Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ карбонильной группой

    В случае несимметричных кетонов галогенированию в первую очередь подвергается группа СН, затем группа СНа, а после этого группа СНз [86], однако часто получается смесь продуктов. В альдегидах иногда замещается атом водорода альдегидной группы (см. т. 3, реакцию 14-3). Можно также получить ди- и полиальдегиды. В условиях катализа основаниями одно а-положение кетона полностью галогенируется до того, как другое подвергнется атаке, и реакцию не удается остановить до тех пор, пока все атомы водорода при первом углероде не будут замещены (см. ниже). Если одной из групп является метил, имеет место реакция образования галоформа, или гало-формная реакция (12-43). В условиях катализа кислотами реакцию легко остановить после внедрения одного атома галогена, однако второй атом галогена можно ввести, используя избыток реагента. При хлорировании второй атом галогена обычно оказывается с той же стороны от карбонильной группы, что и первый [87], тогда как при бромировании продуктом является [c.429]


    Особенно ощутимые успехи в исследовании движущих сил ферментативного катализа были достигнуты в случае химотрипсина . Химотрипсин — это эндопептидаза, которая в белках расщепляет пептидные связи, образованные карбонильной группой фенилаланина, тирозина и триптофана [4, 5]  [c.126]

    Наиболее типичными для альдегидов являются реакции нуклеофильного присоединения но карбонильной группе, которые подвержены кислотному или основному катализу. Кислота-катализатор координируется по атому кислорода карбонильной группы, несущему дробный отрицательный заряд, усиливает поляризацию карбонильной группы и облегчает атаку нуклеофила. Основание-катализатор повышает активность реагента, образуя на его основе нуклеофильную частицу  [c.87]

    Реакция. Каталитическое присоединение альдегидов к активированным олефинам типа а, Р-ненасыщенных кетонов, нитрилов, сложных эфиров (реакция Штеттера) [506]. Присоединение алифатических альдегидов катализируется солями тиазолия, ароматических и гетероароматических альдегидов-цианид-ионами. Вариант катализа цианид-ионами соответствует обращению полярности карбонильной группы альдегида посредством образования циангидрин-аниона. [c.225]

    На основании рассмотренных работ механизм образования дифенилолпропана в случае кислотного катализа можно представить следующим образом. Роль кислоты (точнее, протона) заключается в активации ацетона — повышении реакционной способности электрофильного углерода карбонильной группы  [c.88]

    Стадия конденсации катализируется ионом водорода, т. е. относится к реакциям специфического кислотного катализа, и ее скорость линейно зависит от функции кислотности Гаммета с другой стороны, протоны катализируют также и побочные реакции, поэтому выбирают всегда оптимальную концентрацию серной кислоты. Роль катализатора заключается в протонировании кислородного атома карбонильной группы с образованием карбкатиона, присоединяющегося затем к нуклеофильному реагенту—олефину  [c.202]

    Благодаря подвижности атомов Н у соседнего с карбонильной группой атома С (а-С-атома) К с сравнительно легко, в особенности при катализе к-тами или основаниями, переходят в енольную форму Енолизация или образование енолят-аниона первая стадия мн важных р-ций К с, где они выступают в качестве С-нуклеофильных реагентов К таким р-циям относятся галогенирование по а-С-атому, альдольная и кротоновая конденсации, присоединение к активир кратным связям (см Михаэля реакция) и др [c.325]


    С обратной картиной, когда лимитирующий участник реакции-субстрат, приходится сталкиваться при катализе кислотами. Кислоты катализируют реакции, как правило, путем перевода одного из субстратов, являющегося основанием, в протонированную форму, т. е. в сопряженную кислоту. Подобно присоединению иона металла, присоединение протона, создавая положительный заряд в определенной области молекулы, повышает ее электрофильные свойства н облегчает реакцию с нуклеофильным компонентом. Например, в кислой среде облегчается гидролиз сложных эфиров кислот, поскольку карбонильная группа протонируется и электронная плотность оттягивается от атома углерода, что облегчает последующее взаимодействие с нуклеофильной молекулой воды [c.313]

