Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние дипольного строения

    Оптические методы нашли широкое применение в решении задач химического строения и физических свойств молекул различных классов. Важно отметить, что для определения главных значений тензора электронной поляризуемости используются данные нескольких методов, например данные по молекулярной рефракции, степени деполяризации релеевского рассеяния, двулучепреломления (электрического эффекта Керра) и электрических дипольных моментов. Такая интеграция методов требует более строгого подхода в интерпретации определяемых физических величин. Особенно этот вопрос остро стоит в связи с использованием теории взаимодействия излучения с изолированными молекулами. Учет влияния молекул жидкой среды требует дальнейшей разработки теории. [c.262]


    Прежде всего она показывает, что группа состоит из двух непосредственно связанных между собой атомных группировок, имеющих диаметрально противоположные склонности к взаимодействию с электро-ном, - сильного электроноакцептора (С СО-) и сильного электронодонора (С НК-). Такое строение пептидной группы позволяет предположить большие возможности в изменении ее свойств под действием внутримолекулярных и межмолекулярных факторов, влияющих на донорно-акцептор-ные способности фрагментов. Наиболее чувствительной в этом случае оказывается центральная пептидная связь. Предположение подтверждается качественным рассмотрением электронного строения группы. Она обладает п-электронной системой и подвижными неподеленными парами электронов атомов N и О, а также может образовывать водородные связи, выступая при этом как донор и как акцептор протонов. Атомы пептидной группы имеют существенно разную электроотрицательность и заметно отличаются по величине и знаку парциальных зарядов. Если оставаться в границах понятий и представлений, сложившихся в органической химии, то можно сказать, что строение и свойства этой небольшой совокупности атомов обусловлены действием практически всех известных электронных эффектов делокализацией л-электронов, индуктивным влиянием, смещением неподеленных пар электронов и изменением гибридизации атомов, гиперконъюгационным эффектом, полярным влиянием, образованием водородных связей, диполь-дипольными и донорно-акцеп-торными взаимодействиями. В отличие от других классов органических соединений, свойства которых, как правило, находят удовлетворительное объяснение в доминирующем влиянии одного-двух из отмеченных эффектов, в пептидах и амидах все они играют важную роль и находятся в неразрывной взаимосвязи. Само их разделение по отношению к пептидной группе выглядит условным. Она как никакая другая группа представляет собой целостную систему и требует независимого рассмотрения. [c.130]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]


    Как альдегиды, так и кетоны обладают дипольным моментом обусловленным более сильной электроотрицательностью атома кислорода их карбонильной группы по сравнению с атомом углерода, Существенное влияние на химическое строение карбонильной группы оказывает не только индуктивный эффект, характерный для а-связи, связывающей атомы С и О, но также наличие более легко поляризуемых электронов л-связи (см. стр, 38), и реальная структура карбонильной группы лучше всего может быть выражена в следующем виде  [c.198]

    Влияние дипольного строения [c.388]

    Эти примеры приведены с целью показать, что в температурно-частотных условиях стеклообразного состояния полимеров сосуществуют несколько форм движения атомных группировок, локализованных в малых объемах. Кинетические особенности этих группировок могут быть изучены диэлектрическим методо.м. Исследование тонкой структуры частотных и температурных зависимостей фактора потерь и диэлектрической проницаемости в условиях всех трех физических состояний полимеров в совокупности с изучением спектров времен релаксации дипольной поляризации и эффективных дипольных моментов позволяет использовать диэлектрический метод для изучения теплового движения в полимерах в широком интервале температур, строения мономерного звена и макроцепи, а также надмолекулярной структуры. Влияние надмолекулярного строения можно продемонстрировать [c.40]

    Ароматические углеводороды в основном неполярны, и адсорбция их на поверхности алюмосиликатов или силикагелей является следствием возникновения дипольного момента под влиянием электростатического поля поверхности адсорбента. В этом случае основные закономерности, отмеченные выше в главе о растворимости углеводородов, касающиеся влияния строения ароматических углеводородов на индуцирование в них дипольного момента под влиянием электростатического поля полярного растворителя, приложимы и к разбираемому вопросу. [c.238]

