Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный индуцированный

    Характер активных центров на поверхности металла зависит от его химической природы, способа обработки и чистоты. Необходимо подчеркнуть, что химический состав поверхности играет существенную роль в протекании поверхностных процессов, и при рассмотрении конкретных вопросов химмотологии в области поверхностных явлений следует вносить поправки на особенности химического строения адсорбента. Химическое строение металла подробно рассматривается металловедением [203]. Поверхность металлических деталей представляет собой комбинацию полярных активных участков и олеофильных участков, природа которых определяется в основном дисперсионными силами. Адсорбция молекул некоторых углеводородов, индуцирующих на металле большие дипольные моменты, может способствовать превращению поверхности из неполярной в полярную [204]. [c.181]


    Третьим возможным механизмом образования двойного электрического слоя служит поверхностная ориентация нейтральных молекул, содержащих электрические диполи. Такой дипольный слой, ориентированный на поверхности, представляет собой фактически двойной электрический слой, не являющийся диффузным. Притягивая подвижные заряженные частицы, он может индуцировать вторичные, уже диффузные двойные слои, распространяющиеся вглубь по обе стороны от поверхности раздела фаз. [c.185]

    Для следующего приближения необходимо учитывать возможное искажение заряженного облака молекулы из-за присутствия другой молекулы. В первом приближении однородное электрическое поле Е индуцирует дипольный момент величиной аЕ в поляризуемой молекуле, где а —поляризуемость. Электрическое поле одной молекулы просто индуцирует дипольный момент во второй молекуле. Если поляризуемость молекулы неизотропна, то индуцируемый момент не параллелен создающему его полю и а есть в действительности тензор второго ранга. Для цилиндрических молекул, которые рассматриваются в качестве примера, тензор поляризуемости может быть выражен только через две независимые компоненты ац и, соответственно параллельные и перпендикулярные оси симметрии. Однако, как правило, силы второго порядка, включающие индуцированные моменты, гораздо меньше других сил. Поэтому разумно предположить, что достаточно точное приближение получается при использовании просто средней поляризуемости а, которая определяется как [c.197]

    Постоянный дипольный момент молекулы индуцирует дипольный, квадрупольный и другие моменты более высокого порядка во второй молекуле, которые затем взаимодействуют с постоянными мультипольными моментами первой молекулы. Постоянный квадрупольный момент первой молекулы также может индуцировать дипольный, квадрупольный и моменты более высокого порядка в другой молекуле. Взаимодействие постоянного дипольного момента первой молекулы с индуцированным дипольным моментом второй молекулы можно описать следующим образом  [c.197]

    Если первая - молекула имеет одновременно постоянные дипольный и квадрупольный моменты, то последний может также взаимодействовать с индуцированным дипольным моментом второй молекулы. Кроме того, квадрупольный момент первой молекулы также индуцирует дипольный момент во второй молекуле, и взаимодействие последнего с постоянным диполем уменьшается с расстоянием аналогично тому, как это происходит в случае взаимодействия постоянного квадруполя с диполем, индуцируемым диполем. Эти два взаимодействия вместе дают выражение [c.198]


    Рассмотрим заряженное электронное облако сферического атома, заданное средним по времени движением его электронов вокруг ядра. Усредненное движение электронов вокруг ядра сферически симметрично, однако в любой момент времени в какой-то области может произойти кратковременное скопление отрицательных зарядов, в результате чего образуется мгновенный дипольный момент атома. Этот мгновенный диполь индуцирует соответствующие дипольные моменты в соседних атомах, между которыми и происходит мгновенное взаимодействие. Мгновенный диполь любого атома при усреднении по времени обращается в нуль, а средняя энергия взаимодействия отлична от нуля, так как мгновенные и индуцируемые диполи находятся в одной фазе, или, другими словами, связаны друг с другом. Средняя энергия взаимодействия мгновенных диполей уменьшается с расстоянием по закону т. е. так же, как и энергия, обусловленная взаимодействием постоянного и индуцированного диполей в соответст- [c.199]

