Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элюирование простое

    Элюирование (простое, многократное, круговое, в двух направлениях), часто в хроматографическом процессе принимает участие газовая фаза Преимущественно статическое [c.31]

    Относительная температура элюирования простой метод измерения удерживания пика при газовой хроматографии с программированием температуры. [c.91]

    Методы ионообменной хроматофафии используют преимущественно для целей разделения. Количественное определение компонентов после разделения может быть выполнено любым подходящим методом. Простейшая методика ионообменного разделения состоит в поглощении компонентов смеси ионитом и последовательном элюировании каждого компонента подходящим растворителем. [c.295]


    Хроматермография получила применение в начальный период развития газовой хроматографии и осуществлялась в самодельных установках в 1951—1960 гг., когда еще почти не было промышленного выпуска газовых хроматографов. Это объясняется главным образом конструктивными трудностями, встретившимися при создании технически совершенной и компактной системы движущегося температурного поля с градиентом температуры. Кроме того, уже в то время начала применяться другая более простая система нагревания хроматографической колонки в процессе элюирования компонентов из нее — нагревание колонки равномерно по всей длине. Эта система получила широкое распространение под названием программирование температуры и в настоящее время осуществляется в большинстве газовых хроматографов промышленного производства. [c.19]

Рис. 7.9. Простейшее устройство для градиентного элюирования. Рис. 7.9. <a href="/info/1712935">Простейшее устройство</a> для градиентного элюирования.
    В колоночной хроматографии проводят разделение макроколичеств веществ, при этом пробу в виде раствора отмеряют обычной мерной посудой. Подвижную фазу вводят в верхний конец колонки из резервуара, используя способ нисходящей хроматографии, при которой подвижная фаза движется под действием поля земного притяжения. При небольшой скорости передвижения жидкости в колонке продолжительность анализа сокращают, повышая давление. Обычно непродолжительным считают разделение со скоростью 1—20 мм мин- или 1—10 мл-мин . При проведении градиентного элюирования или при проявлении хроматограммы (см. стр. 344) применяют простую установку, приведенную на рис. 7.9. Она состоит из двух склянок с тубусами. В сосуд А вводят чистый растворитель Ьд, в сосуд Б — растворитель Ьб- При переходе растворителя Ьд в сосуд Б с одновременным переходом подвижной фазы из сосуда Б в разделительную колонку концентрация вещества А в подвижной фазе постоянно возрастает. [c.352]

    Все эти сорбированные ионы могут быть вытеснены из смолы простым элюированием водой. При вымывании водой [c.114]


    Эти недостатки моншо устранить очень простым способом — непрерывным повышением температуры колонки в процессе опыта в соответствии с определенной программой. Если начальная температура Го. т. е. температура колонки в момент ввода пробы, является оптимальной для наиболее летучих компонентов смеси, то они выделяются из колонки в приемлемое время и при этом хорошо разделяются, а высококипящие компоненты смеси удерживаются в начале колонки. При повышении температуры условия элюирования последовательно становятся оптимальными для компонентов с более высокими температурами кипения и они начинают значительно быстрее двигаться вдоль колонки. Каждый компонент при повышении температуры колонки имеет оптимальную для него область температур и элюируется примерно с той же скоростью, что и другие, но в другое время. Поэтому компонепты смеси, резко различающиеся по температурам кипения, дают пики примерно одинаковой формы и ширины. [c.394]

    Назначение устройства для формирования градиента—изменять в ходе анализа состав растворителя таким образом, чтобы его элюирующая сила постоянно увеличивалась в соответствии с выбранным законом. Это должно обеспечить элюирование из колонки как слабо, так и сильно удерживающихся веществ с хорошим разделением в виде узких пиков правильной формы и за относительно короткое время анализа. Устройства для формирования градиента могут быть простыми по конструкции или сложными в зависимости от того, какой вид градиента требуется, как часто он используется, какой насос имеется в наличии и т.д. [c.142]

    При помощи градуировочной кривой, полученной при элюировании стандартных белков с различной молекулярной массой, и используя простейшее аппаратурное оформление, можно провести определение молекулярной массы с погрешностью 5 — 10%. [c.361]

    Самый простой вариант элюирования — изократический, при котором состав элюента не меняется. Его используют при разделении соединений с близким сродством к неподвижной фазе. В некоторых случаях, используют градиентное элюирование, при котором состав элюента в процессе разделения компонентов изменяют по заданному закону. В этом случае элюирующая сила подвижной фазы возрастает, в результате чего сокращается время удерживания сильно сорбируемых веществ и улучшается разделение смеси. [c.269]

