Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки, анализ молекулярная масса

    Для проведения седиментометрического анализа кинетически устойчивых систем (золей, растворов ВМВ) с целью определения размеров и массы их частиц недостаточно силы земного тяготения. Последнюю заменяют более значительной центробежной силой центрифуг и ультрацентрифуг. Идея этого метода принадлежит А. В. Думанскому (1912), который впервые применил центрифугу для осаждения коллоидных частиц. Затем Т. Сведберг разработал специальные центрифуги с огромным числом оборотов, названные ультрацентрифугами. В них развивается центробежная сила свыше 250 ООО Современная ультрацентрифуга представляет собой сложный аппарат, центральной частью которого является ротор (с частотой вращения 60 000 об/мин и выше), с тончайшей регулировкой температуры и оптической системой контроля за процессом осаждения. Кюветы для исследуемых растворов вмещают всего 0,5 мл раствора. В ультрацентрифуге оседают не только частицы тонкодисперсных золей, но и макромолекулы белков и других ВМВ, что позволяет производить определение их молекулярной массы и размеров частиц. Скорость седиментации частиц в ультрацентрифуге рассчитывают также по уравнению (23.9), заменяя в нем g на о) х, где (О — угловая скорость вращения ротора л — расстояние от частицы до оси вращения. [c.378]


    Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.). На практике наиболее часто используются методы седиментационного анализа, гель-хроматография и гель-электрофорез. Определение молекулярной массы белков методами седиментационного анализа проводят в ультрацентрифугах , в которых удается создать центробежные ускорения [c.44]

    При определении молекулярной массы биополимеров (белков, нуклеиновых кислот и др.) необходимо учитывать взаимодействие их макромолекул между собой и связанное с ним образование ассоциатов, изомеров и комплексов. Для этой цели удобно использовать такие методы анализа, как седиментация, электрофорез и хроматография. С их помощью можно добиться некоторого разделения компонентов белкового раствора и распределения их в соответствии с определенным законом, который может быть строго описан математически. Сравнивая затем экспериментальное и теоретическое распределения, можно определить параметры, характеризующие взаимодействие макромолекул, восстановить распределение каждого компонента и, наконец, найти по ним молекулярную массу неассоциированных молекул, т. е. мономеров белка. [c.168]

    Анализ полученных результатов. При построении градуировочного графика на оси абсцисс откладывают длину пробега (в миллиметрах) или относительную подвижность белковых зон, а на оси ординат — молекулярную массу белков-маркеров (рис. 1.1). Относительная подвижность определяется к пробегу красителя или белка-маркера. Молекулярную массу исследуемого белка находят по градуировочному графику, используя экспериментальные значения Rf. Во избежание ошибок из-за вариабельности свойств геля рекомендуется проводить электрофорез исследуемого белка и стандартной смеси на одной [c.20]

    МОИ пептидов, полученных из другого белка. Этот метод извес-теи как картирование по Кливленду (по имени первого автора статьи, где он был описан) [12]. В ПААГ в присутствии ДСН могут быть разделены полипептиды с диапазоном молекулярных масс от 10 до 10 но наиболее достоверные результаты получаются при анализе белков с истинными молекулярными массами от 10" до 10 , поэтому для белков с молекулярной массой dO" метод обычно не применяется. [c.224]


    Некоторые компоненты удалось получить в чистом виде и подробно проанализировать. Методами ионообменной хроматографии и гель-фильтрации был изолирован [80] альбумин с молекулярной массой 16 000 Да, который не имеет свободной SH-группы. Изолирован и другой альбумин [62] с молекулярной массой от 26 000 до 31 ООО Да, также не имеющий свободной SH-группы. Анализ аминокислот показывает, что соотношение (ионные-(-полярные) неполярные = 0,71, тогда как этот альбумин превосходно растворяется в воде. Отсюда автор [62] делает вывод, что структура этих белков стабилизируется гидрофобным ядром, а боковые полярные и ионные цепи преимущественно вынесены в наружную часть молекулы, т. е. в водную среду. [c.181]

    Кроме того, выделен в чистом виде [94] 7-глиадин (глиадин 50), который по молекулярной массе явно превосходит все другие, обнаруженные ранее 7-глиадины. Таким образом, еще остается определенная неясность в отношении истинных молекулярных масс у разных 7-глиадинов, которая может очень отчетливо отражать гетерогенность 7-глиадинов, намного более сильную, чем та, что выявляет анализ с помощью электрофореза в кислой среде. Впрочем, выявлено существование, по крайней мере, 9 7-глиадинов [134], а некоторые исследователи на основе анализа N-концевых последовательностей полагают, что фракция, обозначаемая 72 в действительности, включает не менее двух главных и трех минорных белков и что фракция 73 также гете-рогенна [19]. По молекулярной массе ш-глиадины превосходят а-, Р- и 7-глиадины, но они также образованы одной — единственной полипептидной цепью. Совокупность результатов, полученных разными авторами, указывает на существование двух групп ш-глиадинов — с молекулярными массами соответственно около 65 000 и 75 000—80 000 (табл. 6Б.7). [c.191]