    Атомная поляризация может происходить в полярных и неполярных молекулах и в сложных ионах. Она характеризует смещение положительно заряженных ядер относительно отрицательного полюса. Действие поля, таким образом, может вызвать увеличение полярности молекулы. Внешнее поле может также возбуждать, т. е. индуцировать полярность в неполярных молекулах. В этом случае говорят об индуцированном или наведенном дипольном моменте. [c.52]

    Поляризация и диэлектрическая проницаемость. Вещество состоит из положительно заряженных атомов ядер, окруженных отрицательно заряженными электронными облаками. При наложении внешнего электрического поля электроны слегка смещаются по отношению к ядру. В результате индуцируется дипольный момент, который обусловливает так называемую электронную п оля-ризацию. [c.43]

    При индукционном взаимодействии в неполярной молекуле, характеризующейся нулевым значением постоянного дипольного момента, электрическое поле полярной молекулы может индуцировать диполь с моментом, не равным нулю. При этом неполярная молекула становится индукционно-полярной и между ними возникает индуцированное взаимодействие. Чем выше поляризуемость молекулы а, тем больше величина возникающего индуцированного момента. Индуцирование неполярной молекулы зависит от напряженности электрического поля полярной молекулы, а поэтому энергия Еут этого взаимодействия не зависит от температуры  [c.9]

    Поляризация одной двухэлектронной связи в сложной молекуле влияет на состояние соседних связей. Дипольный момент индуцирует Б них также дипольные моменты, правда, значительно меньшие. Этот индуктивный эффект (/-эффект) оказывает влияние на реакционную способность молекулы и особенно наглядно проявляется при сравнении констант диссоциации замещенных кислот. Так, константы диссоциации [c.52]

    Дипольное строение силоксановой группы вызывает и поляризацию связи кремния с углеродом, индуцируя п ней дипольный момент  [c.475]

    При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникает индукционное притяжение, накладываемое на дисперсионное. [c.106]

    Под действием внешнего электрического поля молекула поляри-зуется.т. е. в ней происходит перераспределение зарядов и молекула приобретает новое значение дипольного момента. При этом неполярные молекулы могут превратиться в полярные, а полярные становятся еще более полярными. Иначе говоря, под действием внешнего электрического поля в молекулах индуцируется диполь, называемый наведенным или индуцированным. В отличие от постоянных и мгновенных наведенные (индуцированные) диполи существуют лишь при действии внешнего электрического поля. После прекращения действия поля наведенные диполи исчезают (экспериментальное определение величин постоянных и наведенных диполей см. стр. 188). [c.82]

    Индукционное взаимодействие молекул осуществляется за счет их индуцированных диполей. Допустим, что встречаются полярная и неполярная молекулы. Под действием полярной молекулы неполярная молекула деформируется, и в ней возникает (индуцируется) диполь. Индуцированный диполь притягивается к постоянному диполю полярной молекулы. Индуцированный диполь в свою очередь усиливает дипольный момент полярной молекулы. [c.105]

    В то же время магнитный дипольный момент ]1т1(ё) индуцируется переменным электрическим полем в направлении ё. Но электрическое поле излучения этого магнитного диполя направлено параллельно fie(B), совпадает по фазе и эквивалентно по амплитуде. В результате эти поля суммируются, так что имеем уравнение [c.178]

    Индукционная составляющая возникает при взаимодействии полярной и неполярной молекул, например, НС1 и С1з. При этом полярная молекула поляризует неполярную, в которой появляется (индуцируется) наведенный дипольный момент. В результате возникает диполь-дипольное притяжение молекул. Энергия индукционного взаимодействия тем больше, чем больше дипольный момент полярной молекулы и чем больше поляризуемость неполярной. Поляризуемость молекул — это мера смещения зарядов в молекуле в электрическом поле заданной напряженности. Поляризуемость резко увеличивается с увеличением размеров электронной оболочки. Например, в ряду молекул НС1, НВг и HI дипольный момент уменьшается, однако температуры плавления и кипения веществ увеличиваются, что связано с увеличением поляризуемости молекул. [c.153]