    ПРОСТРАНСТВЕННЫЕ ЗАТРУДНЕНИЯ СТАТИЧЕСКИЕ (стерические препятствия)— затруднения, или препятствия, для. такого размещения атомов в молекуле, при котором сохранялись бы нормальные валентные углы и межатомные расстояния, н частности для ароматических н сопряженных систем — планарное строение молекулы. П. з. с. возникают при отталкивании химически не связанных, но близко расположенных в пространстве атомов, расстояние между которыми ограничивается суммой их ковалентных радиусов. В таком случае П. 3. с. приводят к изменению нормальных валентных углов, к нарушению планарного строения ароматических и сопряженных систем, что можно наблюдать, например, по изменению окраски, отклонению дипольного момента и другим свойствам от рассчитанного значения. Молекулы, не имеющие П. з. с., могут проявлять их по отношению к другим молекулам, с которыми они реагируют, если возле реакционного центра молекулы близко расположены большие заместители, препятствующие доступу реагента к этому центру (П. з. динамические). При этом происходит снижение реакционной способности соединений без электронного влияния заместителей. П. 3. с. можно предвидеть заранее изучением моделей исследуемых молекул или построением их масштабных графических формул с учетом ковалентных радиусов близко расположенных атомов, [c.205]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    На рис. 8.22 показано, что при сопоставлении температур плавления гидридов элементов VI группы у воды обнаруживаются аномальные свойства. При наличии приблизительно однотипных сил межмолекулярного взаимодействия температуры плавления веществ возрастают по мере увеличения их молекулярного веса. Это и наблюдается для гидридов трех более тяжелых элементов VI группы. Однако температура плавления воды приблизительно на 200 превышает ожидаемую на основании ее молекулярного веса. Химики с другой планеты, где нет воды, вероятно, должны были бы предположить, что температура плавления воды равна приблизительно -100° С, что на Земле нет озер, рек и океанов и что вода на Земле существует только в газообразном состоянии даже на Северном и Южном полюсах В отличие от воды сероводород, а также НгЗе и НгТе не способны образовывать сильные межмолекулярные связи. Водородные связи значительной прочности обнаруживаются только в веществах, молекулы которых содержат наиболее электроотрицательные элементы, такие, как фтор, кислород и азот. На строение веществ, подобных воде, с высокополярными связями Н — X, например аммиака и фтористого водорода, также оказывают большое влияние водородные связи, и многие свойства таких веществ в твердом и жидком состояниях обусловлены наличием диполь-дипольных взаимодействий между их молекулами. [c.144]


    Напомним, что ассоциаты и комплексы могут различаться не только составом, но и строением. Поэтому ассоциаты, молекулы которых содержат одинаковое число мономерных звеньев, но различаются расположением этих звеньев, обозначаются различными номерами индекса р. Когда структура молекул ассоциата или комплекса задана и дипольные моменты мономерных молекул известны, то, пользуясь правилами суммирования векторов, нетрудно вычислить При этом следует учесть влияние внутреннего вращения полярных молекул в ассоциатах. Подробности таких расчетов описаны, например, в монографии [10] и работе [П]. [c.109]

    Влияние неподеленных пар на величину дипольного момента мо лекулы можно иллюстрировать примером возникновения полярности в молекулах NHg и NF,, имеющих одинаковое строение и близкие дипольные моменты связей N—Н и —F Рассмотрим исходные данные  [c.84]

    Наиболее типичными дипольными моментами для характеристики ионной связи обладают соединения лития и калия, так как в этих соединениях влияние симметрии и завершенности строения орбита-лей не проявляется. Гибридизация орбиталей у атомов Ве и А1 приводит к симметричным линейным и плоским молекулам, для которых [c.86]

    Первое слагаемое характеризует вклад в образование донорно-акцепторной связи электростатических взаимодействий, второе - ковалентных. Уравнение (1.5) содержит четыре неизвестных параметра. Для их оценки в качестве стандартного акцептора выбрали молекулу иода. Для нее приняли равной = Сд = 1. Вычисление других параметров проводится, исходя из допущения, что д = а Хд Сд = йЛд, где Хд-дипольный момент донора, Лд- рефракция донора, а иЬ- коэффициенты. В результате подстановки доступных экспериментальных значений получают уравнение с двумя неизвестными. Рассматривая ряд комплексов, получают систему уравнений. Решение каждой пары уравнений дает значения а и й, которые затем усредняются. Исходя из этих средних величин рассчитывают параметры доноров д и Сд. Значения параметров модели Драго для ряда растворителей представлены в табл. 1.6. Для близких по строению комплексов можно, используя величины и С, рассчитать теплоты образования. Расхождения расчетных и экспериментальных величин связывают со стери-ческими эффектами, влиянием я-взаимодействий, перестройкой компонентов при комплексообразовании. Необходимо отметить, что в рассмотренном подходе не учитывается сольватационная составляющая, а все умозаключения проводятся без учета влияния растворителя, как, если бы реакция протекала в газовой фазе. Поэтому дальнейшая модификация уравнения привела к включению в состав рассматриваемых также и параметров неспецифической сольватации [18]  [c.16]