    Приведенная общая тактика выбора состава подвижной фазы непосредственно применима лишь в простейших случаях, в отсутствие затруднений, связанных с особым химическим характером разделяемых веществ. При изучении высокополярных и ионогенных соединений зачастую не удается найти удовлетворительного рещения этим простейшим способом, так как для них характерна тенденция образовывать асимметрические аномально уширенные хроматографические зоны. Иногда либо вообще не удается добиться элюирования, либо наоборот — времена удерживания слишком малы. Можно назвать некоторые типичные причины таких осложнений  [c.43]

    В ХИМИИ лекарственных вешеств и органическом синтезе исследователь чаще всего работает с относительно простыми смесями, содержащими не более 5—10 компонентов. Если компоненты не слишком различаются по своим свойствам, обычно удается подобрать такую подвижную фазу, которая обеспечивает приемлемые скорость анализа и разделение. Однако в отдельных случаях смесь может содержать вещества, сильно различающиеся по сорбционным свойствам, и, следовательно, для анализа таких соединений требуются подвижные фазы различной элюирующей силы. На рис. 4.19 приведены хроматограммы смеси, для которой не удается подобрать изократический (т. е. при постоянном составе подвижной фазы) режим разделения. В противоположность этому режиму под градиентным элюированием понимают такой способ проведения хроматографического [c.117]

    ТСХ можно использовать для предсказания условий ступенчатого элюирования для препаративных разделений, как показано на рис. 1.27 [97]. Три системы ТСХ, использующие подвижные фазы прогрессивно увеличивающейся полярности, сравнивали для разделения пары более простых эфиров гликоля. На основе этой информации, исходя из больших коэффициентов разделения и соотношений между а и нагрузкой, приведенных в табл. 1.5, около 100 г смеси разделили всего за 7 мин в ус- [c.65]

    СМ - 68 мин. в табл. I приведены данные о продолжительности элюирования, подсчитанные для различных значений гг и ае в ходе проводившихся экспериментов вводились поправки на расстояние между линией погружения и линией нанесения. Точное определение а оказывается не столь простым делом при экспериментах требуется соблюдение некоторых предосторожностей. Например, нужно правильно выбрать камеру для элюирования (в данном случае - сэндвич-камеру), хорошо ее герметизировать и поддерживать уровень растворителя постоянным. Рекомендуется пользоваться методом, рассмотренным ниже. [c.42]

    Попытки скорректировать влияние градиентов на Кг обречены на провал, если наблюдается расслоение многокомпонентной подвижной фазы на слое во время элюирования (в ТСХ известно лишь несколько систем, при употреблении которых та1 ого расслоения не случается). При этом уже не обеспечивается простое и легко прогнозируемое соответствие между (Кг)набл и местной величиной Кг, определяемой согласно уравнениям (39а) и (396). Однако сделанное здесь утверждение не следует расценивать как извиняющее обстоятельство или ка призыв расслабиться и прекратить попытки достижения воспроизводимых значений Кг и результатов разделения. [c.159]


    Оптимизация продолжительности элюирования в тонкослойной хроматографии оказывается ненужной, если разделение обеспечивается достаточно просто и весь анализ может быть завершен за несколько минут или за еще меньший отрезок времени (т.е. когда требуется менее 1000 тарелок). В какой степени должно быть повышено число тарелок, если должно быть реализовано сложное разделение  [c.218]

    Значение tio, tu и Rr характеризуют простое, однократное элюирование. Приведенные уравнения предполагают, что расстояние от линии погружения до стартовой линии равно 1 см. Сопоставление затрат времени на применение такого метода с затратами времени на многократное элюирование будет дано с следующем разделе. [c.234]

    На рис. 82 сопоставляются. четыре простые хроматограммы, полученные при использовании обычной насыщенной камеры и камеры SB/ D в последнем случае все разделения оказываются улучшенными. Проанализируем, почему это происходит. Во-первых, выбранный вид разделительной задачи (два или три близких друг к другу пятна) идеально подходит для применения метода непрерывного элюирования. Ситуация окажется совсем иной в случае образца, компоненты которого сильно отличаются по полярности (когда большинство компонентов оказалось бы сгруппированным или около стартовой линии или около линии, с которой начинается испарение). Во-вторых, получение различной разрешающей способности на четырех парах пластинок хотя и не обусловливается одной и той же причиной, но легко объясняется благодаря использованию уравнения (54). [c.236]