    Свет рассеивается микрогетерогенными системами только в том случае, если размер частиц г меньше длины световой волны X, а расстояние между частицами больше световой волны. При размере частицы г < X световая волна огибает частицу происходит дифракционное рассеяние. Если размер частиц значительно больше длины световой волны, происходит отражение света. Рассеяние света связано с тем, что переменное электрическое поле световой волны возбуждает частицу, индуцируя в ней переменный дипольный момент. В результате этого частица становится источником собственного излучения, сохраняя строгие фазовые соотношения с облучающим электрическим полем. Такое рассеяние света называется когерентным. Если падающий луч света монохроматичен, то свет, рассеянный частицами, таклсе монохроматичен и имеет такую же длину волны, как и свет падающий. Свет, рассеянный частицей, попадает на находящиеся вблизи частицы, происходит многократное рассеяние света. В результате возникает само-освещение среды рассеянными внутри нее электромагнитными волнами. Вследствие когерентности света, рассеянного частицами, волны рассеянного ими света интерферируют между собой и с волнами падающего света. На границе дисперсионная среда — дисперсная фаза происходит полное гашение облучающей волны, и вместо нее возникают преломленные и отраженные волны. [c.389]

    Так как диполь создает вокруг себя электрическое поле, он может индуцировать дипольный момент у другой, не обладающей дипольным моментом частицы или индуцировать дополнительный дипольный момент у полярной частицы. При этом индуцированный дипольный момент будет направлен вдоль поля, создаваемого диполем. Например, если частица находится на оси диполя, то наведенный дипольный момент тоже будет направлен по оси диполя (рис. 44). Для этого случая нетрудно определить энергию взаимодействия. Действительно, напряженность поля, создаваемого диполем вдоль его оси на достаточном удалении от диполя, может быть определена по [c.102]

    Полярная молекула может индуцировать дипольный момент в другой полярной молекуле. Учет индуцированного диполя дает для энергии взаимодействия двух одинаковых полярных молекул уравнение [c.258]

    При взаимодействии полярных и неполярных молекул в последних под действием электрических полей полярных молекул наводится (индуцируется) электрический дипольный момент. Этот эффект называется индукционной составляющей сил Ван-дер-Ваальса. Энергию индукционного взаимодействия рассчитывают по формуле [c.24]

    Индукционное (поляризационное) взаимодействие между молекулами А и В связано с тем, что в поле молекулы А, которая имеет постоянный электрический момент, происходит перераспределение электронной плотности внутри молекулы В, приводящее к понижению энергии системы. В молекуле В индуцируется дипольный момент, направленный по полю момент пропорционален поляризуемости молекулы ( в). Если и молекула В имеет постоянный электрический момент, то она в свою очередь поляризует молекулу А. Индукционное взаимодействие всегда сводится к притяжению. Это взаимодействие, как и ориентационное, может быть описано на языке классической электростатики. Усредненная по ориентациям молекул А и В энергия индукционного взаимодействия в дипольном приближении имеет следующий вид  [c.119]

    Под действием внещнего электрического поля молекула поляризуется, т. е. под действием поля соседней молекулы в ней наводится (индуцируется) дипольный момент. Если молекула была полярной, то ее электрический момент становится больше если молекула была неполярной (рис. 34, б), то она приобретает электрический момент, называемый индуцированным (.(инд. [c.91]