    Специфику поведения реакционных центров целлюлозы при взаимодействии с молекулами растворителя обусловливает гетероциклическое строение ее молекулы, имеющей в кольце атом кислорода, который оказывает влияние иа распределение электронной плотности между атомами кольца. На гетероатоме концентрируется электронная плотность, что сказывается на величинах зарядов на углеродных атомах. Исходя из расчетных значений отрицательных зарядов атомов кислорода ОН-групп целлюлозы [47], можно предполагать, что атака дипольной группой растворителя легче происходит у атома 06, что объясняется также и стерическими соображениями. Однако в целом [c.368]

    Дипольный момент может быть постоянным, т. е. его величина не зависит от силы и направления действующего на молекулу (частицу) поля. Вещества, молекулы которых имеют постоянный дипольный момент, называются полярными. Характерной особенностью их химического строения является наличие полярной группы в составе молекулы (-ОН, -КОг, -СООН, -ЫНг и т. д.). Сами по себе величины б и г не имеют значения, важна лишь величина их произведения р. Действие внешнего однородного электрического поля на такие молекулы сводится к ориентации осей диполей вдоль направления поля (путем механического вращения молекул). Ориентации препятствует вращательное тепловое движение молекул. Одновременное ориентирующее действие поля и дезориентирующее влияние вращательной диффузии приводит к зависимости степени ориентации осей диполей I от напряженности поля  [c.648]

    Ко второй группе относятся методы структурно-группового анализа, выделение замкнутых по строению атомных групп в молекуле, исследование влияния окружения группы и замещений, внутри- и межмолекулярных взаимодействий и поворотных изомеров. При таких исследованиях наряду с измеренными величинами спектра необходимо располагать дополнительной информацией об относительных амплитудах колебаний частей молекулы в данном нормальном колебании (форма колебаний), а также о тех факторах (геометрия молекулы, характеристики межатомных сил и взаимодействий групп, дипольные моменты связей и др.), которые определяют положение полос или линий в спектре и их интенсивности и поляризации. Совокупность сведений такого рода принято называть интерпретацией полосы (линии). Достаточно надежная и полная интерпретация полосы может быть получена только на основе соответствующего теоретического исследования и модельных расчетов. [c.169]

    Из более тонких отличий в строении отметим здесь, что у первых членов гомологических рядов всегда наблюдаются нерегулярные отклонения дипольного момента последний остается постоянным только начиная с третьего или четвертого члена.. Это влияние замещения Н на СНз в гомологических рядах с группами С1 и СК и вообще при наличии, сильно полярной связи С — X с моментом ао находит себе объяснение в том, что эта связь С — X индуцирует в соседних связях С — Н, и в меньшей степени в связи С — С, моменты р.. Эта индукция тем более сильна, чем меньше расстояние между индуцирующей и индуцируемой частью молекулы. Индукция является также причиной того, что в рядах сложных эфиров, спиртов и кетонов молекулы с четным числом углеродных атомов обычно имеют больший дипольный момент, чем молекулы с нечетным числом углеродных атомов. 2 [c.62]

    В монографии изложен подход для количественного анализа влияния химического строения линейных и сетчэтых полимеров на их свойства. Подход основан на представлении повторяющегося звена полимера в виде набора ангармоничных осцилляторов, которые описываюттермическое движение атомов в поле внутри- и межмолекулярных сил, включая слабые дисперсионные силы, диполь-дипольные взаимодействия, водородные и химические связи. Описываются ЭВМ-программы, основанные на данном подходе, котпрые позволяют производить расчеты более 50 фундаментальных физических и химических констант линейных и сетчатых полимеров, а также низкомолекулярных органических жидкостей. Программы позволяют решать прямую задачу, т.е. проводить количественную оценку физических свойств полимеров на основе их химического строения, и обратную задачу, те, проводить компьютерный синтез полимеров с заданными физическими свойствами. Для химиков, физико-химиков, научных сотрудников, аспирантов, студентов, [c.2]

