Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциации процессы константа

    Когда лимитирующей стадией становится процесс передачи энергии, реакции разложения начинают протекать по второму порядку, а реакции ассоциации — по третьему порядку. На основании результатов, изложенных в разд. HI. 19, можно заключить, что при 1 атм так будет себя вести большинство трех- и четырехатомных молекул при температуре выше 300° К и пяти- и семиатомных молекул при температуре выше 1000° К-Константы скорости таких процессов мы рассмотрим для случая ассоциации. Чтобы перейти к константам скорости разложения, нам достаточно будет воспользоваться полученными для ассоциации значениями констант равновесия. [c.174]


    Константа диссоциации является мерой частоты, с которой молекула расщепляется на иопы только в том случае, если энергия активации двух соединяющихся в молекУЛУ ионов всег да остается постоянной или всегда очень мала, а константа действия для всех процессов ассоциации примерно одинакова. Однако, в общем, различия в константах диссоциации могут быть вызваны и различной частотой процесса ассоциации. Тогда константа тем больше, чем реже происходит ассоциация. [c.573]

    Образование комплекса антиген—антитело является обратимым процессом, т. е. равновесная константа связывания (аффинности) данного комплекса определяется отношением константы скорости ассоциации к константе скорости [c.50]

    Хотя константы диссоциации четвертичных аммониевых соединений в дихлорметане и хлороформе имеют порядок 10 —10 их влиянием в часто используемых разбавленных растворах нельзя пренебрегать. Желательно, чтобы в органической фазе происходила ассоциация ионных пар, так как этот процесс способствует экстракции. Поэтому более концентрированные растворы обладают преимуществом. Если анион вводится в систему частично в виде неорганической соли NaX, то высокая концентрация и избыток ЫаХ в водной фазе увеличивают экстракцию [Q+X ] в органическую фазу. В то же время возможная ассоциация ионов неорганической соли в водной фазе в больщинстве случаев не оказывает неблагоприятного действия на процесс в целом. [c.22]

    В третьем способе изменение состава раствора нарушает ионное равновесие и вызывает химическую реакцию, в ходе которой происходит восстановление ионного равновесия. Ионные реакции в растворах электролитов представляют собой частный случай гомогенных химических реакций и изучаются в основном химической кинетикой. Отличительной особенностью многих из них является большая скорость по сравнению с другими процессами в растворах. Некоторые из ионных реакций, например ассоциация аниона кислотного остатка и иона гидроксония, идут без энергии активации и характеризуются константами скорости порядка 10 л/моль-с. [c.53]

    Константы диссоциации и ассоциации кислот и оснований все же описывают их свойства недостаточно полно. Важную роль в понимании многих химических процессов, и в частности явления катализа, сыграла концепция жестких и мягких кислот и оснований (принцип [c.235]


    Число ассоциирующихся частиц не обязательно равно двум. Однако в этом случае ассоциация и диссоциация проходят, как правило, многоступенчато. Рассмотрим здесь процессы диссоциации, приводящие к образованию только двух частиц. В общем виде уравнение диссоциации можно записать так ABч A-fB (в частных случаях А и В могут совпадать, как в двух первых примерах). Константа равновесия этого процесса, которая в случае применимости законов идеальных растворов равна [c.261]

    Как константа равновесия, зависит от температуры. При повышении температуры вследствие увеличения энергии поступательного движения всех молекул в растворе можно ожидать усиления процесса диссоциации однако сольватные оболочки ионов становятся менее прочными, что способствует протеканию обратного процесса — ассоциации ионов в молекулы. Поэтому зависимость от температуры является сложной и проходит через максимум при определенной температуре. Так, значение уксусной кислоты принимает максимальное значение (1,76 10" ) при 23 °С. [c.209]

    Константа равновесия этого процесса запишется так же, как и для ассоциации обычных частиц  [c.276]

    Например, при ассоциации спирта по схеме иКОН (НОН) можно но интенсивности полосы свободной гидроксильной группы вычислить концентрацию мономерных молекул в растворе [КОН]св. А зная по навеске общую концентрацию спирта, можно определить степень ассоциации его в растворе а=1—[КОН]св/[НОН]общ- Константу ассоциации определяют по формуле АГ = (1 — К )/ [К0Н] ,5щ. Для определения энтальпии процесса необходимо провести измерения при нескольких температурах. [c.220]

