Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тиофен группа

    На коксообразование в порах катализатора оказьшает также большое влияние гетероциклические соединения сырья, так как они в большинстве своем полярны и обладают более высоким адсорбционным эффектом, чем неполярные углеводороды. Так, при анализе состава кокса от гидрообессеривания гудрона [41] было показано, что в его состав включены сера, азот, кислород в результате деструктивного гидрирования нестабильных групп аминов, карбокси- и тиосоединений и других, входящих в состав структурных фрагментов смол и асфальтенов. Например, показано [41, 53], что дибензофуран, карбазол и дибензо-тиофен могут легко превращаться в кокс. Накопление азота и кислорода в составе коксовых отложений дибензофурана и карбазола больше, чем серы от дибензотиофена. Это связано с тем, что связь С-5 слабее, чем -N и С-О. [c.63]


    Количественный групповой анализ ГАС ряда типов (сульфидов, тиофенов, простых эфиров, фуранов, пиридинов) затруднен из-за отсутствия в их спектрах полос, пригодных для использования в качестве аналитических. При изучении тяжелых фракций нефтей и битумов методами ИК спектроскопии возникают дополнительные трудности в связи с теж, что некоторые типы функциональных групп (фенольные, карбонильные, сульфоксидные), присутствуя в составе высокомолекулярных, соединений нефти, поглощают при меньших частотах, чем в составе чистых модельных соединений. Этот эффект связывают с более интенсивными меж-молекулярными взаимодействиями и ассоциацией молекул ВМС, содержащих повышенное количество этих функциональных групп [129, 131, 230]. [c.29]

    Перечисленные способы можно условно разбить на две группы физические, к которым относятся ректификация, кристаллизация и адсорбция, и химические, которые правильнее было бы назвать способами физико-химического разделения, так как в их основе обычно лежит принцип химического воздействия на тиофен и последующего физического разделения бензола и продуктов реакции тиофена. [c.212]

    Пиридин. Если фуран, пиррол и тиофен можно рассматривать как аналоги бензола, в котором группа СН = СН заменена на гетероатом, то пиридин — как аналог бензола, в котором одна группа СН заменена на атом азота. [c.354]

    На заключительной стадии реакций отщепляется Вода, а йе сероводород и образуется тиофен, а не фуран, так как кислород более электроотрицателен, чем сера, и на связанном с группой ОН атоме углерода дефицит электронной плотности больше, чем на атоме углерода, связанном с группой 5Н, а группа 5Н — более сильный нуклеофил, чем ОН. [c.509]

    Третья, весьма обширная группа представлена гетероциклами, которые по своему электронному строению, устойчивости и свойствам близки к бензолу, поэтому их относят к ароматическим гетероциклическим соединениям. К ним относятся, например, фуран, пиррол, тиофен, пиридин, пиримидин и др.  [c.416]

    Вследствие этой стабилизации такой карбкатион является слабым электрофильным реагентом, способным реагировать только с электроноизбыточными гетероциклическими соединениями — пирролом, фураном, тиофеном и другими, а также с фенолами бензольного, нафталинового и гетероароматического ряда. Например, с п-крезолом реакция проходит путем последовательного вступления в орто-положения двух аминометильных групп  [c.128]

    Общая характеристика пятичленных гетероциклов. Основными группами гетероциклических соединений с пятичленным циклом являются группы фурана, тиофена и пиррола. Родоначальники этих групп—фуран, тиофен и пиррол [c.579]


    Нитробензол настолько инертен к ацилированию и так хорошо растворяет хлористый алюминий, с которым образует комплекс типа оксониевой соли, что его часто применяют в качестве растворителя при проведении конденсаций по Фриделю—Крафтсу с другими ароматическими соединениями. Перемещение замещающих групп, наблюдаемое при алкилировании, не происходит при синтезе кетонов, и реакции с хлорангидридами и ангидридами протекают обычно с лучшими выходами, чем с галоидными алкилами. Как уже упоминалось, для синтеза карбонилсодержащих соединений требуется большее количество катализатора, однако в отношении применимости и эффективности различных катализаторов сохраняется та же зависимость. Так, хлористый алюминий и здесь является самым сильным из обычно употребляемых катализаторов хлорное олово и трехфтористый бор действуют слабее, но достаточно эффективно, а плавленый хлористый цинк очень мало активен. Более слабые катализаторы применяют тогда, когда желательно ослабить течение реакции. Например, тиофен настолько реакционноспособнее бензола, что в значительной мере полимеризуется в реакционной смеси, содержащей хлористый алюминий, и поэтому ацилирование тиофена лучше проводить в присутствии менее активного катализатора — четыреххлористого олова  [c.175]