    Влияние симметрии строения молекулы. Выше указывалось, что интенсивность полос поглощения (т. е. площадь абсорбционных максимумов) пропорциональна величине силовой константы данного нормального колебания, т. е. эффективной величине осциллирующего заряда. Легко показать, что в молекуле, построенной из двух одинаковых атомов, дипольный момент во всех фазах колебаний равен нулю. Поэтому эффективный заряд отсутствует и полосы поглощения не наблюдаются. Такие колебания не удается обнаружить с помощью измерения инфракрасных спектров поглощения. [c.289]

    Влияние химического строения на дипольный момент, а через него и на плотность энергии когезии и растворяющую способность для сильно полярног о полиакрилонитрила очень наглядно иллюстрируется поведением некоторых циклических соединений [46]. Диметилкарбонат, имеющий небольшой дипольный момент и низкое значение плотности энергии когезии, не растворяет поли- [c.330]

    Из всех компонентов, входящих в состав масляных фракций, наибольшей адсорбируемостью на силикагеле обладают смолисто-асфальтеновые вещества, что объясняется их высокой полярностью, обусловленной несимметричностью строения молекул и наличием в них конденсированных ароматических колец и гетероатомов серы, кислорода и азота. Ароматические углеводороды адсорбируются на силикагеле в результате того, что под влиянием электростатического поля адсорбента в их молекулах индуцируется дипольный момент. По сравнению с углеводородами других гомологических рядов а1роматичеокие структуры обладают наибольшей молекулярной поляризуемостью. Следовательно, чем меньше экранированы ароматические кольца нафтеновыми кольцами или парафиновыми цепями, тем легче индуцируется дипольный момент в молекулах этих углеводородов, а значит, эффективнее их адсорбция на полярных адсорбентах. По мере уменьшения адсорбируемости на силикагеле компоненты масляных фракций могут быгь расположены в следующий убывающий ряд смолисто-асфальтеновые ещества> ароматические углеводороды и серосодержащие соединения>парафино-нафтеновые углеводороды. [c.259]

    Пом1ИМо химической природы на величину КТР влияет и строение молекул углеводородов. Та , с увеличением числа колец в углеводородах их КТР резко снижается, с увеличением длины алкильных цепей — повышается. Зависимость снижения КТР от числа колец в молекулах ароматических и нафтеновых углеводородов прямолинейна. С увеличением числа колец в молекуле КТР пятичленных нафтеновых углеводородов снижается более интенсивно, чем шестичленных. Следователыно, в полярном растворителе в первую очередь растворяются полицикличеоние ароматические углеводороды, слабо экранированные боковыми алкильными цепями и нафтеновыми кольцами, так как именно в этих углеводородах прежде всего возникает наведенный дипольный момент. Для нафтеновых и парафиновых углеводородов этот показатель невелик вследствие малой поляризуемости таких соединений. Поэтому при определенной температуре эти углеводороды растворяются в полярных растворителях преимущественно под влиянием дишерси-онных сил. [c.74]

    Образование комплексного соединения ароматических углево- -дородов с ионами, находящимися на поверхности адсорбента, так же как и при их растворении в избирательном растворителе, связано с возникновением в электронейтральной молекуле-под влиянием электростатического поля адсорбента дипольного момента. Адсорбируемость так же зависит от строения ароматических углеводородов, как и растворимость. Поэтому, чем меньше экраниро-. ваны ароматические ядра нафтеновыми кольцами или боковыми парафиновыми цепями, тем легче в них возникает индуцированный дипольный момент и тем эффективней адсорбция таких углеводородов полярными адсорбентами. Чем больше колец в молекуле ароматических углеводородов, тем прочней они адсорбиру- -ются. Парафиновые и нафтеновые углеводороды слабо адсорбируются полярными адсорбентами. [c.237]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов оо-строение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследавателями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных я влений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]

    Дипольные потери в полимерах — 1 бмакс и наивероятнейшне Времена релаксации определяются химическим строением повторяющейся в цепи мономерной единицы. Сильное влияние оказывают Природа и число полярных групп, размеры заместителей, изомерия бокового радикала, стерические факторы и т. д. [c.279]