    При практической работе простой способ пополнения растворителем не будет эффективным, поскольку пятна обычно перемещаются медленнее, чем фронт и линия погружения (из-за чего уровень растворителя постепенно приближается к разделяемым пятнам в таком случае приходится либо прекращать элюирование, либо снизить скорость подъема уровня все эти [c.253]

    Сэндвич-камера с объемом газового пространства менее 5 см оказывается идеально ненасыщенной в начале элюирования, поскольку в газовой фазе нет молекул растворителя и не так просто может быть обеспечен переход и насыщение этими молекулами газовой фазы. Таким условиям соответствует наличие сухой части слоя над поднимающимся фронтом растворителя. В ненасыщенной сэндвич-камере слой не может предварительно насыщаться парами растворителя. [c.96]

    Устройство приборов для хроматографии и осуществление самого эксперимента сравнительно просты. Выбрав подходящую систему ионного обмена и проведя рекомендованную обработку (регенерацию) ионообменника, при идентичных условиях элюирования (скорость потока, температура и т. д.) можно получать хорошо воспроизводимые хроматограммы. Благодаря этому фракционирование белков с помощью ионообменной хроматографии имеет широкое распространение. [c.23]

    В заключение в табл. 43 приводим сводку идентифицированных в нефтях стеранов и углеводородов ряда гопана, а также их относительные времена удерживания. На рис. 55 представлена хроматограмма смеси этих углеводородов самотлорской нефти. Из рисунка видно, что определение гопанов является более простой задачей, так как в области элюирования гопанов jg— gg практически отсутствует горб , столь характерный для области элюирования стеранов. [c.142]

    После заполнения колонки ионитом, обработки буферным раствором и BBo.jM пробы приступают к элюированию — пропусканию элюента через колонку. Элюирование может быть простое, когда используют один элюент, такой же, как взятый для растворения пробы, и ступенчатое, при котором элюирование ведут более сильными элюентами, чем растворитель, использованный для растворения пробы. Если хроматографическая колонка заполнена катионитом в Н + -форме, то концентрация ионов Н + в элюенте должна быть более высокой. Для колонок, заполненных анионитом в ОН -форме, концентрация ОН -ионов в элюенте должна возрастать. Если применяется ионит в солевой форме, то используют элюенты с возрастающей концентрацией других противоионов, чтобы обеспечить условия десорбции. Для создания необходимой ионной силы в элюент добавляют нейтральные электролиты (K I, Na l). [c.360]

    В простейшем варианте хроматографирование осуществляют на колонках, в которые помещают сорбент, служащий стационарной фазой. Раствор, содержащий смесь веществ, которые надо разделить, пропускают через колонку. Компоненты анализируемой смеси перемещаются через стационарную фазу вместе с подвижной фазой под действием силы тяжести или под давлением. Разделение осуществляется благодаря перемещению компонентов смеси с различной скоростью вследствие их взаимодействия с сорбентом. В результате вещества распределяются на сорбенте, образуя адсорбционные слои, называемые зонами. В зависимости от целей разделения или анализа могут быть разные варианты последующей обработки. Наиболее распространенный способ — элюирование. Через колонку с адсорбированными на ней веществами пропускают подходящий растворитель — элюент, который вымывает из колонки один или несколько сорбированных компонентов их затем можно определить в полученном растворе — элюате. Можно пропустить через колонку реагент-проявитель, благодаря которому сорбированные вещества становятся видимыми, т. е. слой сорбен- [c.107]

    Для выделения из сульфомассы дифеииламин-4-сульфо-кислоты в виде натриевой или бариевой соли простых и надежных методов до сих пор не существовало. Недавно для выделения чистого дифениламин-4-сульфоната натрия предложено реакционную массу после сульфирования дифениламина нейтрализовать едким натром и пропускать через хроматографическую колонку с целлюлозой. Последующее элюирование соли рекомендовано осуществлять смесью н-бутилового спирта и водного раствора аммиака в соотношении 10 1 [c.66]

    Элюирование образца из вырезанной части бумаги можно осуществить несколькими способами. В самом простом случае вырезанную полосу поме-14ают в пробирку и заливают растворителем, которым данное вещество количественно извлекается. Бумагу можно измельчить, отцентрифугиро-вать и экстрагировать следующей порцией растворителя. Этот способ можно использовать только в тех случаях, когда допустимо значительное разбавление образца, например при колориметрических определениях [861. Следует отметить, что адсорбция вещества на бумаге приводит к значительным ошибкам. [c.477]