    Большая группа бициклических и циклических систем с гетероатомами (кислорода, азота, серы и др.) также обладает типичными ароматическими свойствами. (Почему фуран, тиофен, пиррол, имидазол, пиридин, катион пирилия и соответствующие производ ные бензола, нафталин и азулен являются ароматическими ) [c.390]

    Конденсация изатина с бензо[А]тиофеном по карбонильной группе приводит к V. [c.569]

    И В ЭТОМ случае наблюдается близкая аналогия в химическом поведении карбоксильных групп, связанных с тиофеновым и бензольным кольцами. В некоторой степени можно считать неожиданным то, что декарбоксилирование тиофен-2-карбоновой кислоты требует таких же жестких условий, как и декарбоксилирование бензойной кислоты. [c.259]

    Синтезы, основанные на превращениях легко доступных тиофенов, предполагают введение в них заместителей или, наоборот, отщепление ненужных групп. В ряду тиофенов такие превращения используют гораздо чаще, чем в рядах пиррола и фурана. Это связано главным образом с тем, что в большинстве случаев тиофеновое кольцо значительно более устойчиво к побочным реакциям. В этом химия тиофена близка химии бензола. Иногда введение в тиофен ориентирующих заместителей с последующим их отщеплением позволяет осуществить замещение в труднодоступные положения кольца. [c.264]

    Полиацетиленовые соединения растительного происхождения часто содержат в своей структуре ароматическую и некоторые гетероциклические (фуран, тиофен) группы, а также лактонный цикл. Внутри каждого из рядов можно проследить определенную структурную близость между отдельными типами соединений, что весьма важно для объяснения закономерностей их биогенетического происхождения и изучения вопросов таксономии высших растений [69, 70]. Некоторые структурные взаимосвязи и особенности строения можно легко проследить, например, на группе полиацетиленовых соединений С з (табл. 2). Самым распространенным является пентаиненовый углеводород он обнаружен в 10 трибах семейства сложноцветных. В этом ряду природных соединений имеются продукты с различной степенью окисленности концевой метильной группы. Чрезвычайно интересно, что за немногим ис- [c.13]

    Отличительная черта нефтей II генотипа (нижнекаменноугольные отложения) -- высокие значения коэффициента Ц, что свидетельствует о преобладании длинных парафиновых цепей. В то же время отмечается общее сокращение доли СНз-групп в парафиновых цепях. Особенностью этих нефтей является пониженное содержание ароматических и особенно нафталиновых ядер в нафтено-ароматической фракции, одинаковое ко личество нафталиновых и фенантреновых УВ и саман высокая по сравне нию с другими нефтями доля тиофенов (20,5 %) за счет увеличения доли бензтиофенов. Содержание металлопорфиринов колеблется самое высокое отмечается для нефтей Верхнекамской впадины (ванадиевых порфиринов 107 и никелевых 22 мг на 100 г нефти). [c.59]

    В прямогонном мазуте содержатся в основном высококипящие сероорганические соединения с преойпаданием группы сульфидов, тио-фенов и "остаточной серы. Однако в нём могут встречаться и ниэ-кокипящие моносульфиды, меркаптаны, а также сероводород и элементарная сера. Большая часть этих разновидностей сернистых соеди-нешш имеет вторичное происхоядение. Мазуты крекинга также содержат серу в основном в виде сульфидов, тиофенов и "остаточной" серы, однако и в них присутствуют другие соединения сери, хотя и в меньшем количестве, чем в прямогонных мазутах, [c.110]

    Адсорбция углеводородов, а также полЯ рных веще1ств алюмосиликатами повышается с увеличением их молекулярной массы, а при одной и той же молекулярной массе —с увеличением числа циклов в мол вкуле и степени разветвленности их боковых цепей. Смолы, растворимые в феноле, адсорбируются лучше, чем нерастворимые, так как содержат больше гетероатомов, функциональных групп и а1роматических циклов [3, 11]. Из серосодержащих соединений алюмосиликатами хорошо адсорбируются сульфиды, несколько хуже — тиофены. Адсорбция сульфидов с повышением температуры выкипания масляной фракции ухудшается, а тиофе-нов, наоборот, — улучшается, что, вероятно, связано с измененн-ем строения этих соединений по мере повышения температуры их кипения. Результаты адсорбции сульфидов и тиофенов из масляных ф ра, кций туймазинской нефти алюмосиликатным адсорбентом [c.265]