    Сжиженные инертные газы неон, аргон, криптон и ксенон являются простейшими по своим свойствам и типу межатомного взаимодействия жидкостями. Интерес к изучению их структуры связан с необходимостью дальнейшего развития теории жидкого состояния. Для этих веществ теоретические расчеты физических величин можно сделать более количественными, чем для других жидкостей. Притяжение атомов у сжиженных инертных газов описывается дисперсионными силами Ван-дер-Ваальса. Эти силы имеют квантовую природу. Своим существованием они обязаны нулевой колебательной энергии атомов. Не будь ее, нельзя было бы осуществить сжижение инертных газов, не существовало бы в природе парафинов, полимеров и многих других веществ с неполярными молекулами. Предпосылкой для появления дисперсионных сил является динамическая поляризуемость атомов и молекул, возникновение у них мгновенных диполей благодаря вращению электронов вокруг ядра. Электрическое поле такого диполя одной молекулы индуцирует дипольный момент в окружающих молекулах, что и приводит к появлению сил притяжения. [c.152]

    Индукционное взаимодействие осуществляется между полярной и неполярной молекулами. Под влиянием электростатического поля полярной молекулы в неполярной молекуле наводится (индуцируется) временный дипольный момент, а затем обе молекулы взаимодействуют как диполи. Энергия индукционного взаимодействия не зависит от температуры. Она возрастает с увеличением поляризуемости молекул. [c.112]

    Второй тип взаимодействия называется индукционным. Это взаимодействие возникает, когда молекула, обладающая диполем (дипольная молекула), сближается с нейтральной молекулой, у которой имеются заряды, равномерно распределенные по молекуле (рис. 13,а). Под влиянием дипольной молекулы у нейтральной молекулы происходит перераспределение заряда и возникает (индуцируется) дипольный момент (рис. 13, б). [c.26]

    Энергия поляризационного взаимодействия между молекулами примерно на порядок меньше энергии лондоновского и дипольного взаимодействия. Например, для двух молекул пиридина при Я = 2 нм, о 1,6- 10 кк Т при 300 К- Тем не менее, поляризационное взаимодействие между молекулами оказывает существенное влияние на свойства полярных жидкостей. Полярная молекула поляризует всю окружающую ее массу молекул и создает (индуцирует) в этом окружении некоторый дипольный момент А[х, величина которого зависит от поляризуемости и диэлектрической проницаемости среды. Поляризация окружающей среды создает поле ( реактивное поле) в том элементе объема, где находится полярная молекула. В результате происходит дополнительная поляризация полярной молекулы. Реакция окружающей среды на присутствие в ней полярной молекулы приводит к появлению реактивного поля, действующего на молекулу. В итоге возникает существенный дополнительный вклад в энергию взаимодействия полярных молекул со средой. Нетрудно понять, что этот вклад пропорционален числу молекул в единице объема. Он значителен в жидкой фазе и мал в разреженных парах. Влияние этого фактора будет рассмотрено в гл. П. [c.29]

    М в уравнении (VI 1.32) включает в себя не только тот электрический момент, который непосредственно связан с анизотропным распределением постоянных дипольных моментов молекул, но и тот, который индуцируется во всей жидкости под влиянием анизотропного распределения полярных молекул в области V. Поляризация молекул, расположенных вне области о, весьма существенно влияет на величину М ,. Если бы сферическая область жидкости была окружена не такой же жидкостью, а вакуумом, то связь между средним квадратом спонтанного электрического момента (М )вакуум и была бы совсем иной  [c.146]

    Индукционные силы имеют также электростатическую природу, но в отличие от сил ориентационных индукционные силы возни-кают вследствие того, что одна из молекул, обладающая диполем (мультиполем), поляризует другую молекулу и индуцирует,в ней дипольный момент, притяжение которого к диполю (мультиполю) и обусловливает взаимодействие молекул. Теорию этого эффекта впервые развил Дебай (1920 г.). Если одна из электрически нейтральных молекул обладает дипольным моментом а другая неполярна, то средняя энергия этого взаимодействия, как показал Дебай, [c.50]