    В простейшем случае подача буферного раствора на колонку осуш,е-ствляется, как и при обычной хроматографии, при помош,и резервуара с постоянной высотой уровня жидкости, причем скорость тока регулируется краном на выходе из колонки. Для ускорения тока буфера можно создать некоторое избыточное давление по способу, показанному на рис. 419, стр. 454. Более целесообразно использовать специальные микронасосы, позволяюш,ие осуш,ествить элюирование с постоянной регулируемой скоростью. Так, например, поршневые насосы, сконструированные в экспериментальных мастерских Чехословацкой Академии наук [67], позволяют регулировать скорость потока в диапазоне от 5 до 500 мл/час (рис 494). Они имеют стеклянные клапаны или клапаны золотникового тйпа (нержа-веюш,ая сталь по тефлону) и снабжены специальным командным устройством, обеспечиваюш,им автоматическую смену буферов и работу коллектора фракций (см. разд. 5.2 и 6). Насос поддерживает строго постоянный ток буфера при давлении несколько атмосфер. [c.554]

    Подход с проточной ячейкой — наиболее простой вариант работы ЖХ-ФПИК. Хроматографический элюат проходит через проточную ячейку непосредственно после колонки, и интерферограмма непрерывно записывается в течение всего анализа. Использование алгоритма Грама—Шмидта, как в ГХ-ФПИК, для расчета отдельной хроматограммы поглощения в режиме реального времени неосуществимо, поскольку подвижная фаза сильно поглощает и небольшие изменения в поглощении при элюировании определяемых веществ с трудом детектируются. Поэтому обработка данных обычно проводится по окончании хроматографического анализа после вычитания спектра поглощения подвижной фазы. Чтобы предотвратить полное поглощение в полосе растворителя, необходимо использовать короткий оптический путь, обычно менее 0,2 мм для органических подвижных фаз и менее 0,03 мм для водных смесей. Вместе с тем обстоятельством, что коэффициенты поглощения в среднем ИК-диапазоне значительно меньше по сравнению с коэффициентами поглощения в УФ- и видимом диапазонах спектра, это приводит к сравнительно низкой чувствительности этого метода, порядка 0,1-1 мкг. Дополнительным недостатком этого интерфейса является то, что в области поглощения растворителя никакой информации о поглощении определяемого вещества не может быть получено, поскольку правильное вычитание затруднительно, особенно для обращенно-фазовых смесей растворителей. Более того, вычитание фонового сигнала не может быть проведено удовлетворительно, если необходимо градиентное элю- [c.630]

    Для преодоления упомянутых ограничений прибор для ЯМР должен быть существенно переделан и улучшен, чтобы его можно было ввести в проточные системы. Современный прибор для ЖХ-ЯМР изображен на рис. 14.3-10. Хроматографическая система состоит из ВЭЖХ-насоса, инжектора и аналитической колонки. Простой детектор (УФ или рефрактометрический) указывает на элюирование пика и обеспечивает получение количественной информации. Сигнал с этого детектора может быть также использован, чтобы остановить сбор данных или работу насоса, а также для сбора вещества, содержащегося в пике (либо немедленно в собирающую петлю перед детектором или после детектирования в коллекторе фракция). Хроматографический элюат направляется из ЖХ-ЯМР-интерфейса либо через проточную ячейку ЯМР-зонда, либо напрямую в слив. После прохождения через ячейку ЯМР поток идет к коллектору фракций для сбора и последующего исследования фракций, проанализированных ЯМР. [c.633]

    Благодаря своему заряду карбонат имеет очень хорошие элюирующие свойства, и его можно использовать в сравнительно низких концентрациях. Чаще всего применяются элюенты, которые представляют собой буферные растворы, приготовлеппые смешением карбоната и бикарбоната. Селективность такого элюента можно легко изменить, меняя соотношение компонентов, т.е. меняя значение pH элюента. Кроме того, чтобы обеспечить быстрое или медленное элюирование, не влияя на порядок выхода анализируемых попов, можно просто изменить концентрацию элюента. [c.6]