    По данным [496 ] средняя молекула алкилтиофенов из фракции 150—250°С арланской нефти содержит одну сравнительно, длинную (Сз—Ся), одну более короткую (С,—Сз) цепи и 1—2 метильные группы. По результатам оптической и масс-спектрометрии и гидродесульфурирования сделан вывод о том, что среди этих алкил-тиофенов нет монозамещенных, что лишь около 10 % их имеют заместители в а-положении к атому серы и что в их алифатических цепях нет гем-диметильных и изопропильных групп [467, 472]. До 40% тиофенов в этой фракции составляли СС с 2 = 6, которые, по данным осколочной масс-спектрометрии, являлись скорее цик-поалкил, чем циклоалканотиофенами [496]. [c.67]

    Реакция шла ио схеме тиофен дигидротпофен тнол олефин. Влияние числа и положения метильных групп на глубину пре-1 ращения видно пз данных, приведенных в табл. 102. [c.422]

    Метод адсорбционной хроматографии не позволяет выделять из нефтяных фракций сераорганические соединения без значительных примесей аренов и других тннов гетероатомных соединений. Количественное выделение сульфидов и тиофенов возможно после их окисления в сульфоксиды или сульфоны. Экстракты или концентраты серасодержащих соединений не могут быть хроматографически разделены на однотипные группы- С помощью ГЖХ возможна идентификация тиолов, сульфидов, дисульфидов и тиофенов в узких бензиновых фракциях нефтей. [c.87]

    При изучении химических превращений тиофенов следует учитывать, что во многих случаях гетероатом серы и группа —СН=СН— бензольного кольца идентичны по химическому поведению. Гетероатом дополняет л-электронную систему до ароматического секстета, а также определяет направленность замещения в тиофе-новом кольце а-положения на несколько порядков активнее р-положений. Наиболее важны для тиофенов реакции электрофильного замещения и металлирования, дающие начало процессам получения многочисленных важных продуктов алифатиче- [c.252]

    ИК-спектры были сняты на приборе UR-20 со скоростью регистрации 50/32 и щелевой программой 2. Толщина слоя вещества (в Л1Л) указана на спектрах (рис. 25 и 26). Спектры всех фракций сульфидов позволили установить присутствие связи С—S по поглощению в области 700 см . Поскольку поглощение в области 1250 см характерно не только для тиацикланов, но и для тиофенов, для более четкой идентификации групп сернистых соединений в исследуемое вещество вводили определенные-количества индивидуальных сернистых соединений известного строения (метилфенилсульфид, дифенилсульфид,. 3-метилтиофен, 2-метилтиофен или 2-метилбензтиофен). В присутствии индивидуальных сернистых соединений интенсивность ИК-поглощепия характеристических полос возрастала прямо пропорционально концентрации добавляемых соединений. На рис. 27 приведены участки спектров сульфидов, снятых в идентичных условиях дО и после введения 3,46 вес. % 2-метилбензтиофена. Как это видно, добавление к сульфидам небольшого количеств  [c.167]

    Следующим шагом в познании структуры сероорганических соединений нефтей стало выделение и исследование сульфидов и тиофенов дистиллятов 360-410 и 410-450°С и разработка новых методов дифференциации (термодиффузионное разделение, комплексообразование с тиокарбамидом, разработка новых методик масс-спектрометрического анализа). В результате установлено, что степень цикличности сульфидов достигает до 6 конденсированных цикланов, тиофенов — до 4 ароматических карбоциклов, оценена степень замещения и длина заместителей циклических молекул [21]. Было определено содержание основных классов сероорганических соединений в высококипящих дистиллятах 450-500 и 500-540 С типичных нефтей, установлено, что сульфиды представлены тиациклоалканами с числом сконденсированных нафтеновых колец до 8, тиофенов — до 6. Данные структурно-группового анализа показали, что дистилляты всех исследованных типов нефтей содержат одни и те же основные группы углеводородов и сероорганических соединений, отличаясь относительным содержанием отдельных классов соединений, причем с повышением температуры кипения дистиллятов эти различия сглаживаются [17]. [c.235]

