртов, очистки ароматических углеводородов, разделения моно- и диолефинов и т. д. Мэйр, Глазгов и Россини [41, 42], как и Берг [34], провели систематическое исследование процесса разделения углеводородов азеотропной ректификацией. [c.305]

    Особенно жесткие требования предъявляют к чистоте бензола. В нем должны отсутствовать сернистые и ненасыщенные соединения, а также влага, остаточное содержание которой не должно превышать 0,0027о (масс.). Для этог исходный и возвратный бензол подвергают предварительной осушке, используя отгонку воды в виде азеотропной смеси с ароматическим углеводородом. Содержание воды в бензоле после азеотроПной перегонки можно снизить до 0,002—0,006% (масс), что вполне достаточно для успешного проведения процесса. Однако, целесообразно совмещать азеотропную ректификацию с доосуш-кой бензола на активированном оксиде алюминия, так как содержание влаги в бензоле снижается при этом до 0,0005% (масс.), что уменьшает расход AI I3 до 7—8 кг на 1 т этил-бензола. i [c.231]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    Азеотропную перегонку можно проводить на то11 же аппаратуре и тем же методом, что н обычную перегонку, описанную выше [78]. Почти все полярные органические молекулы (за небольпхим исключением) соответствующей летучести образуют с метановыми, нафтеновыми, олефииовыми и ароматическими углеводородами смеси, общая упругость паров которых больше, чем упругость паров наиболее летучего чистого компонента при этом образуются азеотропные смеси с минимальными точками кипения. [c.244]

    При подготовке к выделению при помощи азеотропной перегонки зггле-водородов, содержащихся в любой фракции нефти, следует получить смеси углеводородов, хорошо разделенные путем систематической и эффективной перегонки на ряд фракций, кипящих при постоянной температуре. Это необходимо для того, чтобы не получать смесей углеводородов, в которых наряду с парафинами присутствуют низкокипящие циклопарафины, или смесей любых парафинов и нафтенов с низкокипящими ароматическими углеводородами. [c.246]

    На рис. X. 67 приведены результаты, полученные при отделении ароматических углеводородов от пафтенов и парафинов методом азеотропной перегонки. [c.247]

    Иа верхней части рисунка показаны результаты азеотропной перегонки ацетоЕТИтрила со смесью, состоящей из толуола, парафинов и циклопара-фино . Азеотропная смесь содержала около 25% объемн. парафинов и циклопарафинов и около 20% объемн. ароматических углеводородов, причем первые два образуют при температуре кипения с ацетонитрилом две фазы. [c.247]

    Азеотропную перегонку этой смеси нужно проводить на колонке с хорошим погоноразделением (около 20 теоретических тарелок) или в две ступени сначала перегнать исходную смесь, а затем остаток первой разгонки с добавлением дополнительного количества уводителя (третьего компонента). О чистоте разделения можно судить по показателям преломления, которые очень различны для ароматических, неароматических углеводородов и метанола для толуола 1,4969 для бензина (деароматизирован-ного) в среднем 1,4000—1,4300 для метанола 1,3286. Характерна также высокая плотность ароматических углеводородов. [c.50]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Целью процесса яиляется получеиие высокооктанового ароматизированного компонента бензина или чистых ароматических углеводородов, которые выделяют из катализата одним из извест-пых промышленных методов (экстракцией, азеотропной перегонкой и др.). При получении компопента бепзина риформингу подвергают обычно широкие фракции с началом кипения 85— 105 °С и концом кипения около 180 °С. Для ироизводства ароматических углеводородов используют более узкие фракции 62—105 или 62—120 °С — для получепия бензола и толуола 120—150 °С — для получения ксилолов. Наиболее распространены катализаторы, содержаш ие платину, а также платину и рений на окисноалюминие-вой или цеолитовой основе. Все шире применяют полиметаллические катализаторы, в которых помимо платины и рения содержатся германий, свинец и другие металлы. В зависимости от вида катализатора температура риформинга составляет от 400 до 500 °С. [c.161]