    До сих пор в этой лекции речь шла только об обменном взаимодействии между парамагнитной частицей и радикалами пары. Но еще есть спин-спиновое диполь-дипольное взаимодействие. Оно также индуцирует S-T переходы в РП. В этом смысле нет принципиальной разницы между [c.68]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]

    Энергия адсорбции полярных молекул на неполярном адсорбенте. При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникаетиндук- ///ип/// ционное притяжение, которое добавляется к дисперсионному. В зависимости от положения и величины диполя в молекуле адсорбата и поляризуемости адсорбента энергия индукционного взаимодействия может достигать нескольких ккал/моль. [c.494]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Из всех компонентов, входящих в состав масляных фракций, наибольшей адсорбируемостью на силикагеле обладают смолисто-асфальтеновые вещества, что объясняется их высокой полярностью, обусловленной несимметричностью строения молекул и наличием в них конденсированных ароматических колец и гетероатомов серы, кислорода и азота. Ароматические углеводороды адсорбируются на силикагеле в результате того, что под влиянием электростатического поля адсорбента в их молекулах индуцируется дипольный момент. По сравнению с углеводородами других гомологических рядов а1роматичеокие структуры обладают наибольшей молекулярной поляризуемостью. Следовательно, чем меньше экранированы ароматические кольца нафтеновыми кольцами или парафиновыми цепями, тем легче индуцируется дипольный момент в молекулах этих углеводородов, а значит, эффективнее их адсорбция на полярных адсорбентах. По мере уменьшения адсорбируемости на силикагеле компоненты масляных фракций могут быгь расположены в следующий убывающий ряд смолисто-асфальтеновые ещества> ароматические углеводороды и серосодержащие соединения>парафино-нафтеновые углеводороды. [c.259]

    Дипольная теория электрообезвоживания нефтепродуктов предполагает, что под действием сил поля иа каплях воды, эмульгарован-ных в масле, перераспределяется общий нейтральный заряд, т. е. индуцируются диполи, которые под действием тока растягиваются, ориентируются вдоль силовых линий поля, при столкновении слива- [c.175]

    Особенности поляризации в полярных средах связаны с диффуэно-стью двойного слоя, проявляющейся даже при дипольной структуре межфазной границы, индуцирующей вторичные диффузные слои в глубине обеих фаз. Учет поляризационных сил особенно важен при построении физической картины злектрокоагуляции, в технологии разделения систем с полярными средами, в том числе и очистки природньгх и сточных вод. Устойчивость дисперсной системы в электрическом поле зависит от знака и величины суммарной энергии взаимодействия, обусловленной энергией молекулярного притяжения, ионно-электростатической энергией отталкивания и энергией диполь-дипольного притяжения [43].  [c.15]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    В приближении упругого рассеяния электрическое поле излучения =eazos(лt, падающего на изотропную молекулу, индуцирует электрический дипольный момент р,, меняющийся с частотой падающей волны (о  [c.229]

    Электростатическое воздействие иа частицу вызывает смещение в ней электрических зарядов, называемое поляризацией. Поляризация проявляется в возникновении у частиц индуциро-ваннвго дипольного момента ц,ид вследствие смещения электронов и адер. В первом приближении индуцированный дипольныР момент можно считать пропорциональным напряженности электри ческого поля Е Цн д - а.Е. Коэффициент пропорциональности о называют поляризуемостью частицы. Эта величина измеряется i [c.118]

    Индукционное взаимодействие — взаимодействие между полярной молекулой и молекулой, имеющей нулевой дипольный момент. При их сближении в неполярной молекуле наводится индуцированный диполь и Рис. 3. Изотермы ад- происходит взаимодействие постоян-сорбции ного диполя с наведенным индуциро- [c.16]

    Если молекула не имеет постоянного дипольного момента, то он может в ней возникнуть, индуцироваться под воздействием другой, полярной, молекулы. Возникающее при этом притяжение наведенных диполей обусловливает второй тип ван-дер-ваальсовых сил — индукционное взаимодействие. [c.139]