    Разделение смесей спиртов, кислот, простых и сложных эфиров показано в ряде работ [1, 179—186] (рис. 38—40). При разделении первичных, вторичных, третичных спиртов, диолов, алкилалифатнческих эфиров на полимерных сорбентах большое влияние на порядок элюирования оказывает структура алкильной цепи компонента [186]. Модифицирование пористых полимеров полярной жидкой фазой (полиэтиленгликоль 1500) полезно при разделении спиртов, имеющих различную структуру, но близкие температуры кипения [187]. [c.135]

    Вопросы теории и методики применения градиентного элюирования детально рассмотрены в монографии Яндеры и Хура-чека [226]. Помимо этой монографии заинтересованному читателю можно рекомендовать оригинальные работы [77, 78, 117, 219—225, 227, 228, 231, 232, 238, 339—341, 371]. Здесь же мы воспроизводим только простейшие соотношения из работы[226]. Расчет удерживаемых объемов при градиентном элюировании базируется на следующей основной идее. Предположим, что бесконечно малому количеству подвижной фазы dV, прошедшему через колонку, отвечает смещение максимума хроматографической зоны, пропорциональное величине объема подвижной фазы в колонке dVm. В течение этой бесконечно малой ступени элюирования коэффициент емкости можно считать постоянной величиной, потому [c.118]

    В отсутствие полярных групп эфиры легко количественно определить методом ГХ. В этих анализах ншроко применяют полиэфирные жидкие фазы, которые позволяют получать симметричные хроматографические пики для простых эфиров и, кроме того, обеспечивают разделение в зависимости от числа ненасыщенных связей. Симметричные пики и хорошие количественные данные можно получить и на неполярных жидких фазах, но они не позволяют разделять насыщенные и ненасыщенные эфиры. Колонки с неполярными фазами можно использовать только для грубого разделения эфиров по их молекулярным весам (например, отделить эфиры H- i6 от эфиров я- is), а колонки с полиэфирами — для дополнительного разделения по числу ненасыщенных связей (О, 1, 2 или большее число двойных связей). Эфиры с высоким молекулярным весом или их нелетучие комплексы (например, фосфолипид) обычно превращают в более летучие производные (по кислотной или спиртовой группе или по обеим этим группам) путем переэтерификации, алкоголиза или омыления с последующим превращением в простые или сложные эфиры. Если эфиры содержат полярные группы, то на одном из этапов определения получают производные по этим группам. Так, например, ацетилирование моно- и диглицеридов обеспечивало полное элюирование этих эфиров в ГХ-анализе в то же время без ацетилирования элюирование может оказаться неполным [41, 42]. Моноглицериды (Сг— is) и диглицериды (С4—Сзб) определяли также и путем превращения их по свободным оксигруппам в триметилсилильные эфиры под действием бис- (триметилсилил) ацетамида [43]. [c.140]

    Имеются четыре основные группы производных целлюлозы, которые легко можно получить путем модификации ее свободных гидроксильных групп, а именно органические сложные эфиры, нитраты, карбаматы (получаемые реакцией с изоцианатами) и простые эфиры. Наиболее полезными оказались карбаматы и простые эфиры. В табл. 7.4 показаны изученные производные вместе с величинами а для некоторых разделенных соединений. Отметим, что порядок элюирования энантиомеров на ТАЦ является обратным в сравнении с порядком их элюирования на трибензоате целлюлозы (ТБЦ). [c.117]

    Успешное масштабирование градиентных систем требует просто разумного подхода с учетом некоторых рекомендаций, предложенных в этой главе для изократического и ступенчатого градиентного препаративного ЖХ-разделения. Следует позаботиться о воспроизводимости наклона или формы градиента, учитывая любые различия в геометрии колонки (длина, объем), химическую природу насадки (разд. 1.5.1), способ создания градиента, характеристики предколоночного смесителя и объем задержки градиента. Во всех случаях разделения основываются на коэффициенте распределения компонента между неподвижной и подвижной фазами (к или йщ). Непрерывный градиент изменяет значение к известным образом по зависимости, аппроксимируемой серией небольших изократических ступеней. Увеличивающаяся сила растворителя в течение элюирования сжимает полосу образца. Результатом этого являются узкие пики и уменьшение хвоста пика даже прн условии больших [c.69]