    Дипольно сегментальные потери зависят от хими 1ССкого строения полимеров, которое оказывает влияние па внутри- и меж мол с -кулярпые взаимодействия, а следовательно, на подвижность звеньеп и время релаксации. Чем больше величина внутри- и межмолекулярных взаимодействуй, тем мепее подвижны звенья, тем выше температура, при которой наблюдается максимум ц тем больше время релаксации. Увеличение внутри и межмолекулярного взаимодействия происходит при замене неполярных заместителей на полярные, уменьшение межмолекулярного взаимо действия может быть следствием введения в боковую цепь больших по размеру углеводородных (алкильных) радикалов. [c.280]

    Используя соотношение (84), можно рассчитать температуру стеклования офомного количества полимеров. Это связано с тем обстоятельством, что описываемый подход является атомистическим , те. каждый атом ха-рактеризу ется своим инкрементом а, (их величины приведены в табл. 13) Что же касается специфических межлюлекулярных взаимодействий (диполь-дипольные, водородные связи), то они характеризуются своими инкрементами bj, не зависящими от химического строения полярной фуппы. Так, например, диполь-дипольные взаилюдействия разных типов характеризу ются одним и тем же инкрементом = -55 10 -А К". Несколько сложнее дело обстоит с водородными связями в полиамидах, гго связано со специ([ икой их влияния на Tg в пределах данного класса полимеров (табл. 18).  [c.128]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]

    Влияние полярной или несущей электрический заряд группы передается на другую группу или реакционный центр переходного состояния и непосредственно через пространство. Это так называемый эффект поля. Если воздействующая группа -диполь, то энергия воздействия определяется дипольным моментом, расстоянием и ориентацией диполя (/-эффект со80/г). Полярный эффект в алифатических соединениях передается двумя путями по системе ст-связей и напрямую через пространство. Два этих способа сопоставляли путем сравнения расчета с экспериментом на примере диссоциации двухосновных кислот строения [c.229]

    На рис. 1.1 приведены температурные зависимости е и б этих полимеров. Видно, что в выбранном интервале температур каждый из них характеризуется двумя релаксационными максимумами потерь, причем строение молекул исходных олигомеров оказывает влияние как на низкотемпературный процесс диполь-но-групповой релаксации, так и на реализуемый выше Тс ди-польно-сегментальный процесс. Уменьшение содержания в цепи ароматических ядер приводит к снижению Т гкс дипольно-груп-повых и дипольно-сегментальных потерь и влияет на абсолютные значения г и 1 бмакс. Наряду с этим изменяются [17] и значения энергии активации данных процессов, причем, большее изменение претерпевают параметры дипольно-сегментальной релаксации. [c.14]

    Значения дипольных моментов нитрилов зависят от их строения. Присутствие электронодонорных групп повышает полярность нитрилов, наличие же электроноакцепторных групп снижает ее. Так, дипольный момент ацетонитрила примерно на 1,01) выше ди-польного момента цианистого водорода. В случае неразветвлен-ных алифатических нитрилов с ростом длины цепи значения дипольных моментов сначала увеличиваются, достигая максимальной величины для валеронитрила, но при дальнейшем удлинении цепи несколько снижаются. Наблюдаемое в начале ряда увеличение полярности обусловлено некоторым повышением электронодо-норной способности соответствующих алкильных остатков. Понижение полярности у высших нитрилов, по-видимому, связано с влиянием стерических факторов. Эти нитрилы состоят из смесей пространственных изомеров, причем некоторые из этих изомеров могут иметь конфигурации, снижающие общий дипольный момент. Наличие у динитрилов изомеров с различными пространственными конфигурациями подтверждается данными ИК-спектров Содержание каждого изомера в смеси зависит от температуры. [c.10]

    Наиболее интересны среди немногочисленных работ по обобщению свойств растворов газов в жидкостях исследования Ереминой [32] и Намиота [36], которым удалось установить основные закономерности свойств этих растворов влияние на растворимость газов их критической температуры дипольного момента поляризуемости и других свойств, а также свойств жидкости, ее строения, внутреннего давления, наличия водородных связей, энергии испарения и других. [c.12]

    Влияние строения боковой цепи на диэлектрическпе потери растворов полимеров показано на рис. 61. Изменение г" обусловлено изменением числа полярных групп в единице объема, что подтверждается результатами определения эффективных дипольных моментов гомологического ряда эфиров метакрпловой кислоты в растворе. [c.116]