    ГПХ можно использовать для определения молекулярной массы и размеров белковых молекул. По методу Эндрюса [4—6] вначале на основании предварительного анализа нескольких белков с известной молекулярной массой строят калибровочную кривую, выражающую графическую зависимость удерживаемого объема Уе от молекулярной массы М. После этого молекулярную массу и стоксов радиус исследуемого белка определяют путем интерполяции. В отличие от других методов определения молекулярного веса здесь можно работать с мало-очищенными препаратами. Если исследуемый белок обладает какими-либо характерными свойствами, например ферментативной активностью или поглощением при определенной длине волны, его содержание в анализируемом препарате может быть минимальным. [c.425]

    Эксклюзионную хроматографию широко используют при исследовании полимеров, определении их молекулярных масс, а также в биологии и медицине для анализа белков, крови и других объектов. Этот метод удобен для исследования образцов неизвестного состава, так как можно не опасаться нежелательных превращений веществ в колонках. Метод эксклюзионной хроматографии можно использовать и в неорганическом анализе. Например, при помощи некоторых природных цеолитов можно разделить ионы в зависимости от их размера. Гидратированные ионы или многоатомные частицы не могут проникнуть в поры цеолита, их легко отделить от ионов малого размера, проникающих в матрицу цеолита. [c.328]

    Общая стратегия определения первичной структуры белка включает несколько этапов. Необходимо (а) провести количественный анализ гидролизата для того, чтобы определить мольное соотнощение имеющихся аминокислот (см. разд. 23.3.2) (б) определить молекулярную массу с помощью подходящего физического метода для того, чтобы вычислить количество всех присутствующих аминокислотных остатков [I—3] (в) определить количество входящих в молекулу полипептидных цепей либо с помощью хроматографического или электрофоретического разделения, либо посредством количественного анализа остатков, содержащих аминогруппу (JV-конец) и карбоксильную группу (С-конец) (см. разд. 23.3.4)  [c.256]

    За последние годы в связи с возросшей необходимостью анализа и разделения сложных смесей получила значительное развитие ситовая хроматография (гель-проникающая, гель-фильтрационная, молекулярно-ситовая). В качестве подвижной фазы в этом случае используются только жидкости, а неподвижной фазой являются материалы с заданной пористостью, способные избирательно удерживать молекулы веществ с определенными размером и формой. Так, например, в качестве фильтрующих материалов используются сшитые гидрофильные полимеры (гели), обладающие строгой регулярностью пространственной структуры. При пропускании через гель водных растворов белков или других водорастворимых биологических материалов удается удерживать внутри решетки геля молекулы определенного размера, а более крупные молекулы беспрепятственно вымываются подвижной фазой. При этом компоненты смеси элюируются в порядке уменьшения молекулярной массы. [c.46]


    Порядок чередования отдельных остатков аминокислот в цепи может быть установлен последовательным отщеплением с обоих концов молекулы отдельных аминокислот, которые предварительно метятся превращением в какие-либо устойчивые к гидролизу производные, например в производные динитроанилина. Этим путем было установлено строение нескольких наиболее простых белков (инсулина, гемоглобина, рибонуклеазы и др.), молекулы которых построены из нескольких десятков (в некоторых случаях больше сотни) различных и одинаковых молекул а-аминокислот и имеют молекулярную массу 5000—15000. Эти химические данные дополняются результатами рентгеноструктурного анализа. Для многих более сложных белков установлен порядок чередования нескольких аминокислотных звеньев с каждого конца молекулы. [c.298]

    Для точного определения молекулярной массы нужно иметь набор соответствующих стандартов, на основании которых будет построена калибровочная кривая, отражающая зависимость Уе, или коэффициента распределения от lgЛI (см. табл. 35.1). Чтобы избежать ошибок, связанных с различным поведением линейных и глобулярных белков при ГПХ, при анализе глобулярных белков в качестве стандартов можно использовать только глобулярные белки. Определение молекулярной массы в широком диапазоне может быть проведено на колонке с агарозой в присутствии денатурирующих агентов [7]. Для определения молекулярной массы и разделения белков с М 10 —10 дальтон применяются гели сшитого декстрана, например сефадексы 0-75, 0-100, 0-150 и 0-200, и полиакриламидные гели, например биогели Р-30—Р-300. Более высокомолекулярные белки, с М 10 —10 дальтон, фракционируют на гелях агарозы типа сефароза 2В—6В или биогелях А-0,5—А-0,150. Подробные характеристики этих материалов приводятся в гл. 5. [c.425]