    Разновидностью метода фракционирования на колонке является гель-хроматография [86]. В качестве разделительного вещества применяют органические или неорганические вещества (например, силикагель) пористой структуры с размером пор, зависящим от плотности сшивок и условий получения. Для фракционирования полимеров, растворимых в воде, чаще всего применяют набухший в воде декстран с различной степенью сшивания (сефадекс). Для растворов полимеров в органических растворителях применяют сшитые полистиролы или сополимеры метилметакрилата с этилен-гликольдиметакрилатом. Образец полимера растворяют, заливают в колонку и элюируют, используя тот же самый растворитель. Небольшие молекулы полимера свободно диффундируют внутрь геля. Размеры некоторых молекул оказываются настолько большими, что им не удается проникнуть внутрь пор, в результате чего они первыми выходят из колонки при элюировании. Продолжительность элюирования фракций возрастает с уменьшением размера макромолекул. Существует критическое значение молекулярной массы, ниже которого макромолекулы полимера могут проникать в поры сетки и поэтому могут быть разделены. Молекулы большего размера уже не могут быть разделены, так как они не могут диффундировать в гель. Частота сетки геля и критическое значение молекулярной массы связаны между собой простой зависимостью чем чаще сетка, тем меньше критическое значение молекулярной массы. [c.83]

    Удобнее измерять ширину пика на уровне основания или на уровне половины высоты (bos), чем измерять о зоны, регистрируемой денситометром (все измерения проводятся в направлении, соответствуюшем направлению элюирования). Визуальная сценка ширины по уровню основания (ширины пятна) может сказаться неточной. На рпс. 30 показаны простые математические зависимости, соответствующие различиы. способам оценки ширины симметричгюго пика, соответствующего гауссовскому распределению. [c.90]

    Это значит, что (в отличие от обычного варианта одномерной ТСХ) двумерная ТСХ сопоставима с колоночной жидкостной хроматографией по разрещающей способности (при условии, что могут быть найдены два полностью независимых механизма удерживания, соответствующих двум последовательным элюированиям). Как правило, для соблюдения такого условия требуется особая изобретательность (а не просто замена растворителя). На одну пластинку могут быть нанесены два вида сорбента, один нз которых обеспечивает разделение по размерам молекул, а другой - "по полярности", или же один является гидрофильным (силикагель), а другой -гидрофобным (обращенная фаза). Че.м более сходны разделительные механизмы в двух системах, тем ближе будут оказываться пятна к диагонали пластинки и тем ниже будет получаемое разделительное число. [c.277]

    Первая тонкослойная хроматограмма была получена в круговом режиме Измайловы.м и Шрайбер [1] в 1938 г. Тем не менее именно методы линейного элюирования впоследствии заняли главенствующее положение. Это объяснимо относительно простыми операциями, связанными с реализацией метода, предложенного Гиталем [2, 3]. Разработав изящно сконструированную U-камфу (такая камера выпускается фирмой amag), Р.Е.Кайзер устранил большинство недостатков старого центробежного метода и добавил некоторые интересные возможности вместо плохо [c.285]

    По сравнению с вариантами линейного элюирования, центробежная ТСХ дает возможность (при той же длине разделяющего участка) добиться лучшей разрешающей способности (особенно при низких значениях Кг, если старт оказывается близким к точке подачи растворителя). Однако при переходе к более высоким значениям Кг разрешающая способность снижается. Это наглядно иллюстрируют рис. 56-58 (на которых значения Кг, получаемые при линейном проявлении и при работе в режиме круговой хроматографии, сравниваются схематически), рис. 110 (случаи 6 и 8) и рис. 113 (на этих двух последних рисунках приведены реальные хроматограммы). Такая зависимость объясняется просто после завершения элюирования в случае круговой тонкослойной хроматографии большее количество растворителя проходит через любую точку слоя (чем чфез пятна, удаленные на то же расстояние от старта в случае линейного элюирования), поскольку каждая точка хроматограммы вынуждена "питать" растворптеле.м гораздо большую плошадь. находяшуюся впереди (по сравнению с площадью, находящейся [c.286]

    Ппвпды против 1) умеренная потеря разрешающей способности (для веществ, характеризующихся почти одинаковой степенью удерживания) в диапазоне высоких значений Кг 2) относительно низкая скорость потока при гг - а 4 см (если не повышена приложением давления) 3) метод не так прост и доступен, как линейное элюирование 4) относительно мало число одновременно анализируемых образцов (5-10) 5) не может быть реализован двухмерный вариант тонкослойной хроматографии. [c.289]


Смотреть страницы где упоминается термин Элюирование простое: [c.152]    [c.326]    [c.204]    [c.31]    [c.535]    [c.153]    [c.117]    [c.240]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Элюирование



© 2025 chem21.info Реклама на сайте