Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение ионитов в электрохимии

    Принципиальны. 1 вопросом современной электрохимии является изучение поведения и реакций ионов в различном окружении. Получае.мая информация имеет важное применение к множеству процессов, включая процессы в аккумуляторных батареях, той- [c.345]

    В последние два десятилетия макроциклические соединения привлекают к себе пристальное внимание исследователей синтезируются и идентифицируются сотни новых макроциклов и их металлокомплексов, изучаются качественные особенности данного класса соединений. Повышенный интерес к этим веществам объясняется их необычными химическими свойствами. Макроциклические лиганды способны связывать разнообразные ионы металлов в комплексы, отличающиеся, как правило, высокой устойчивостью. В таких комплексах ионы металлов могут находиться в различных степенях окисления, включая крайне нестабильные. Многие макроциклические металлокомплексы обладают высокой каталитической активностью, а некоторые из них — необычными электрофизическими свойствами. В связи с этим макроциклические соединения (лиганды и металлокомплексы) находят широкое практическое применение в экстракции, разделении ионов металлов, межфазном катализе, электрохимии, катализе окислительно-восстановительных реакций, электронике, моделировании биохимических процессов и т. д. [c.5]


    Варьирование условий реакции представляет особый интерес для неорганической электрохимии, так как позволяет исследовать влияние сольватации и диссоциации. При изучении органических электрохимических реакций, которые обычно являются реакциями сочетания, можно подбирать растворители с определенной кислотностью или, если нужно, растворители, способные подвергаться ионным или свободно-радикальным реакциям. Из разнообразия электрохимического применения неводных растворителей видно, что идеального растворителя не существует. Однако имеется ряд физических и химических свойств, которые следует учитывать при выборе растворителя. Эти свойства различны для разных соединений, и, следовательно, для определенной цели один растворитель может подходить больше, чем другой. [c.23]

    Известны две основные области применения координационных соединений в электрохимии [44, 45]. Комплексы используются в гальванопокрытиях и антикоррозионных жидкостях. Обычно гальванопокрытия наносят в растворе, причем объект, на который осаждают тонкий покровный слой металла, выполняет функцию катода. Все ионы металлов в растворе координируют лиганды, и характер осадка, получаемого на поверхности катода, определяется в основном природой лигандов. Для получения равномерного покрытия нужно, чтобы концентрация ионов металла в растворе была низкой, так как при этом замедляется рост кристаллов. В случае слишком высоких концентраций иона металла осаждение идет очень быстро, и получается зернистый неравномерный, бугристый, нанесенный пластами осадок. Поэтому цианид-ион является лигандом, применяемым наиболее часто прежде всего для осаждения элементов, находящихся в правой части переходных рядов Си, Ag, Au, Zn и d. Однако используют многие другие лиганды, например амины, этилендиамин, сульфаминовую кислоту, фосфат, сульфат и хлорид. [c.292]

    По аналогии с уравнением (26) можно записать реакцию, происходящую на любом металлическом электроде. В каждом случае электродный потенциал будет непосредственно зависеть от активности иона металла, отнесенной к общему для всех растворителей стандартному состоянию [ср. с уравнением (27)]. Сольватация иона металла уменьшает его свободную энергию и активность. Если другие факторы, такие, как энергия ионизации и теплота сублимации, сохраняются постоянными, то чем сильнее связи между катионом металла и молекулами растворителя, тем больше реакционная способность металла и электроотрицательность его электродного потенциала [31]. Кольтгофф [32] опубликовал ценный обзор по фундаментальным принципам электрохимии неводных растворов и, в частности, по применению их в полярографии. [c.328]


    Из краткого перечисления областей применения видно, что выяснение закономерностей совместного разряда ионов является весьма важным вопросом в электрохимии. Однако следует отметить, что теория этого вопроса сложна и сравнительно мало изучена. [c.177]

    Следовательно, применение смол определяется разделением ионов различных сортов между внутренней и внешней фазами и, таким образом, зависит от межионных сил и сил, действующих между ионами и смолой. Кроме того, важную роль играют кинетические факторы, особенно диффузия ионов и их электромиграция в смоле под действием приложенного электрического поля. Таким образом, физическая химия ионообменных смол в значительной части является электрохимией. [c.96]