    Естественно, что использование квазиравновесного приближения приводит к определенной потере информации о кинетических параметрах процесса, поскольку и (У.105) и (У.Юб) содержат только параметры /(1 и не содержат раздельно констант скорости к . Тем самым из данных по кинетике накопления продукта реакции нельзя получить никаких сведений о константах скорости ассоциации А1 и Аг и диссоциации С. [c.282]

    Константа образования Кг при гидрофобной ассоциации часто возрастает с ростом температуры, что отличает процесс гидрофобного взаимодействия от большинства реакций ассоциации с участием полярных молекул. Из уравнения = —А0°1Т=—АН°/Т+А8 видно, что для образования прочных ассоциатов необходимо, чтобы либо величина АН° имела достаточно большое отрицательное значение, либо было достаточно большой положительной величиной. Если АН отрицательно, как это имеет место для большинства экзергонических реакций (например, при протонировании ЫНз АН° = —52 кДж-моль ), то Кг будет уменьшаться с повышением температуры. Однако если [c.249]

    Рассмотрим теперь процесс ассоциации А с В с образованием олигомеров, для которых истинные константы связывания Ках и Квх имеют те же значения, что и для мономеров. Поскольку наиболее распространенной олигомерной формой ферментов является изологический димер [63], целесообразно более подробно проанализировать поведение именно димеров. Моно и др. подчеркивали, что оба конформера А и В (Т и R) могут ассоциировать, образуя изологические димеры, в которых сохраняемся симметрия  [c.298]

    Процесс соответствующих взаимодействий, имитирующих те, которые доминируют в биохимических процессах и относящихся к нековалентным, получил название "молекулярное узнавание". Молекулярное узнавание можно определить как процесс, включающий в себя как связывание, так и выбор молекулы - "гостя" данной молекулой -"хозяином". Просто связывание молекул не является молекулярным узнаванием. Согласно Лену [4], "узнавание - это связывание с целью". Данное поведение характерно для многих биохимических процессов, таких как ферментативные реакции, связывание "рецептор-субстрат", сборка белковых молекул, иммунное взаимодействие антиген-антитело, транспорт через мембрану и т.д. Одним из критериев молекулярного узнавания является то, что константа ассоциации между "хозяином" и "гостем" является значительно более высокой по сравнению с константами образования комплексов между другими молекулами, присутствующими в системе. В связи с этим особое значение приобретает исследование энергетики межмолекулярных взаимодействий биомолекул. Энергетические параметры позволяют судить о силе взаимодействия, наличии или отсутствии ассоциации между молекулами, а также выявить и описать влияние растворителя на процесс молекулярного узнавания. [c.185]

    К сожалению, не существует специального термина для константы всего процесса ионизации- диссоциации, описываемого произведением К. оп Kdiss, в результате которого из ионогенов образуются свободные ионы. Этот процесс обычно называют либо просто ионизацией, либо просто диссоциацией. По этой причине Фуосс настаивал, чтобы равновесие между свободными ионами и ионными парами всегда рассматривалось как равновесие ассоциации, имеющее константу К , а не К,. во избежание путаницы с равновесием ионизации, [c.502]


    Одними из самых важных характеристик процесса связывания лигандов с центрами комплексообразования являются равновесные константы ассоциации процесса Ка. Именно равновесные константы связывания служат одной из наиболее- простых, но при этом важнейших характеристик сродства лиганда к данному центру. овяйлваяия, его специфичности, являются одной из величин, характеризующих его фармакологическую активность. Более того, как было упомянуто, один из важней-щих методов определения кинетических жонстант ассоциации основан на. предварительном измерении равновесных констант связывания и кинетических констант диссоциации. Поэтому при изучении процессов комплексосибразования лигандов с центрами связывания больщое вии-мание уделяется методам определения равновесных констант связывания. Существенно, что многие из этих методов позволяют определять и общую концентрацию центров комплексообразования — ценной ко- - личественной характеристики систе- [c.200]