    Из этих исследований механизма действия карбоксипептн-дазы А можно сделать следующие два вывода 1) 2п(И), по-видимому, связывается с карбонильной группой эфирных и амидных субстратов и 2) 01и-270 — также участник процесса, причем предполагается механизм как общего основного, так и нуклеофильного катализа. Существует также строгое доказательство того, что для эфиров и амидов механизмы различны. Следует обсудить также другой возможный механизм действия карбоксипептидазы А, включающий нуклеофильную атаку эфирной или амидной связи субстрата гидроксильным ионом, координированным цинком(И) Такая возможность тщательно изучена [223], в частности, на гидролизе карбоксилзамещенного эфира 8-оксихинолилглутарата в присутствии 2п(И). [c.350]

    Другой пример — реакции, катализируемые папаином (см. схему на стр. 19). Нуклеофильная атака карбонильной группы субстрата остатком Суз-25 усилена за счет общеосновного катализа со стороны Н1з-159 и общекислотным катализом под действием 01п-19. [c.65]

    Дженкс У. Р., Механизм и катализ простых реакций карбонильной группы, в кн. Современные проблемы физической органической химии , изд-во Мнр , М., 1967, стр. 342. [c.1074]

    N, способен аналогично карбонильной группе реагировать с нуклеофильными реагентами. В частности, в условиях щелочного или кислотного катализа он может гидролизоваться до амида и далее — до кислоты  [c.103]

    В синтезе грамицидина 8 участвуют два фермента легкий (М = 100 000) и тяжелый (Л4 = 280 ООО), Синтез начинается иа легком ферменте, который действует также как рацемаза , превращая ь-фенилаланин в о-энантиомер. Нуклеофильная тиольная [руппа легкого фермента атакует активированный фенилаланин (АТР и аминокислота реагируют с образованием ангидрида), образуя (катализ основанием) высокоэнергетическин тиоэфир, ДСп1др —38 кДж/моль (—8 ккал/моль). Различие свойств тио-эфиров и ацильных эфиров связано с гораздо большей степенью делокализации неспаренных электронов кислородом карбонильной группы, чем атомом серы. Такая делокализация понижает электрофильность карбонильной группы. Кроме того, тиольная группа — более хорошая уходящая группа, чем соответствующая гидроксильная. Напомним, что для меркаптана рКа Ю, тогда как для спирта рКа 15 (табл. 2.1). [c.62]

    Необходимость кислотно-основного катализа в случае гидратации ацетона и отсутствие подобного требования при гидратации альдегидов объясняется тем, что в кетонах положительный заряд на атоме углерода карбонильной группы меньше, и поэтому нужна начальная атака ионами "ОН (или атака атома кислорода ионами Н" ), тогда как в случае альдегидов более положительный атом углерода может атаковаться молекулами Н О непосредственно. Несколько неожиданным, в свете сказанного выше, является тот факт, что скорость гидролиза МеСНО наблюдаемая при pH 7, сильно возрастает при значениях pH 4 или 11. [c.202]

    Для успешной атаки карбонильной группы гидридом необходима еще координация карбонильного атома кислорода с кислотой Льюиса. Связывание карбонильного кислорода с кислотой Льюиса увеличивает положительный заряд на карбонильном атоме углерода, тем самым усиливая его способность присоединять гидрид-ион фактически здесь имеет место электрофильный катализ. [c.400]

    ГИДОВ или кетонов содержание енольного изомера обычно менее 1%, но для некоторых карбонильных соединений оно возрастает до 50%. Кето-енольное превращение может осуществляться не только в условиях основного катализа, но и под действием кислоты. Промежуточное соединение при кислотно-катализируе-мом превращении образуется за счет протонирования карбонильной группы. Если образовавшийся промежуточный катион отщепляет протон от кислородного атома, то образуется кето-изомер, а если протон уходит из а-положения, то возникает енол. [c.125]

    В кислотно-основном Г. к. под действием катализатора обычно усиливаются электроф. или нуклеоф. св-ва молекул реагентов. К-ты и основания, ускоряющие такие р-ции, могут служить катализаторами в недиссоциированной форме (общий кислотно-основной катализ) либо воздействовать на субстрат ионами Н3О и ОН (специфич. кислотно-ос-новной катализ). Напр., при кислотном гидролизе сложных эфиров каталитич. действие к-ты НА связано с протонированием карбонильной группы, что облегчает последующее присоединение воды  [c.592]