    Квантовомеханические расчеты поляризуемостей ионов основаны на теоретической интерпретации спектроскопических свойств атомов и кристаллов. Борн и Гай-зенберг [101] впервые рассмотрели поляризующее действие внешнего (валентного) электрона на атомный остов. Валентный электрон создает поле е/г , которое индуцирует в остове дипольный момент ае/г . В соответствии с квантовой теорией этот диполь будет притягивать валентный электрон с силой [c.55]

    Протекающие в хроматографической системе взаимодействия можно подразделить на специфические (близкодействующие) и неспецифические (дальнодей-ствующие). К неспецифическим, чисто физическим, взаимодействиям способны все растворенные вещества. Эти взаимодействия можно подразделить на дисперсионные и ориентационно-индукционные. Дисперсионные силы имеют в своей основе согласованное движение электронов во взаимодействующих молекулах. Мгновенное распределение заряда, отвечающее мгновенному дипольному моменту одной молекулы, индуцирует дипольный момент у другой молекулы. Взаимодействие этих моментов определяет дисперсионную энергию. Дисперсионные силы действуют между любыми атомами и молекулами. Они особенно сильны у молекул с сопряженными я-электронными системами, например у ароматических углеводородов, вследствие большой подвижности я-электронов. Ориентационные силы возникают между полярными молекулами, имеющими постоянные дипольные моменты. В этом случае происходит притяжение положительно заряженного конца диполя одной молекулы к отрицательно заряженному концу другой молекулы. Индукционные силы возникают в случае поляризации молекулы, имеющей систему легко смещаемых электронов постоянным диполем другой молекулы. [c.594]

    Лисперсионное взаимодействие. Молекулы не могут находиться в состоянии покоя даже при температуре абсолютного нуля, поэтому в процессе движения электронов в отдельные моменты времени распределение зарядов может стать несимметричным, то есть может образоваться такая конфигурация, в результазе которой молекула приобретает мгновенный дипольный момент. Эти быстро меняющиеся (виртуальные) диполи создают вокруг молекулы электрическое поле, которое индуцирует в соседних молекулах дипольные моменты. Это приводит, в свою очередь, к появлению постоянно возобновляющихся сил притяжения, что обусловливает взаимную ориентацию неполярных молекул. Следовательно, природа дисперсионного взаимодействия тоже дипольная н поэтому сила этого взаимодействия обратно пропорциональна /. Энергия дисперсионного взаимодействия также не зависит от температуры. [c.25]

    Сравнительно малую долю вандерваальсовых сил составляют индукционные силы, впервые описанные Дебаем (1920). Они основаны на том, что электрическое иоле дипольной молекулы индуцирует в другой поляризуемой молекуле электрический момент. Возникающее в результате этого притяжение, как правило, не завпсит от температуры. [c.177]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    ШТАРКА ЭФФЕКТ, расщепление спектральных линий атомов, молекул, кристаллов в электрич. поле. Обусловлен тем, что в поле частица приобретает дополнит, энергию вследствие поляризуемости и возникновеиия индуциров. дипольного момента. Взаимод. этого момента с электрич. полем приводит к сдвигу и расщеплению уровней энергии частицы на подуровни. Зависимость расщепления от напряженности поля м. б. линейной (нанр., для атома Н, иона Не" , полярных молекул тнпа симметричного волчка) или квадратичной (напр., для многоэлектронных атсмов, полярных линейиых молекул и молекул типа асимметричного волчка). Соответственно расщепление линий, возникающих Прн переходах между подуровнями, м. б. симметричным (линейный эффект) или несимметричным (квадратичный эффект). [c.690]


Смотреть страницы где упоминается термин Дипольный индуцированный: [c.216]    [c.328]    [c.16]    [c.318]   
Курс химии Часть 1 (1972) -- [ c.123 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.347 , c.407 ]




ПОИСК





Смотрите так же термины и статьи:

Индуцированное



© 2025 chem21.info Реклама на сайте