    В отличие от бензола фуран. пиррол и тиофен имеют ди-польные моменты 0,70, 1,80 и 0,55 Д соответственно. Положительный конец диполя — гетероатом, а отрицательный — оттянувшая на себя р-электроны гетероатома уг.певодородная часть молекулы. Последнее можно утверждать на основании того, что эти гетероциклы легче, чем бензол, реагируют с электро-фильнт> ми реагентами. Дипольный момент пиррола несколько завышен, по-видимому, потому, что его положительный конец находится не на атоме азота, а на атоме водорода группы NH, имеющем наименьшую электроотрнцательность. Это можно подтвердить тем, что при действии щелочей или реактива Гриньяра этот атом водорода замещается на атом металла или остаток MgX. [c.311]

    В гетероциклических системах различные положения тоже неэквивалентны и к ним применимы такие же правила ориентации, как и к другим циклическим системам. Замещение в фу-ране, тиофене и пирроле направляется главным образом в положение 2 и идет быстрее, чем в бензоле [64]. Пиррол особенно активен, его реакционная способность приближается к реакционной способности анилина и фенолят-иона. В случае пиридина [65] атака происходит не на само свободное основание, а на его сопряженную кислоту — ион пиридиния [66]. Положение 3 обладает наивысшей реакционной способностью, но общая активность пиридина значительно ниже, чем бензола, и аналогична нитробензолу. Однако в положение 4 пиридина можно вводить группы косвенным путем, проводя реакцию с соответствующим Н-оксидом пиридина [67]. [c.324]

    Гетероциклические системы. Явление ароматичности не ограничивается карбоциклическими соединениями. Замещение какого-либо из углеродных атомов в перечисленных выше соединениях на другие атомы дает новые ароматические системы при условии, что я-электронная система не изменяется. Замещение СН-групп в бензоле на изоэлектронный (т. е. содержащий такое же число электронов) азот приводит к образованию серии гетероциклических ароматических соединений пиридин, пиридазин, пиримидин и пиразин. Возможно и дальнейшее замещение. Во всех этих соединениях циклическая бя-электрон-ная система ( ароматический секстет ) использует по одному электрону от каждого атома кислорода и азота, оставляя по свободной паре электронов на р -орбитали каждого азота на месте бензольной связи С—Н. В результате эти гетероциклические соединения обладают слабоосновными свойствами, основность свободной электронной пары на р -орбитали значительно меньше, чем свободной пары на 5рЗ-орбитали (ср. С—Н-кислотность в алканах и алкинах, разд. 8.2.1). Циклопен-тадиенид-анион можно также рассматривать как родоначальное карбоциклическое соединение серии гетероциклических ароматических соединений. Фуран и тиофен имеют ароматический секстет, в котором по одному электрону дают каждый из четырех углеродных атомов (т. е. две двойные связи), а два электрона являются свободной парой кислорода или серы. В пирроле [c.306]

    На практике в экстракционшлх процессах используют такие различные органические растворители, как алифатические и ароматические углеводороды (гексан, октан, декан, пентен, гексен, циклогексан, бензол, толуол и др.), соединения, содержащие одну функциональную группу (спирты — амиловый, октиловый простые и сложные эфиры — диэтиловый эфир, диизопропиловый эфир, этилацетат кетоны нитросоедииения галогенопроизводные — хлороформ, четыреххлористый углерод, 1,2-дихлорэтан, хлорбензол серосодержащие соединения — сероуглерод, тиофен), соединения, имеющие более одной функциональной группы, например, 2-хлоранилин, и др. [c.242]

    Расположение молекул органических соединений определяется правилом Китайгородского. Согласно этому правилу, кристаллы с молекулярной структурой имеют склонность к наиболее плотной упаковке молекул, В большинстве случаев кристаллы органических соединений можно рассматривать как систему плотно уложенных слоев. На границе слоев молекулы расположены так, что их полярность не проявляется в направлении, перпендикулярном к слою. Координационное число составляет обычно 6, что соответствует наиболее плотной упаковке. По правилу Китайгородского, (или взаимного замещения молекул в кристаллической решетке) способность к образованию твердых растворов зависит от подобия формы и размеров взаимозамещающихся молекул. Замещать друг друга могут атомы, группы атомов и молекулы. Например, твердые растворы образуют хлорбензол и бромбензол, гидразобензол и бензил-анидин, бензол и тиофен. [c.70]