    С помощью искусстбенного образования азеотропных смесей, добавкой к смеси углеводородов полярных органических соединений, можно разделить узкие фракции углеводородов, кипящие при постоянной температуре и состоящие из углеводородо различных классов. Применять азеотропную перегонку к фракциям, выкипающим в каком-то интервале температур, не имеет смысла, так как наличие в смеси с парафиновыми углеводородами нафтеновых и ароматических с меньшей температурой кипения сведет на нет эффект азеотропной перегонки. [c.174]

    Отделение Сз-углеводородов ректификацией от j- и С4-углеводородов происходит легко и практически не представляет никаких затруднений. Поэтому в одинаковой степени легко выделить пропан-пропиленовый концентрат из отходящих газов колонн стабилизации или из крекинг-газов, полученных любым методом. Такой концентрат пригоден для получения основного продукта химической переработки пропилена — изопропилового спирта [гидратация пропилена в изопропиловый спирт описана в гл. 8, стр. 148]. Однако для производства целого ряда других продуктов, число которых все время возрастает, требуется чистый пропилен, в связи с чем возникает задача отделения его от пропана. С помощью простой ректификации этого достигнуть нелегко, так как относительная летучесть пропилена из смесей с пропаном составляет при 3 ата и —20 всего лишь 1,15. С повышением давления это отношение несколько уменьшается чтобы избежать низких температур и использовать для конденсации газов водяное охлаждение, пропан-пропиленовую фракцию необходимо разгонять под давлением не менее 15 ата. Несмотря на все это, можно без особых затруднений осуществить в большом масштабе получение 98%-ного пропилена [13, 32]. Разделение пропилена и пропана происходит пегче, если применить азеотропную перегонку в присутствии чммиака [32] аммиак изменяет отношение давлений паров пропилена и пропана, увеличивая относительную летучесть пропана. [c.126]

    В Германии существовал только один завод (в Мерзе), где осуществлялась гидратация пропилена и н-бутиленов. Сырьем служила смесь Сз- и С4-углеводородов, получавшаяся в качестве побочного продукта при синтезе жидкого топлива каталитическим гидрированием окиси углерода под атмосферным давлением. Смесь углеводородов, содержащую 25—45% олефинов, обрабатывали при температуре 60° и давлении 20 ат 75%-иой серной кислотой углеводороды при этом находились в жидком состоянии. На каждый моль серной кислоты поглощалось 0,66 моля олефинов диалкилсульфаты и простые эфиры получались лишь в небольших количествах. Алкилсерные кислоты гидролизовали в спирть[, разбавляя кислую смесь до 30%, и затем производили отгонку спиртов с водяным паром. Спирты обезвоживали азеотропной перегонкой и разделяли ректификацией. Выход изопропилового спирта составлял больше 90%, считая на пропилен. Выход втор-бутилового спирта из бутиленов был меньше, так как в процессе поглощения серной кислотой образовывались значительные количества димера бутилена [10]. [c.149]

    Ниже описаны технологические схемы экстрактипной и азеотропной перегонок неврерывного действия, имеющие наибольшее применение в промышленности и ставяпще себе задачей извлечь толуол и сопровождающие его ароматические углеводороды — бен зол и ксилол — из концентратов нефтяных фракций. [c.394]


Смотреть страницы где упоминается термин Азеотропная перегонка углеводородов: [c.153]    [c.118]    [c.126]    [c.128]    [c.13]    [c.251]    [c.40]    [c.50]    [c.212]    [c.395]    [c.10]   
Подготовка сырья для нефтехимии (1966) -- [ c.190 , c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропная перегонка приготовление смесей углеводородов

Азеотропная перегонка разделение ароматических углеводородов

Азеотропная перегонка разделение углеводородов различного рода при помощи

Азеотропная перегонка результаты разделения углеводородов

Ахметов, М. Н. Стекольщиков, А. А. Кашин, Руднев. Опыт промышленного использования процесса экстрактивно — азеотропной перегонки для извлечения ароматических углеводородов с использованием растворителя ЛТИ

Отделение углеводородов с помощью азеотропной перегонки

Перегонка азеотропная, очистка углеводородов

выделенных углеводородов данные азеотропной перегонки



© 2025 chem21.info Реклама на сайте