    При электролитическом рафинировании в электролиты добавляют поверхностно-активные и ко.ллоидные вещества для получения плотных или блестящих осадков. Эти добавки адсорбируются на поверхности растущих кристаллов металла и приводят к образованию осадков. На поверхности анода могут адсорбироваться поверх-ностно-активные, коллоидные вещества, а также дипольные и нейтральные молекулы, которые способны поляризоваться под влиянием электрического поля на границе металл — раствор. Они приводят к изменению строения двойного электрического слоя и могут интенсифицировать процессы, протекающие по электрохимическому механизму. [c.171]

    НЫХ О величине энтальпии образования АН), что жирные кислоты в растворах и чистых жидкостях образуют плоские циклические димеры на основе Н-связи. Плоская форма димера должна была бы иметь нулевой дипольный момент, отличное от нуля экспериментальное значение (0,86—2,0 О) было приписано атомной поляризации ([1208] и др.). Другое возможное объяснение состоит в том, что часть димеров имеет нециклическое строение с единственной Н-связью. Можно себе представить и другие структуры. Например, могут существовать молекулярные цепи, как это было установлено методом ИК-спектроскопии для муравьиной кислоты [373]. Нет также оснований для уверенности, что в жидкости циклические димеры остаются плоскими. Напротив, можно допустить, что в результате столкновений между молекулами димеры в среднем имеют изогнутую форму. Для кислот эта последняя возможность была рассмотрена и отвергнута в работах Хоббса и др. [938, 1352, 1353, 1652] на том основании, что моменты карбоксильных групп ориентированы приблизительно под прямым углом к Н-связям. В этом случае изгиб димера будет мало сказываться на величине полного дипольного момента, вычисленного векторным суммированием моментов неассоциированных молекул. Разумеется, остается еще возможность, что образование Н-связи изменяет ориентацию дипольного момента, на что указывают повышенные значения дипольных моментов, измеренных в растворах (см. табл. 5). Однако этот вопрос еп1е до сих пор не решен (дополнительное обсуждение этого вопроса дано на стр. 28—32). Те же авторы исключают возможность присутствия более сложных полимерных форм, однако и здесь имеются разногласия [1271], по крайней мере в отношении газовой фазы. Несмотря на многочисленные упоминания о существовании циклических димеров, присутствие только таких димеров в жидкости или концентрированных растворах не было строго доказано (см. разд. 9.4.1, где рассмотрены структуры кристаллических кислот). Упомянем также обзор ранних работ по кислотам ле Февра и Вайна [1208], где сделан вывод, что кажуи ийся дипольный момент димеров трихлоруксусной кислоты равен 1,10. Возможность влияния самоионизации на дипольный момент кислот отмечается в разд. 8.3.5. [c.23]

    Очень многие адсорбируюш иеся на поверхности электрода вещества оказывают существенное влияние на перенапряжейие. Часто адсорбция ионов или дипольных молекул приводит к изменению строения двойного слоя (см. 42) и, следовательно, к изменению величины -потенциала, влияние которого на отражено в уравнениях (4. 137) и (4. 138). Адсорбция может также изменять энергию связи адсорбированных атомов водорода и число активных центров на поверхности и таким образом влиять на перенапряжение. Эти только что названные эффекты еще мало объяснены, их называют явлениями отравления без более подробного разграничения. Обобщающий обзор по этому вопросу дал Фрумкин - . [c.597]

    Очевидно, речь должна идти о воздействии физического фактора, тесно связанного с химическим строением. В литературе делались попытки сопоставления влияния растворителей на спектры флуоресценции и поглощения с дипольным моментом [л, диэлектрической постоянной е или показателем преломления п, однако без особого успеха. Для иллюстрации отсутствия связи между изменением у фл и л, е и п растворителей такое сопоставление в отношении исследованных нами веществ выполнено на рис. 2. Неудача попыток сопоставить действие растворителей на спектры с [а, е и п объяснялась одновременным действием всех этих факторов. Не отрицая возможного влияния этих факторов, следует отметить, что сопоставление изменений спектров флуоресценции с этими характеристиками растворителей нельзя считать вполне оправданным, (л, и п являются макроскопическими характеристиками сред и не отражают тех микроусловий, в которых находится молекула растворенного вещества. На молекулу растворенного вещества может оказывать преимущественное действие именно микроструктура растворителя. Микросвойством, неразрывно связанным с присутствием определенных группировок атомов, характеризующих данный химический класс, являются заряды на отдельных атомах молекул. Надо думать, что на электронное облако молекулы растворенного вещества будут оказывать влияние в основном заряды, сконцентрированные на отдельных атомах молекулы растворителя, которые могут приближаться вплотную к противоположно заряженным атомам молекулы растворенного вещества. К сожалению, данных о величине зарядов на отдельных атомах молекул почти нет, так что провести количественное сопоставление [c.263]