    Другие методы определения последовательности расположения аминокислотных остатков в белковой молекуле основаны главным образом на использовании ферментов, способных ускорять реакции последовательного отщепления аминокислот либо с N-, либо с С-конца полипептидной цепи. Однако они не получили еще столь широкого распространения и аппаратурного оформления, как рассмотренные выше. В последние годы ведущее место в выяснении первичной структуры белков занял метод, который условно можно назвать генетическим он основан на выведении последовательности аминокислот в белковой молекуле исходя из структуры гена, кодирующего биосинтез этого белка. Именно так была расшифрована структура самых длинных полипептидных цепей—фактора VIII свертывания крови (2332 аминокислотных остатка) и субъединицы тиреоглобулина (2750 аминокислотных остатков). Нельзя не упомянуть также только что появившиеся сообщения об определении первичной структуры белков методом лазерной фотодиссоциации учитывая его высочайшую чувствительность (для анализа достаточно 5 нмоль белка при молекулярной массе 50 кДа), он, по-видимому, имеет большое будущее. [c.59]

    Гель-хроматография применяется, как уже указывалось, при обессиливании растворов (малые по размеру ионы солей проникаю в поры ге я и удерживаются там), для группового разделения высокомолекулярных и низкомолекулярных органических соединений (например, глицериде в жирных кислот с молекулярной массой около 200—500), в анализе биологических объектов (часто с использованием буферных систем с целью предотвратить разрушение ферментоп), для определения молекулярной массы белков (в том числе содержащихся в сыворотке К]ювп, в спинн( -мозговой жидкости), углеводородов и др)гих вещеста. [c.285]

    Анализ субъединиц глютенина с помощью электрофореза при кислых pH или двумерного электрофореза ДДС-ПААГ-ИЭФ или ДДС-ПААГ в формирующемся градиенте pH обнаруживает значительные различия их зарядов. Каждую полосу, наблюдаемую при одномерном электрофорезе и соответствующую определенной молекулярной массе, можно посредством электрофокусирования разделить на большое число белков, отличающихся своими изоэлектрическими точками. Так, по Данно и др. [57], субъединицы с предполагаемой молекулярной массой в пределах [c.208]

    Число аминокислотных остатков, входяшд4Х в молекулы отдельных белков, весьма различно в инсулине их 51, в миоглобине - около 140. Поэтому и молекулярная масса белков колеблется в очень широких пределах - от 10 ООО до нескольких миллионов. На основе определения молекулярной массы и элементного анализа установлена эмпирическая формула белковой молекулы - гемоглобина крови [c.419]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Сульфгидрильным группам миозина принадлежит важная роль в ферментативном катализе, а также в образовании актомиозинового комплекса. По данным аминокислотного анализа, в миозине содержится 15—17 моль SH-rpynn на каждые 200 000 г белка (молекулярную массу миозина в настоящее время считают равной 500 000 Да). В препаратах миозина методами титрования обычно определяется 10— [c.159]

    Анализы высокоочищенных субъединиц [79, 111] подтверждают, что субъединицы с высокими молекулярными массами (90 000, 132 000, 144 000 Да) имеют повышенное содержание глицина, но количество его у разных белков может варьировать. Кроме того, содержание лизина у них выше, чем у других глютенинов или глиадинов, но общее содержание основных аминокислот изменчиво. Имеются также многочисленные мелкие различия между этими тремя субъединицами. Кроме этого, их состав не-идентичен тому, который установили Данно и др. [57] для субъединиц эквивалентной молекулярной массы. Но эти авторы разделяли фракции по их молекулярной массе таким образом, была выявлена гетерогенность этих фракций [57, 98, 111], особенно субъединиц с высокой молекулярной массой [92]. [c.206]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]

    Структурные домены — геометрически обособленные образования. Поскольку описанные выше субобласти идентифицируются по наблюдаемым свойствам цепи (например, лигандприсоединяющая или ферментативная активность), они представляют собой функциональные домены ) [76]. По мере развития структурного анализа белка было показано, что функциональные домены состоят из одного или более структурных доменов . Структурные домены были обнаружены при изучении многих трехмерных белковых структур, в частности глутатионредуктазы (рис. 4.1). Это геометрически обособленные образования с молекулярной массой около 20 ООО. Почти все глобулярные белки можно подразделить на такие субобласти. По-видимому, большинство функциональных доменов с молекулярной массой свыше 20 ООО состоят из более чем одного структур- [c.60]