    Особый интерес представляет применение уравнений Бренстеда—Бьеррума к реакциям между ионами, когда первичный солевой эффект проявляется особенно сильно. В основе дальнейшего вывода лежит формула Дебая — Гюккеля, связывающая коэффициент активности данного иона с общей ионной силой раствора. Напомним вкратце вывод этой формулы, отослав за деталями к специальным руководствам по электрохимии. [c.342]

    При применении щелочного стекла с тем же катионом, что и у прилегающего к нему расплава, не наблюдается химического взаимодействия, возникновения дислокаций в нем и, следовательно, его разрушения. Расплав при этом выполняет роль обменной среды — резервуара положительных ионов щелочных элементов. Типичные примеры электрических характеристик процесса восстановления натрия, калия и цезия способом вакуумной электрохимии приведены в табл. 1. [c.79]

    Отметим, наконец, что применение соотношения (3) к данным, полученным при постоянной дисперсности (рис. 2—4), позволяет предположить, что ионы калия не являются потенциалопределяющими для поверхности кварца, тогда как торий сильно меняет поверхностную емкость. Таким образом, по зависимости емкости от концентрации порового раствора можно выяснить, является ли тот или иной ион потенциалопределяющим для данной поверхности. Приведенные результаты указывают на новые возможности, открывающиеся перед электрохимией дисперсных систем — коллоидов биологических тканей. [c.44]

    Если электролитный раствор в неводном растворителе в определенном интервале концентраций подчиняется закономерностям теории сильных электролитов, то числа переноса и, соответственно, подвижность ионов могут быть найдены с помощью обычных методов электролиза по Гитторфу, движущейся границы и э.д.с. (Все эти методы достаточно подробно описаны в общих курсах теоретической электрохимии.) Применение метода Гитторфа не приводит к особым затруднениям, помимо обычных мер предосторожности при работе с неводными растворами и выбора подходящей аналитической методики. При использовании метода движущейся границы часто нелегко бывает подобрать подходящий индикаторный электролит, поэтому таким методом в неводных растворах выполнено очень мало исследований. [c.254]

    Аналитическая электрохимия объединяет широкий круг электрохимических методов, включая потенциометрию, полярографию, ампе-рометрию, кондуктометрию, кулонометрию, хронопотенциометрию и применение ион-селективных электродов. Эти методы позволяют получить высокую чувствительность и селективность, поэтому неудивительно, что именно им отдается предпочтение при разработке непрерывных и автоматических способов. Применение электрохимических методов особенно важно при опрелелении медов каких-либо соединений. Высокая чувствительность позволяет сократить или совсем исключить предварительную стадийную подготовку и тем самым упростить автоматическое оборудований Электрохимический анализ легко поддается автоматизации, и область его применения чрезвычайно широка Сюда относятся способы определения органических и неорганических веществ в водных и неводных растворах, в газах и в расплавах солей. Особые преимущества электрохимическим методам дает независимость результатов измерений от окраски анализируемого раствора Кроме того, во многих случаях сигнал рабочих электродов связан линейно с концентрацией определяемого вещества. Однако иногда на измерения могут оказывать сильное влияние такие факторы, как загрязнение поверхности электрода компонентами анализируемого потока. При высоких анодных потенциалах возникают трудности, обусловленные необратимыми реакциями на электродной поверхности. Такие явления следует принимать во внимание при разработке систем непрерывного или автоматического действия. [c.24]

    До сих пор бензонитрил преимущественно использовался в электроана-литической химии или электрохимии органических соединений. Это обусловлено наличием примыкающего к нитрилу фенильного кольца и отсутствием альфа-водорода, что выгодно отличает его от других нитрилов. Благодаря этим особенностям бензонитрил является удобным растворителем для обнаружения электролитически генерированных радикалов. Бензонитрил применялся в качестве растворителя при полярографии [1] в нем можно получить полярограммы для активных металлов Ка , Mg , Са , и Ва , но не для и четвертичного аммониевого иона вследствие низкой растворимости соответствующих солей. Бензонитрил использовался также для анодного окисления алифатических аминов [2]. По-видимому, применение этого растворителя, связанное с большими трудностями, не дает каких-либо преимуществ по сравнению с ацетонитрилом. [c.13]