    Следовательно, рассматриваемое превращение относится к реакциям специфического кислотного катализа, т. е. они ускоряются свободными ионами водорода. Поэтому в качестве катализатора синтеза ДМД могут быть использованы любые вещества, продуцирующие в водном растворе свободные протоны органические и минеральные кислоты, катионообменные смолы, соли сильных кислот и слабых оснований и т. д. Выбор серной кислоты обусловлен ее дещевизной и доступностью, высокой активностью и практическим отсутствием окисляющего действия. Первичным актом реакции Принса является присоединение протона катализирующего вещества к кислородному атому карбонильной группы формальдегида с образованием гидроксиметиленкарбкатиона  [c.369]

    Какова роль цинка в этих схемах катализа Карбонильная группа расщепляемой пептидной связи обращена к иону цинка таким образом, что связь С=0 оказывается более поляризованной, чем обычно это делает карбонильный атом углерода более чувствительным к нуклеофильной атаке. Неполярное окружение иона цинка увеличивает его эффективный заряд и тем самым его способность индуцировать диполь. Сильной поляризации карбонильной группы способствует также близость отрицательного заряда глутамата-270. Следовательно, карОокиспептидаза А индуцирует такое смещение электронов на субстрате, которое повышает скорость катализа. [c.149]

    Доказательства этого получены из сравнительного изучения скоростей реакций [196]. Так, субстрат 73 гидролизуется в 10 раз быстрее, чем бензамид (РЬСОЫНг) при примерно одинаковой концентрации ионов водорода. Причиной такого увеличения скорости не являются резонансные эффекты или эффекты поля группы СООН (электроноакцепторной группы), что было показано экспериментами по гидролизу о-нитробензамида и терефта-ламовой кислоты (иара-изомера 73), который для обоих субстратов протекает медленнее, чем для беизамида. Сообщается и о многих других примерах участия соседней группы в реакциях замещения у атома углерода карбонильной группы [197]. Вероятно, что и при ферментативном катализе гидролиза сложных эфиров нуклеофильный катализ играет определенную роль. [c.60]

    Электрофильным центром является углеродный атом карбонильной группы, при атаке которого нуклеофилом (карбанионом, например) реализуется замещение коферментной функции (СоА-З-). Нуклеофильную активность в молекуле активного ацетила" в условиях основного катализа проявляет метильная группа основание отщепляет от метила ацетильного фрагмента закисленный водород, формируя таким способом карбанионный центр. Суммируя эти возможности ацетил-З-СоА, нетрудно увидеть, что одна молекула активного ацетила выступает в роли нуклеофила и может замещать кофер-ментиый фрагмент другой такой же молекулы, образуя уже четырехуглеродный фрагмент — ацетоацетил-З-СоА. [c.132]

    Остановимся более подробно на катализе сериновыми протеазами. Эти ферменты отличаются лишь некоторыми деталями построения их активных центров, в частности, механизмом сорбции боковой субстратной группы (см. рис. 11). Обш,ее же в механизме действия этих ферментов — это сорбция а-ациламидного субстратного фрагмента при образовании им водородной связи с карбонильной группой полипептидной цепи фермента 23, 25]  [c.47]

    Относит содержание ионных частиц разл типа зависит от строения К, размера катиона, природы среды и т-ры Все эти частицы имеют, как правило, разл спектральные характеристики и отличаются по реакц способности Напр, нуклеоф замещение и присоединение с участием своб К происходит в 10-10 раз быстрее, чем с участием ионных пар К, особенно образующиеся из СН-кислот с рЛ" > 10, химически очень активны Они подвергаются внутримол превращ, приводящим к более устойчивым структурам В К аллильного и пропаргильного типов обычно происходит миграция кратных связей К в перегруппировках Стивенса и бензильной, р-циях Соммле, Виттига претерпевают 1,2-миграцию, перегруппировка Фаворского протекает со стадией 1,3-элиминирования Наиб важны в орг синтезе р-ции К, приводящие к образованию связей С—С нуклеоф замещение (напр, р-ция Вюрца) и присоединение по карбонильной группе (напр, конденсации Клайзена, альдольная, р-ции Манниха, Кневенагеля, Перкина) и по активир двойной связи (напр, присоединение по Михаэлю и анионная полимеризация) Широкое распространение получили синтезы на основе К, проводимые в устовиях межфазного катализа [c.315]