    Хитин В природных источниках редко находится в индивидуальном состоянии обычно в панцирях крабов и омаров он связан с белком, в виде комплекса или ковалентными связями [165]. Это свойство может быть объяснено недавно открытым фактом, что в большинстве хитинов не все аминогруппы /V-ацетилированы, поэтому они могут выступать в качестве основных групп и образовывать комплексные соединения с другими молекулами, имеюшиып соответствующим образом расположенные ионные группы. Хитин не растворяется в воде и многих органических растворителях. Это затрудняет установление его строения и проявляется, например, в виде низкой реакционной способности при метилировании. Большинство образцов хитина в результате обработки минеральной кислотой при выделении частично Л/-дезацетилированы и имеют более низкую молекулярную массу, чем нативный хитин. Рентгеноструктурный анализ кристаллического хитина показал, что элементарное звено его макромолекулы состоит из двух цепей в изогнутой конформации с меж- и внутримолекулярными водородными связями, подобно целлюлозе (см. разд. 26.3.3,2). [c.258]

    При ионизации полевой десорбцией масс-спектры пептидов состоят практически из одних молекулярных ионов. На этой основе Я. Шимониши был разработан метод исследования структуры белка путем непосредственного анализа смеси пептидов, получаемых после ферментативного гидролиза. Смесь пептидов подвергается деградации по методу Эдмана, и после каждого этапа, наряду с идентификацией отщепленных аминокислот, масс-спектрометрически по молекулярным ионам определяются молекулярные массы [c.73]

    Изложенный выше подход к анализу упаковки макромолекул может быть применен и к белковым молекулам. В табл. 4.4 показан аминокислотный состав пяти белков, для которых проведены соответствующие расчеты, — лизоцима, яичного альбумина, термолизина, рибонуклеазы и сывороточного альбумина. В таблице приведены ван-дер-ваальсовы объемы аминокислотных остатков (а не самих аминокислот), входящих в первичную структуру белка. Результаты расчета приводят к следующим значениям ван-дер-ваальсовых объемов белковых молекул ли-зоцим— 12 526,9 А , яичный альбумин — 38 632,72 А , термолизин — 36 688,7 А , рибонуклеаза — 12 071,0 А , сывороточный альбумин— 58 105,65 А . Молекулярная масса лизоцима, яичного альбумина и сывороточного альбумина человека составляет 14 277, 42 791 и 64 427, а плотность в стеклообразном состоянии— 1,31 1,27 и.1,27 г/см . Отсюда коэффициенты молекулярной упаковки к равны для лизоцима — 0,691, для яичного альбумина и сывороточного альбумина — 0,690. Эти величины соответствуют среднему значению коэффициента молекулярной упаковки в блочных стеклообразных полимерах. [c.141]

    Биологический смысл, заключенный в гомологии последовательностей, лучше всего можно проиллюстрировать на примере цитохрома с-железосодержащего митохондриального белка, участвующего в качестве переносчика электронов в процессах биологического окисления в эукариотических клетках. Молекулярная масса этого белка у большинства видов составляет около 12 500 при этом его полипептидная цепь содержит 100 или несколько большее число аминокислотных остатков. Бьии установлены аминокислотные последовательности для цитохромов с, выделенных более чем из 60 видов, и во всех исследованных белках 27 положений в полипептидной цепи оказались занятыми одинаковыми аминокислотными остатками (рис. 6-14). Это указывает на то, что все эти остатки играют важную роль в определении биологической активности цитохрома с. В других положениях аминокислотные остатки могут варьировать от вида к виду. Второй важный вывод, сделанный на основе анализа аминокислотных последовательностей цитохромов с, состоит в том, что число остатков, по которым различаются цитохромы с любых двух видов, пропорционально филогенетическому различию между данными видами. Например, молекулы цитохромов с лошади и дрожжей (эволюционно весьма далеких видов) различаются по 48 аминокислотным остаткам, тогда как цитохромы с гораздо более близких видов— курицы и утки-только по двум остаткам. Что же касается цитохромов с курицы и индейки, то они имеют идентичные аминокислотные последовательности. Идентичны также цитохромы с свиньи, коровы и овцы. Сведения о числе различий в аминокислотных последовательностях гомологичных белков из разных видов используют для построения эволюционных карт, отражающих последовательные этапы возникновения и развития различных видов животных и растений в процессе эволюции (рис. 6-14). [c.155]


Смотреть страницы где упоминается термин Белки, анализ молекулярная масса: [c.225]    [c.141]    [c.158]    [c.26]    [c.26]    [c.48]    [c.102]    [c.300]    [c.351]    [c.45]    [c.94]    [c.565]    [c.274]    [c.200]    [c.202]    [c.21]    [c.94]    [c.94]    [c.266]    [c.118]    [c.271]    [c.45]    [c.267]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ молекулярный

Белки молекулярный вес

Масса белка

Молекулярная масса

Молекулярный вес (молекулярная масса))



© 2024 chem21.info Реклама на сайте