    Поскольку уксусная кислота достаточно неудобна в работе, использование ее в качестве растворителя имеет смысл лишь тогда, когда это дает существенные преимущества по сравнению с другими, менее ядовитыми соединениями. В электрохимии ее применяли в трех различных областях кислотноосновном титровании, полярографии на КРЭ и как растворитель для реакции анодного ацето ксил про вания. К важнейшим свойствам растворителя, используемого при титровании, особенно при кулонометрической генерации титрованного раствора и потенциометрическом определении конца титрования, относятся диэлектрическая постоянная, кислотность и основность и константа ионного произведения. Уксусная кислота интересна в первую очередь своей кислотностью. По сравнению с другими кислотами, применение которых возможно для этих целей, например серной и муравьиной, уксусная кислота характеризуется лучшим сочетанием свойств. Ее диэлектрическая постоянная ниже, чем у этих двух кислот, но она не настолько мала, чтобы затруднить проведение электрохимических измерений. Хотя по кислотности уксусная кислота уступает указанным кислотам, все же она достаточно сильная кислота и способна титровать многие слабые основания. Уксусная кислота имеет намного меньшую константу автопротолиза (2,5 10 ) [2], благодаря чему она гораздо более удобная среда для титрования. [c.32]

    В 1958 г. был основан Институт электрохимии Академии наук СССР. Основатель института — Александр Наумович Фрумкин (1895—1978). Работы А. Н. Фрумкина в основном посвящены поверхностным явлениям и электрохимии. Он развил исследования двойного электрического слоя на границе металл—раствор и в связи с этим изучал адсорбцию ионов, показав, что электрическое поле оказывает влияние на адсорбцию. В 30-х гг. ученый перешел к изучению кинетики электрохимических процессов, вывел ряд закономерностей, объясняющих изменение электродного потенциала от двойного электрического слоя и природы ионов электролита. Результаты этих исследований нашли применение в различных областях народного хозяйства, особенно в промышленности источников тока, и легли в основу ряда современных методов анализа. В Коллоидоэлектрохимическом институте вели исследования и другие видные электрохимики во главе [c.299]

    Другой подход характерен для пражской школы, занявшейся под влиянием работ Брдички и Визнера (1948) электродными процессами с сопряженной химической стадией. Эти исследователи, и особенно Коутецкий, постулировали некоторый механизм реакции и затем получали соответствующие поляризационные характеристики, а также выражение для предельного тока. Данный метод восходит к Эйкену (1908) и был применен, в частности, для разрешения старой проблемы разряда комплексного металлического иона с предшествующей диссоциацией. Выли достигнуты значительные успехи при описании довольно простых процессов, таких, как восстановление с предшествующей рекомбинацией ионов, причем таким способом была исследована кинетика ряда реакций. Разработка Эйгеном и сотрудниками релаксационных и вариационных методов отчасти лишило полярографию после 1954 года монопольного положения, тем не менее вклад пражской школы остается одним из основных достижений современной электрохимии. Применение метода к более сложным процессам в принципе возможно, хотя и связано с математическими трудностями, однако определение механизма реакции путем анализа экспериментальных поляризационных характеристик является весьма ненадежным и часто не дает однозначных результатов. Это замечание применимо ко всем методам анализа, основанным только на поляризационных характеристиках, и указывает на необходимость развития методов, позволяющих качественно и возможно даже количественно определять промежуточные продукты реакции. В этой области многое остается сделать, а мы располагаем для этого в настоящее время только ограниченным числом методов. [c.16]

    Александрович [36] и Александрович и Качальский [13 провели детальный анализ применения правила аддитдв ности для растворов полиэлектролитов на основе разви тых ими фундаментальных представлений об электрохимй-ческом потенциале и о распределении малых ионов вокруг полимерной молекулы. Поскольку для растворов полиэлектролита с добавками низкомолекулярного электролита не получено точного решения уравнения Пуассона — Больцмана, пришлось сделать допущение о том, что электростатический потенциал слагается из потенциала внутренней области непосредственно примыкающей к макроиону, где электростатическое поле сильное, и потенциала внешней области довольно удаленной от макроиона. В области, примыкающей к макроиону, предполагается отсутствие коионов, так как они электростатически отталкиваются от заряженной полимерной молекулы. [c.30]