    Следует заметить только, что хотя здесь речь идет о роли геометрического фактора и подчеркивается, что этот фактор при известных условиях действительно определяет ориентирующее действие катализатора, роль химического фактора этим не умаляется. Надо помнить, что фазовый состав твердого катализатора не сводится к характеристике лишь кристаллографических индивидуумов, присутствующих в данном твердом теле. Каждая полиморфная разновидность отличается своим специфическим химическим строением, своими энергиями и электронными зарядами связей, своим дипольным мсментом т. д. Все эти факторы также оказывают влияние на скорость и направление катализируемого процесса. [c.179]

    Как видно из изложенного выше, предположение о решающей роли электронной заселенности ст-связи А—Н и потенциала ионизации ВН в определении свойств комплекса ВАН---ВВ позволяет предсказать направление и сравнительную степень влияния комплексообразования на величины ДЛ ж К с, изменением состава и электронного строения молекул. Установленные закономерности оказываются широкоприменимыми для различных Л ж К ъ рядах комплексов, различающихся атомами В или А, имеющих водородные связи п- и л-типов, к меж- и внутримолекулярным Н-связям. Нарушение этих закономерностей возможно, например, в случае наложения па специфическое взаимодействие молекул ВАН и ВВ в комплексе заметного эффекта кулоновского их взаимодействия отталкивания электронных остовов атомов А и В, притяжения диноль-дипольного или ион-ионного. Так, наложением эффекта отталкивания электронных остовов В и А можно объяснить неподчинение зависимости (9) значений I ДЛ I в рядах комплексов, различающихся лишь атомами В пятой и шестой групп периодической системы. Наложением диноль-дипольного взаимодействия в ряду комплексов СвН ОН- -N=0. объясняется почти линейная связь значений Дг(ОН) ) с ди-нольным моментом лВВ, а не с /вк - Нарушение зависимости от /вв при том же В может быть связано с наложением заметного различия в форме орбитали п-электронов В. Примером этого может служить соотношение протоноакцепторной способности таких ВВ, как Н2О и Н2СО. [c.61]

    Величина рКа уксусной кислоты составляет 4,8, однако ионизированная аминогруппа в цвиттерионе глицина является акцептором электронов и тем самым усиливает ионизацию карбоксильной группы. Количественно последнюю оиисываег рКа = 2,2, Метиловый эфир глицина благодаря индуктивному (—/) эффекту группы — СООСНз как - основание, в 1 ООО раз слабее, чем метиламин (рКа эфира составляет 7,7, рКа метиламина 10,7). Индуктивный эффект в молекуле эфира должен быть таким же, как и в нейтральной молекуле глицина (V . Незначительное количество последнего вещества существует в равновесии с цвиттерионом глицина (111) (этот вопрос будет обсуждаться позже). То, что индуктивные эффекты в (V) и в метиловом эфире одинаковы, следует из равенства дипольных моментов этих веществ. Увеличение показателя константы ионизации при переходе от метилового эфира глицина к самому глицину (9,9 вместо 7,7) свидетельствует о влиянии ионизированной карбоксильной группы на основность аминогруппы и является еще одним доказательством цвиттерионного строения глицина. Величина 9,9 — количественное выражение двух противоположных тенденций а) ослабляющего основные свойства индуктивного влияния карбоксильной группы и б) усиливающего основные свойства электронодонорного влияния аниона карбоксила, находящегося от аминогруппы достаточно близко, чтобы увеличивать ее электронную плотность. В результате, глицин оказывается всего в 6 раз менее основным (на 0,8 рК), чем метиламин [c.112]


Смотреть страницы где упоминается термин Влияние дипольного строения: [c.187]    [c.347]    [c.142]    [c.204]    [c.70]   
Смотреть главы в:

Учение о коллоидах Издание 3 -> Влияние дипольного строения




ПОИСК







© 2025 chem21.info Реклама на сайте