    Группа тиофена. Тиофен по сравнению с фураном является более кислотоустойчивым соединением и может сульфироваться концентрированной серной кислотой, если брать очень разбавленный раствор тиофена в бензоле . Метилтиофен в этих условиях уже полностью осмоляется . Многие тиофеновые производные сульфируются действием хлорсульфоновой кислоты однако выходы сульфохлоридов оставляют желать лучшего. [c.273]

    Как и при алкилировании фенола и других ароматических соединений, в качестве источника алкильных групп можно использовать спирты. Так, трет-бутиловый спирт в присутствии активированной глины взаимодействует с тиофеном, образуя тре/и-бутил- и ди-трет-бутилтиофепы. Сравнительно недавно в качестве катализатора для этой реакции удалось использовать хлорное олово [19]. Альдегиды, в частности формальдегид, взаимодействуют с тиофеном в положении 2,5, образуя полимеры эта реакция катализируется сильными минеральными кислотами. Некоторые альдегиды, например бензальдегид, в присутствии активированных глин могут конденсироваться с тиофеном, давая мономерный ди(2-тиенил)фенилметан полимеры при этом не образуются. [c.286]

    Все 1,4-дифулкциональные соединения, из которых можно исходить при сипт-езс тиофенов, целесообразно разделить па четыре группы, как это и сдмано в дальнейшем изложении. [c.344]

    Нанб. легко в р-цию вступают ароматич. и гетероциклич. соед. с повышенной электронной плотностью, напр, гидрокси-, алкокси- и диалкиламиноарены, пиррол, тиофен, фуран. Б случае пятичленных гетероциклов формильная группа вводится в положение 2 или 5, в случае производных бензола-обычно в лдра-положение к заместителю. [c.367]

    Гетероциклические соединения — класс органических циклических соединений, в циклах которых, кроме атомов углерода, имеются атомы других элементов — гетероатомы кислород (напр., фуран и пиран), азот (напр., пиррол и порфирины, индол, пиразол, пиридин, пиримидин, хинолин, изохинолин, пурин и др.), сера (напр., тиофен), селен (напр., селенофен) и т. д. Г, с. могут быть смешанные, содержащие два гетероатома, например тиазол и др. В природе широко распространены Г. с. группы пиррола (гемоглобин, хлорофилл), пирона (растительные пигменты), пиридина, хинолина и изохинолина (различные алколоиды), пурина (мочевая кислота, кофеин и др.), тиофена (нефть). Некоторые Г.с. получают из каменноугольного дегтя (пиридин, хииолии, акридин и пр.) и при переработке растительного сырья (фурфурол). Многие природные и синтетические Г. с.—ценные красители (индиго), лекарственные вещества (хинин, морфин, акрихин, пирамидон). Г. с. используют в производстве пластмасс как ускорители вулканизации каучука, в кииофотопромышлениости. [c.38]

    Из электрохимически активных гетероциклов прежде всего следует выделить гетероароматические соединения. Их можно разделить на 7С-дефицитные и тс-избыточные. К первой группе относятся пиридин, хинолин, пиримидин, пиразин, феназин и др., молекулы которых способны присоединять электроны. К тому же в соединениях этого типа гетероатом может протонироваться, приобретая положительный заряд, что существенно облегчает процесс электровосстановления. У тс-избыточных гетероциклов, к которым в основном относятся пятичленные азот-, серо- и кислородсодержащие соединения (пиррол, фуран, тиофен, индол, карбазол и т.п.), неподеленная пара электронов гетероатома участвует в тс-элек-тронном сопряжении, что повышает электронную плотность кольца в целом. Эти гетероциклы, как правило, не восстанавливаются в доступной области потенциалов. [c.470]

    В качестве примера весьма высокой устойчивости циклической системы тиофена можно привести реакцию образования тиофен-карбоновой кислоты в результате катализируемого щелочью са- моокисления алкильных групп. [c.252]


Смотреть страницы где упоминается термин Тиофен группа: [c.58]    [c.169]    [c.35]    [c.966]    [c.355]    [c.105]    [c.70]    [c.60]    [c.31]    [c.280]    [c.415]    [c.418]    [c.17]    [c.370]    [c.59]    [c.60]   
Основные начала органической химии Том 2 1957 (1957) -- [ c.525 , c.528 ]

Основные начала органической химии Том 2 1958 (1958) -- [ c.525 , c.528 ]




ПОИСК





Смотрите так же термины и статьи:

Тиофен



© 2024 chem21.info Реклама на сайте