    Книга предназначается в качестве учебника для студентов химико-технологических вузов. В ней последовательно изложены основные положения теоретической электрохимии —прохождение тока через растворы электролитов, теория сильных электролитов И ее применения, явления сольватации ионов, теория возникновения электродвижущих сил, теория электро-каниллярных явлений и электродных процессов при выделении металлов. Уделено также внимание некоторым особым случаям электролиза — растворению металлов на аноде, образованию сплавов, электролизу с наложением переменного тока, электролизу неводных растворов и расплавов. Отдельные главы посвящены основам теории аккумуляторов и электрохимической коррозии. В заключительной главе учебника рассматриваются теоретические основы некоторых электрохимических процессов, нашедших применение в промышленности. [c.2]

    Радиоактивные индикаторы могут быть использованы для решения различных задач, связанных с изучением электрохимических процессов. Во многих случаях, когда речь идет об определении малых количеств веществ, выделяющихся при электролизе, о контроле перемещения ионов в электрическом поле и т. д., применение радиоактивных индикаторов дает возможность упростить решение поставленной задачи и ускорить получение нужной информации. Принципы использования радиоактивных индикаторов в электрохимических процессах имеют много общего с нринципами использования меченых атомов в других областях физической химии. Поэтому ограничимся рассмотрением только одного примера нсполь-зовання радиоактивных индикаторов в электрохимии, а именно, применением радиоактивных изотопов для определения чисел переноса. [c.288]

    Нитросоединения принадлежат к числу первых и наиболее хорошо изученных объектов органической электрохимии. Однако применение спектроэлектрохимических методов и сульфолана как растворителя, стабилизирующего промежуточные ион-ради-кальные частицы, позволило получить некоторые новые сведения об электровосстановлении нитросоединений [32]. В этих условиях нитробензол давал одну одноэлектронную волну, а га-нитробен-зальдегид — две одноэлектронные, осложненные последующей химической реакцией. Механизм с промежуточным радикал-анионным продуктом был подтвержден моделированием реакций с помощью компьютера и специально разработанного метода дифференциальной обработки спектроэлектрохимических данных. Промежуточные продукты восстановления этих нитросоединений были предварительно изучены с помощью УФ- и ЭПР-спектроско-нии. Радикал-анион, образующийся в электрохимическом процессе при захвате одного электрона, имел в УФ-спектре характерную полосу при 464 нм (в диметилформамиде), описанную ранее другими исследователями, что облегчило его спектроэлектрохимическую индикацию на оптически прозрачном электроде площадью - 0,3 см , состоящем из платиновой пленки толщиной 15—30 нм, осажденной на кварцевой пластинке. На электрод накладывали потенциал, на несколько сот милливольт больший, [c.109]

    В последние годы отмечается значительный интерес к использованию стеклянных электродов в расплавленных солях. Однако рациональное применение их требует изучения ионообменных равновесий на границе стекло-расплавленный электролит и выяснения взаимосвязи между ионообменными процессами и структурой электродного стекла. Однин на важных аспектов изучения электродного поведения стекла является и проблема специфичности основной функции стеклянного электрода в присутствии других ионов металлов, как одно-, так и двухзарядных. В этом плане и развиваются исследования в лаборатории электрохимии стекла ЛГУ. [c.247]

    Изучение реакций обмена — одна из наиболее плодотворных областей применения радиоактивных индикаторов. Однако до последнего времени подобные исследования ограничивались, главным образом, либо реакциями ионного обмена в гомогенных растворах, либо изучением гетерогенных систем с нeнpoвoдяп eй твердой фазой (обмен между раствором и ионным кристаллом). Гораздо меныиое внимание привлекали реакции обмена между металлическими электродами и одноименными ионами в растворе между тем несомненно, что именно этот случай представляет наибольший интерес с электрохимической точки зрения, поскольку система электрод— раствор является одним из характерных примеров динамического равновесия и скорость обмена в ней определяет такие существенные для электрохимии свойства, как обратимость электрода, характер электродных процессов и т. д. Введение радиоактивного индикатора в одну из соприкасающихся фаз (в металл или в раствор) дает исследователю в руки мощное средство для непосредственного изучения скорости обмена между электродом и электролитом. [c.165]


Смотреть страницы где упоминается термин Применение ионитов в электрохимии: [c.121]    [c.408]    [c.334]    [c.121]    [c.382]    [c.26]   
Иониты в химической технологии (1982) -- [ c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Электрохимия



© 2025 chem21.info Реклама на сайте