    Так, карбонильная группа, например, может быть представлена классической, резонансной opi ynaME, в виде фор1 л с зарядовым респределениек или резонансными стрелками, в виде распределенных электронных облаков метода Ш ЛКАО, в виде протонирован-ной формы (в случае кислотного катализа) или гидроксилированной (основной катализ).  [c.55]

    Гидролиз сложных эфиров обычно катализируется как кислотами, так и основаниями. Поскольку группа 0R обладает более слабыми нуклеофугпыми свойствами, чем галогены или O OR, вода не гидролизует большинство сложных эфиров. При катализе основаниями атакующей частицей служит более сильный нуклеофил — ОН-группа. Эта реакция носит название омыления и приводит к соли кислоты. Кислоты катализируют реакцию за счет того, что положительный заряд атома углерода карбонильной группы становится больше, и, следовательно, он легче подвергается атаке нуклеофилом. Обе реакции обратимы, и поэтому практической ценностью обладают только тогда, когда равновесия удается каким-либо способом сместить вправо. А поскольку образование соли — один из таких способов, гидролиз сложных эфиров в препаративных целях почти всегда проводят в щелочных растворах, за исключением тех [c.109]

    Альдольная конденсация осуществима также в условиях кислотного катализа, причем в этом случае реакция обычно сопровождается дегидратацией. Первоначально происходит протонирование карбонильной группы, которая атакует а-атом углерода енольной формы другой молекулы  [c.384]

    Примером может служить кислотный катализ енолизации ацетона. Протонирование кислорода карбонильной группы - апетона облегчает отрыв протона от СНз-группы сопряженным основанием. Схема реакции может быть записана в виде [c.342]

    Изучение богатого опытного материала позволило показать, что по трудности протекания реакции гидрогенизации различных связей над никелем в общем случае можно расположить в определенный ряд гидрирование этиленовой связи в боковой цепи, гидрирование карбонильной группы в боковой цепи, гидрирование первой двойной связи в цикле, гидрогенолиз эфирной связи в фурановом цикле, гидрогенолиз углерод-кисло-родной связи, гидрогенолиз углерод-углеродной связи. Эта закономерность легко поддается объяснению с помощью мультиплетной теории катализа (14). Над другими катализаторами (платиновый, палладиевый, медный) последовательность гидрогенизации различного типа связей может несколько меняться. Например, известен ряд случаев, когда с помощью платинового катализатора удавалось превращать фурановые кетоны в тетрагидрофурановые, т. е. гидрирование кратных связей цикла предшествовало гидрогенизации карбонильной группы (15, 16, 17). [c.86]

    Частичный отрицат заряд на карбонильном атоме О способствует р-циям с протонными и апротонными к-тами, образующиеся при этом карбоксоний-катионы реагируют с нуклеофилами легче, чем К с (кислотный катализ) Если группа С=0 связана с гетероатомом, несущим неподеленную пару электронов, напр в карбоновых к-тах и их производных, то р-ции по этой группе с нуклеофилами могут затрудняться, а с электрофилами (к-тами) облегчаться [c.325]

    Впервые проблема гидрирования ненасыщенных соедииений на катализаторах кислотно-основного типа в условиях гомогенного катализа была поставлена в работах [307-309]. Обнаружено, что карбонильную группу в молекуле бензофенона можно восстановить в растворе трег-бутилового спирта, используя в качестве катализатора трег-бутиловый алкоголят калия. При температурах 170-210 °С и давлениях водорода 10-13 МПа в автоклаве за время реакции 50-70 ч бензофенон на 50-98% превращается в бенэгидрол. При этом дальнейшего восстановления последнего до дифенилметана не происходит. Предложен механизм восстановления бенэофенона [307], включающий следующие стадии  [c.117]


Смотреть страницы где упоминается термин Катализ карбонильной группой: [c.20]    [c.279]    [c.61]    [c.250]    [c.52]    [c.254]    [c.495]    [c.142]    [c.308]    [c.345]    [c.158]    [c.1318]    [c.116]    [c.201]    [c.120]   
Механизмы биоорганических реакций (1970) -- [ c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонильная группа

Катализ группой

Катализ специфический протонирование карбонильной группы

Механизм и катализ простых реакций карбонильной группы (У. Р. Дженкс)



© 2025 chem21.info Реклама на сайте