    Гетерогенный процесс состоит из нескольких стадий доставки вещества из раствора к поверхности твердого тела, собственно химической реакции на поверхности твердого тела и отвода продуктов реакции от поверхности в глубь раствора. Могут быть и другие стадии. Так, например, дополнительное химическое превращение исходного сеп1.ества в растворе ассоциация или диссоциация молекул, изменение состава компонента и т. п. или дополнительные химические превращения продукта реакции у поверхности твердого тела рекомбинация, димеризация, нротонизация и т. п. Каждая из этих стадий может быть лимитирующей, т. е. иметь самую малую константу скорости и оказывать наибольшее сопротивление процессу. [c.366]

    Константы ассоциации простых алкиламмониевых солей с 18-краун-б-эфи-ром в СВС1з при 25°С равны 10 л/моль, что соответствует свободной энергии процесса комплексообразования —33,5 кДж/моль (—8 ккал/моль). [c.267]

    Помехи, связанные с процессами в пламени реакции ионизации или ассоциации (образование монооксидов и моногидроксидов, например, щелочноземельных элементов с константами диссоциации более 100 ккал/моль). [c.13]

    Деление электролитов на сильные и слабгле условно. Совре-мен11ые исследования указывают на существование в растворах электролитов не только простых ионов и нейтральных молекул, но и различных ассоциатов ионов, включающих в себя молекулы растворителя, например в водном растворе вместо простой диссоциации вида АВ А + В рассматривается равновесие исходных молекул АВ с их сольватированной формой (АВ)с АВ + Н2О (АВ)с, диссоциация сольвата на ионы (АВ)с= = А(+ + Вг, ассоциация сольватированных ионов А и ВГ с образованием ионных двойников Ас 4- ВГ (А ВГ) и др. Каждая из подобных реакций характеризуется своей константой равновесия. Кроме того, учитывается возможность существования различных сил, действующих между частицами электролита и между этими частицами и молекулами растворителя. Таким образом, представления о слабых и сильных электролитах, когда совсем пренебрегают силами взаимодействия ионов или их рекомбинацией и ассоциацией, а также не учитывают остальные возможные процессы, являются упрощенными и годятся лишь для приближенного описания. Несмотря на это, понятия сильного и слабого электролита во многих случаях оказываются достаточными. [c.204]

    Процесс образования и диссоциации ионных 1рупп — ассоциатов— может быть описан при помощп константы равновесия. Степень ассоциации ионов возрастает с увеличением зарядов ионов и уменьшением нл радиусов. Ассоциация зависит также от природы растворителя чем. меньше диэлектрическая проницаемость растворителя, тем больше степень ассоциации ионов. Так, при добавлении в водный раствор электролита вещества с меньшей диэлектрической проницаемостью (например, дн-оксана) содержание ионных ассоциатов возрастает по мерс уменьшения диэлектрической проницаемости. [c.288]

    О значительной роли ассоциации в уксусной кислоте говорят также данные о константах диссоциации (ассоциации) солей (см. табл. 25). В последнее время Кольтгоф и Брукен-штейн установили количественно роль процессов ассоциации в уксусной кислоте (см. гл. VII). [c.282]

    Сольватированные ионы, в свою очередь, в результате электростатического взаимодействия объединяются, образуя ионные двойники (ассоциаты) НсАё- Этот процесс характеризуется константой ассоциации  [c.218]

    Уравнение (7.1.6) справедливо лишь в том случае, когда растворенное вещество находится в обеих фазах в одной и той же молекулярной форме. На практике это условие трудно выполнимо, так как процессы ассоциации, комплексообразования, кислотно-основного взаимодействия наряду с другими факторами зависят от растворителя и протекают по-разному в обеих фазах. Поэтому в практических расчетах обычно используют обшие концентрации веществ и в отличие от константы распределения к определяют коэффициент экстракции В [c.329]

    Считая раствор скесью мономеров и ассоциатов, взаимодействия между которыми носят чисто ван-дер-ваальсовский характер, мы можем формально исключить сильные взаимодействия из числа рассматриваемых межмолекулярных взаимодействий. Энергетические и энтропийные характеристики образования ассоциатов, связанные с изменением статистических су.мм молекул в процессе ассоциации, неявно учитываются через константу равновесия ироцесса. Эти характеристики определяют равновесные соотношения между количествами ассоциатов разного типа в растворе оценка их необходима для теоретического расчета констант равновесия. Однако в подавляющей части работ не ставится задача теоретического расчета констант равновесия величины констант зводятся в термодлилмические уравнения как параметры и определяются на основании экспериментальных данных. [c.434]

    В сложных реакциях нередко встречаются обратимые стадии с быстро устанавливающимся равновесием. В 2 гл. IV было показано, что разность S.X равновесной и текущей концентраций для системы, находящейся вблизи равновесия, уменьшается по экспоненциальному закону (IV.57). Величина, обратная множителю при t в показателе экспоненты в (IV.57), показывает, за какое время кх уменьщается в е раз, и называется временем релаксации. В частности, для процесса ассоциации — диссоциации двух частиц Aj и Aj эта величина равна (fe i + [Ai] + [А2])" где k , k i — соответственно константы скорости ассоциации и диссоциации. [c.280]

    Использование метода ЯМР для определения характеристик молекулярных комплексов основано на изменении параметров спектра ЯМР, таких, как ХС, константа спин-спинового взаимодействия, время Т и Т%ъ процессе комплексообразования, а также на большой чувствительности метода к временным процессам в системах ассоциирующих веществ. Основным экспериментальным параметром в исследованпн процессов самоассоциа-ции и ассоциации молекул в методе ЯМР является химический сдвиг. Рассмотрим, как нз данных измерений величин химических сдвигов ядер взаимодействующих молекул может быть получена информация о строении и характеристиках молекулярных комплексов в растворах. [c.99]

    Увеличивая ДП растворителя всего от 2,3 (бензол) до 10 (дихлорбензол), можно, как это видно из рис. 1, в, повысить константу ионизации почти вдесятеро. Изменение константы равновесия, быть может, и не такое выразительное, как, к примеру, в процессе гетеромолекулярной ассоциации, но с 1едует учесть, что ионизация в данном случае сводится к внутримолекулярному переходу протона от кислотной части продукта присоединения к основной . А внутримолекулярные переходы от ДП растворителя зависят, разумеется, в меньшей степени, чем иные стадии равновесий в растворах. [c.54]

    По тем же причинам молекулы углеводородов стремятся агрегировать в воде. Процесс образования гидрофобной связи можно представить себе как перемещение неполярных частей молекул из воды в гидрофобные области, образуемые за счет ассоциации этих частей. В результате неполярные части оказываются в непосредственной близости друг от друга, т. е. как бы в окружении неполярного растворителя. Вследствие такого перемещения происходит уменьшение числа молекул воды, контактирующих с гидрофобными участками растворенного вещества, т. е. разрушение части областей структурированной воды, окружающих гидрофобные поверхности, в результате чего энтропия раствора возрастает. Следовательно, образование гидрофобной связи между двумя углеводородными молекулами или алкильными группами сопровождается обычно увеличением энтропии. Поскольку энтропийный член TAS чаще всего вносит наибольший вклад в величину свободной энергии, определяющую значение константы Kt, часто говорят, что гидрофобное связывание имеет энтропийную природу. Однако, как под-"черкивал Дженкс, важную роль в гидрофобном взаимодействии играет сильно выраженная способность молекул воды сцепляться друг с другом, вследствие чего заметный вклад может вносить не только энтропийный член, но и энтальпийная составляющая свободной энергии. [c.248]

    Анализируя данные по термодинамическим параметрам реакций комплексообразования эфира 18-краун-б (табл. 4.8) и р-ЦД (см. ниже табл. 4.17) с аминокислотами в воде, можно сделать следующие сравнительные выводы о взаимодействии указанных макроциклов с АК в воде. Константы равновесия реакций комплексообразования 18-краун-б с АК меньше соответствующих констант для систем р-ЦД + АК, однако 18-краун-б имеет более сильную комплексообразующую способность к АК по сравнению с р-ЦД. Ассоциация 18-краун-б со всеми АК в воде происходит по единому механизму за счет образования трех водородных связей посредством КНз-группы АК и через три электростатических взаимодействия Г Г. .. О. р-ЦД селективно ассоциирует с изученными АК и образует комплексы только с ароматическими АК за счет специфических взаимодействий, а процесс комплексообразования в большей мере, чем в случае с 18-краун-б, управляется влиянием среды. Это подтверждается существованием зависимости энтальпии комплексообразования (Д(.// ) 18-краун-б и р-ЦД от энтальпии гидратации (Д ,у ,Л) аминокислот (рис. 4.14), из которой выпадают только значения для комплексов Ь-Шз-р-ЦД, Ь-01п-18Кб, Ь-Р11е-18К6, что свидетельствует об ином механизме молекулярного узнавания этих АК указанными макроциклами. Как видно из рис. 4.14, зависимость А,Н А,,у гН) для Р-ЦД сильнее выражена, чем для 18-краун-б, что говорит о большем влиянии растворителя на процесс ассоциации АК с р- [c.227]

    Известно, что НО (рис. 4.19) в водных растворах находятся в гидратированном состоянии и ассоциируют друг с другом. Так как расположение полярных групп в НО различно, то можно предполагать различия в их гидратации, которые влияют на взаимодействия между основаниями в воде. Это подтверждается исследованиями рисунка воды вокруг четырех оснований гуанина, аденина, цитозина и тимина по данным кристаллографического анализа [80]. Обнаружены конфор-мационно-зависимые различия как в геометрии, так и в степени гидратации оснований. Ассоциация НО в воде достаточно полно изучена и не вызывает сомнений. Например, самоассоциация Ade исследована в работе [81]. Гидратация и самоассоциация Ura изучена спектроскопическими методами в работах [82, 83] и установлено, что гидратация карбонильной группы С(4)-0(4) значительно выше, чем гидратация группы С(2)-0(2). Кроме того, сделан вывод, что Ura образует в воде циклические димеры при участии групп С(4)-0(4). Т. Лилли с сотрудниками [84] показано, что кофеин ассоциирует в воде с образованием димеров, тримеров и т.д. с одинаковой константой равновесия для каждой стадии. Наконец, спектроскопическими методами установлено [85], что величины констант ассоциации для комплексов убывают в следующем порядке yt + yt > yt + Ura > Ura + Ura, что характеризует склонность HO к самоассоциации в воде. Ассоциация НО в водных растворах является выгодным процессом с энергетической точки зрения [86]. Основным фактором, стабилизирующим образование димеров, является изменение энергии взаимодействия молекул воды друг с другом, которое связано со значительным изменением ее структуры молекулами НО. Моделирование ассоциации af в водном растворе с помощью метода Монте-Карло свидетельствует [87], что метильные группы мономеров при димеризации располага- [c.234]

    Н2Фц(50з)4(10,73) [90], что свидетельствует о возрастающей роли я-электронной составляющей в нем, а также о том, что структурная и электронная составляющие МЦЭ изменяются здесь симбатно друг другу. Применение термодинамических констант АГ1 для характеристики МЦЭ может быть оправдано только в том случае, если допустить, что МЦЭ ярко выражен у исходных молекул (Н2П НП + Н+) и практически не влияет на процесс ассоциации моноаниона порфирина НП" с протоном, поскольку МЦЭ порфиринов - явление структурнокинетическое. [c.356]

    Приведенные примеры показывают, что при использовании констант равновесий следует четко оговаривать форму записи соответствующего уравнения и строго придерживаться общепринятых договоренностей на сей счет, если таковые имеются. Например, кислотно-основные равновесия (равновесия переноса протона, разд. 6.1) традиционно принято записывать как процессы диссоциации, а равновесия комплексообразования (разд. 6.2) — наоборот, как процессы ассоциации. Кроме того, для диссоциации многоосновных кислот принято использовать только ступенчатые констанш, а для равновесий комплексообразования возможно использование как ступенчатых, так и общих констант. Подробнее эти соглащения будут обсуждены в разделах гл. 6, посвященных описанию отдельных типов химических равновесий. [c.85]


Смотреть страницы где упоминается термин Ассоциации процессы константа: [c.150]    [c.138]    [c.214]    [c.269]    [c.95]    [c.51]    [c.220]    [c.97]    [c.27]    [c.223]    [c.135]    [c.96]    [c.204]    [c.358]   
Аффинная хроматография (1980) -- [ c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Константы ассоциации



© 2024 chem21.info Реклама на сайте